JP4100361B2 - Reduced blast furnace operation method - Google Patents

Reduced blast furnace operation method Download PDF

Info

Publication number
JP4100361B2
JP4100361B2 JP2004063475A JP2004063475A JP4100361B2 JP 4100361 B2 JP4100361 B2 JP 4100361B2 JP 2004063475 A JP2004063475 A JP 2004063475A JP 2004063475 A JP2004063475 A JP 2004063475A JP 4100361 B2 JP4100361 B2 JP 4100361B2
Authority
JP
Japan
Prior art keywords
furnace
incombustible material
flame
blast furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004063475A
Other languages
Japanese (ja)
Other versions
JP2005248293A (en
Inventor
直也 上田
達男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004063475A priority Critical patent/JP4100361B2/en
Publication of JP2005248293A publication Critical patent/JP2005248293A/en
Application granted granted Critical
Publication of JP4100361B2 publication Critical patent/JP4100361B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、高炉の減尺操業方法に関するもので、特に、休風時に炉内原料から発生する火炎を抑制して補修等の作業に支障がないようにし、かつ休風後の操業再開にあたっても炉況不調を招くことのない減尺操業方法に関する。   The present invention relates to a reduced operation method of a blast furnace, and in particular, suppresses a flame generated from the raw material in the furnace when the wind is off so as not to hinder the work such as repair, and at the time of restarting the operation after the wind The present invention relates to a reduced-scale operation method that does not cause a furnace condition failure.

製鉄用の高炉は、補修等のために操業を停止する場合がある。そのときは、炉内への原料投入を中止し、休風して、炉内に残存する装入物を少しずつ下方に下げていく操業が行われる。これを吹卸しまたは減尺操業と称している。   The operation of blast furnaces for iron making may be stopped for repairs. At that time, the operation of stopping the charging of the raw material into the furnace, resting the air, and gradually lowering the charge remaining in the furnace downward is performed. This is called blow-off or scale-down operation.

減尺操業時には防爆およびCOガスの無害化のために、炉内原料の表面から発生する可燃ガスに着火して、これを燃やす。これを炉頂着火という。ところが、着火後の火炎が強すぎると、炉内や炉頂での作業に支障が出る。そこで、不燃物を投入して、これを原料の表層の適当な範囲に分布させ、火炎を抑制することが行われている。   During the scale-down operation, in order to prevent explosion and to make CO gas harmless, the combustible gas generated from the surface of the raw material in the furnace is ignited and burned. This is called furnace top ignition. However, if the flame after ignition is too strong, the work in the furnace or at the top of the furnace will be hindered. Therefore, incombustible materials are introduced and distributed in an appropriate range of the surface layer of the raw material to suppress the flame.

上記の不燃物としては、製鉄所内で入手できて取り扱いも容易な高炉スラグ(徐冷スラグ。バラスともいう。)を用いるのが一般的である(例えば、特許文献1参照)。   As the incombustible material, it is common to use blast furnace slag (slowly cooled slag, also referred to as ballast) that is available in an ironworks and easy to handle (see, for example, Patent Document 1).

特開平2000−239716号公報 火炎抑制のために投入される不燃物は炉内で最終的にはスラグとなる。高炉の操業を継続するためには、炉内で生成した溶銑と溶滓を出銑口から排出しなければならない。スラグの組成が不適当でその融点が高い場合、あるいは粘性が大きすぎる場合、または炉熱が低すぎてスラグの溶解が十分にできない場合には、荷下がりの悪化を引き起こし、順調な風量復帰が妨げられる。最悪の場合はスラグの排出ができなくなって、高炉操業の継続が不可能になってしまう。JP, 2000-239716, A The incombustible material thrown in for a fire suppression finally turns into slag in a furnace. In order to continue the operation of the blast furnace, the hot metal and hot metal generated in the furnace must be discharged from the outlet. If the composition of the slag is inappropriate and its melting point is high, or if the viscosity is too high, or if the furnace heat is too low to sufficiently dissolve the slag, it will cause a decrease in unloading and smooth air flow recovery. Be disturbed. In the worst case, the slag can no longer be discharged and the blast furnace operation cannot be continued.

上記の事情から、炉内に投入されるものでスラグになるものは、低温で溶融するものであることが望ましい。また、その溶融には熱が必要であるから、特に休風後の炉熱が低い状態での操業では、炉内で生成するスラグが少ないこと、換言すれば、スラグになる投入物の量はできるだけ少ないこと、が望ましい。   In view of the above circumstances, what is put into the furnace and becomes slag is desirably melted at a low temperature. In addition, since heat is required for melting, especially in operation in a state where the furnace heat after resting is low, there is little slag generated in the furnace, in other words, the amount of input that becomes slag is It is desirable to have as few as possible.

前記の特許文献1に例示されている高炉スラグは、比較的融点が高い。従って、これを不燃物として投入すると、長時間休風で炉熱が低くなった後に送風を再開したとき、投入した不燃物(高炉スラグ)の溶解が十分にできず、荷下がりの悪化による風量復帰の遅延、排滓性の悪化による通気性の低下などの支障がおきて、炉況不調を招く。   The blast furnace slag exemplified in Patent Document 1 has a relatively high melting point. Therefore, when this is introduced as an incombustible material, when the air flow is resumed after the furnace heat has been lowered due to long periods of off-air, the introduced incombustible material (blast furnace slag) cannot be sufficiently dissolved, and the air volume due to worsening of unloading Problems such as a delay in return and a decrease in air permeability due to the deterioration of exhaustability will cause a malfunction of the furnace.

本発明の課題は、高炉の減尺操業に際して火炎を抑制するとともに、投入する不燃物に起因する操業再開後の炉況不調を防止することができる減尺操業方法の提供にある。   An object of the present invention is to provide a scaled-down operation method capable of suppressing a flame during scale-down operation of a blast furnace and preventing a malfunction of the furnace state after restarting the operation due to an incombustible material to be introduced.

本発明は、下記(1)および(2)の減尺操業方法を要旨とする。
The gist of the present invention is the following reduced scale operation method (1) and (2) .

(1)減尺休風を行う際に炉頂火炎抑制のために投入する不燃物として、固相析出温度が1430℃以下で、CaO/SiO2が0.13〜1.15、Al23が10.0〜15.0%、MgOが13.3%以下で、CaO、SiO2、Al23およびMgOの合計が95%以上の不燃物を使用することを特徴とする高炉の減尺操業方法。ただし、上記の%は質量%である。
(1) As non-combustible material to be introduced to reduce the flame at the top of the furnace when performing scaled off-air, the solid phase deposition temperature is 1430 ° C or less, CaO / SiO 2 is 0.13 to 1.15, Al 2 O 3 is 10.0 to 15.0%, MgO is 13.3% or less, CaO, SiO 2, Al 2 O 3 , and reducing scale operation method of the blast furnace, characterized in that the sum of MgO uses incombustible material 95% or more. However, said% is the mass%.

(2)炉頂着火後、不燃物の一部を火炎の強い位置に選択的に投入することを特徴とする上記(1)の高炉の減尺操業方法。
(2) The reduced operation method for a blast furnace according to the above (1), wherein after incineration of the top of the furnace, a part of the incombustible material is selectively introduced into a position where the flame is strong.

1.投入する不燃物の固相析出温度について
図1は、休風時間と、操業再開(送風再開)後の初回出銑の溶銑温度との関係を示す図である。同図のAの領域は、休風時間が短くて炉内温度の低下が比較的小さい領域である。このときは、不燃物として通常の高炉スラグを投入しても通風再開後の操業には支障がない。一方、Bの領域は、50時間を超える長時間の休風を行った領域で、その場合は、操業再開後の初回出銑の溶銑温度は著しく低下する。これは、炉内温度の大きな低下を意味し、不燃物として高炉スラグを投入すると送風再開後の荷下がりや出滓に困難が生じて、炉況不調を招く。
1. About solid phase deposition temperature of incombustible material to be introduced FIG. 1 is a diagram showing a relationship between a resting time and a hot metal temperature at the first time after resumption of operation (resumption of air blowing). The area A in FIG. 6 is an area where the rest time is short and the temperature drop in the furnace is relatively small. At this time, even if ordinary blast furnace slag is introduced as an incombustible material, there is no problem in operation after resuming ventilation. On the other hand, the region B is a region where a long wind break exceeding 50 hours has been performed, and in that case, the hot metal temperature of the first brewing after the restart of operation is remarkably lowered. This means that the temperature in the furnace is greatly reduced. If blast furnace slag is introduced as an incombustible material, the unloading and unloading after the resumption of air blowing become difficult, leading to a malfunction of the furnace.

前記のとおり、火炎抑制のために投入する不燃物はスラグとなるが、その溶解が不十分であれば高炉の連続操業に様々な支障が生じる。従って、投入する不燃物については、休風によって低下した炉内温度の下でも溶解可能であることが求められる。本発明では、まず、投入する不燃物の溶解温度を下げることを目標にした。   As described above, the incombustible material to be introduced for suppressing the flame becomes slag, but if the melting is insufficient, various troubles occur in the continuous operation of the blast furnace. Accordingly, it is required that the incombustible material to be introduced can be melted even in the furnace temperature lowered by the resting wind. In the present invention, first, the goal is to lower the melting temperature of the incombustible material to be charged.

通常の高炉スラグは、その固相析出温度(即ち、すべてが完全に液体になる温度)は、約1470℃である。一方、図1に示すように、通常実施される50時間程度までの休風であれば、初回溶銑温度は最低1370℃程度である。ただし、休風後の送風再開時の炉内温度は、初回溶銑温度よりも高いと考えられるから、固相析出温度が約1470℃の高炉スラグを不燃物として投入しても、操業に支障はない。このことから、初回溶銑温度よりも100℃高い固相析出温度を持つ不燃物であれば、火炎抑制のための投入物として使用できると考えられる。   Conventional blast furnace slag has a solid phase deposition temperature (ie, the temperature at which everything becomes completely liquid) of about 1470 ° C. On the other hand, as shown in FIG. 1, the initial hot metal temperature is about 1370 ° C. at the lowest in the case of a resting wind of up to about 50 hours that is normally performed. However, the furnace temperature at the time of resumption of air blowing after resting is considered to be higher than the initial hot metal temperature. Absent. From this, it is considered that any incombustible material having a solid phase precipitation temperature that is 100 ° C. higher than the initial hot metal temperature can be used as an input for suppressing the flame.

図1によれば、100時間前後の長期休風でも、最も低い初回溶銑温度は約1330℃である。従って、この温度よりも100℃高い温度、即ち、1430℃までの固相析出温度を持つ不燃物は、長期休風を前提とする減尺操業においても投入可能であると推定できる。そして、本発明者は、実炉における試験でこの推定が正しいことを確認した。そこで、本発明では、投入する不燃物を、固相析出温度が1430℃以下のものとした。
According to FIG. 1, the lowest initial hot metal temperature is about 1330 ° C. even in a long-term wind break of about 100 hours. Therefore, it can be estimated that incombustible materials having a temperature higher than this temperature by 100 ° C., that is, a solid-phase precipitation temperature up to 1430 ° C., can be input even in a scaled operation premised on long-term resting. And this inventor confirmed that this estimation was correct in the test in a real furnace. Therefore, in the present invention , the incombustible material to be added has a solid phase deposition temperature of 1430 ° C. or lower.

固相析出温度が1430℃以下の不燃物としては、様々の物がある。これらは、高炉に投入されて最終的にはスラグになるのであるから、溶銑の化学組成に大きな変動をもたらす成分を含んでいなければ、その種類には特に制約はない。しかし、次に述べるような酸化物系の物が望ましい。   There are various non-combustible materials having a solid-phase deposition temperature of 1430 ° C. or lower. Since these are thrown into the blast furnace and eventually become slag, there are no particular restrictions on the type as long as they do not contain components that cause a large variation in the chemical composition of the hot metal. However, the following oxide-based materials are desirable.

2.投入する不燃物の組成について
高炉スラグは、主成分がCaO、SiO2、Al23およびMgOである。投入する不燃物は前記のようにスラグになるので、その組成もこれらの酸化物を主体とするものであることが望ましい。上記の酸化物の中でAl23は、その含有量が増えるとスラグの粘性が大きくなる。そこで、溶解した後の不燃物の粘性が大きくなりすぎないように、Al23の含有量を15.0%以下とした。一方、Al23が少なすぎると結晶化温度が上昇してしまうので、下限を10.0%とした。
2. About composition of incombustible material to be charged Blast furnace slag is mainly composed of CaO, SiO 2 , Al 2 O 3 and MgO. Since the incombustible material to be added becomes slag as described above, it is desirable that the composition is mainly composed of these oxides. Among the above oxides, the viscosity of slag increases as the content of Al 2 O 3 increases. Therefore, the content of Al 2 O 3 is set to 15.0% or less so that the viscosity of the incombustible after dissolution does not become too large. On the other hand, if the amount of Al 2 O 3 is too small, the crystallization temperature will rise, so the lower limit was made 10.0%.

図2は、Al23が15%のときのCaO−SiO2−MgO系状態図である。この図から明らかなように、1430℃で完全に液体である組成は、直線A−A、B−BおよびC−Cで囲まれる領域の組成、即ち、CaO/SiO2が0.13〜1.15、MgOが13.3%以下の組成である。なお、直線A−AはCaO/SiO2が0.13、直線B−BはCaO/SiO2が1.15のラインであり、直線C−CはMgOが13.3%のラインである。 FIG. 2 is a CaO—SiO 2 —MgO phase diagram when Al 2 O 3 is 15%. As is apparent from this figure, the composition which is completely liquid at 1430 ° C. is the composition of the region surrounded by the straight lines AA, BB and CC, that is, CaO / SiO 2 is 0.13 to 1.15, MgO. Has a composition of 13.3% or less. The straight line AA is a line with CaO / SiO 2 of 0.13, the straight line BB is a line with CaO / SiO 2 of 1.15, and the straight line CC is a line with MgO of 13.3%.

図2は、Al23が15%のときの状態図であるが、Al23が10%のときも上記の直線A−A、B−BおよびC−Cで囲まれる領域の組成物の溶融温度は1430℃以下になるから、Al23が15.0%のときのCaO−SiO2−MgO組成物が完全に液体である温度を基準にすればよい。 FIG. 2 is a state diagram when Al 2 O 3 is 15%, but also when Al 2 O 3 is 10%, the composition of the region surrounded by the above-mentioned straight lines AA, BB and CC. Since the melting temperature of the product is 1430 ° C. or lower, the temperature at which the CaO—SiO 2 —MgO composition is completely liquid when Al 2 O 3 is 15.0% may be used as a reference.

次に、CaO、SiO2、Al23およびMgOの合計が95%以上であることとした理由は、これら以外の酸化物等、例えばFeOやMnOが混入していても、それらの合計量が5%未満であれば前記の固相析出温度に実質的な影響を与えず、その温度を上昇させることがないからである。 Next, the reason that the total of CaO, SiO 2 , Al 2 O 3 and MgO is 95% or more is that even if oxides other than these, such as FeO and MnO, are mixed, the total amount thereof If it is less than 5%, the solid phase precipitation temperature is not substantially affected and the temperature is not increased.

3.前記(2)の発明について
火炎は炉内原料の表面に投入される不燃物の量が多いほど小さくなる。従って、強い火炎を抑えようとすれば、大量の不燃物を投入する必要がある。しかし、前記のとおり、炉内に投入する不燃物はできるだけ少ない方がよい。即ち、最小限の量の不燃物で火炎を抑制するのが望ましい。
3. Regarding the invention of (2) The flame becomes smaller as the amount of incombustible material introduced into the surface of the raw material in the furnace increases. Therefore, in order to suppress a strong flame, it is necessary to throw in a large amount of incombustible material. However, as described above, it is better that the amount of incombustible material introduced into the furnace is as small as possible. That is, it is desirable to suppress the flame with a minimum amount of incombustible material.

火炎の強さは、原料表面の位置によって異なる。そのばらつきは、実際に火炎の状態をみるまでは予測できない。一部にでも火炎の強い部分があると作業への支障が生じるので、これまでは最も強い火炎を想定して、原料表面の全体を覆うように安全を見込んだ大量の不燃物を投入していた。即ち、原料表面のどの位置に強い火炎が発生しても対処できるように、不燃物を投入していた。その結果、火炎の強くない部位では不必要に過剰な不燃物が投入されることになり、これが、前述の様々な炉況不調の原因になっていた。   The strength of the flame varies depending on the position of the raw material surface. The variation cannot be predicted until the actual flame condition is observed. Even if there is a part with strong flames, it will hinder the work, so far, assuming the strongest flame, a large amount of non-combustible material with the safety expected to cover the entire raw material surface has been introduced. It was. That is, an incombustible material has been introduced so that a strong flame can be generated at any position on the raw material surface. As a result, an excessively incombustible material is unnecessarily introduced in a portion where the flame is not strong, and this has caused the various furnace conditions described above.

なお、不燃物の投入は、通常、休風の前に行う。休風後は炉内ガスの放出のために炉頂部のブリーダバルブを開くので、休風後に不燃物を投入すると発生した粉塵が炉外に出るおそれがあるからである。   In general, incombustibles are charged before the wind breaks. This is because the bleeder valve at the top of the furnace is opened to discharge the gas in the furnace after the wind is off, and dust generated when the incombustible material is thrown in after the wind is off may come out.

本発明の(2)の方法では、休風前の不燃物の投入量は、平均的な火炎の強さを想定した量とし、着火の後に火炎の強い部分に選択的に必要量の不燃物を追加投入する。このようにすれば、原料表面全体に過剰な不燃物を投入する必要がなくなって、後述の実施例に示すように、投入量の大幅な節減ができる。
In the method (2) of the present invention, the amount of the incombustible material before the wind break is assumed to be an amount that assumes the average flame strength, and the necessary amount of the incombustible material is selectively applied to the strong flame portion after ignition. Is added. In this way, it is not necessary to input an excessive incombustible material over the entire surface of the raw material, and the input amount can be greatly reduced as shown in the examples described later.

不燃物の追加投入が必要な火炎の強さは、実際の作業場所から放射熱や熱風の程度を観察することで判定できる。どの部分の火炎が強いかは炉頂マンホールからの目視観察で判断できる。   The intensity of the flame that requires additional incombustibles can be determined by observing the level of radiant heat and hot air from the actual work site. Which part of the flame is strong can be judged by visual observation from the top manhole.

不燃物の投入形態には特に制約はない。例えば、粉粒状や塊状のものを袋詰めにして投入するという方法が採用できる。炉頂着火後、火炎の強い位置に選択的に追加投入してもよい。着火後は炉頂部のマンホールを開いても差し支えないので、この着火後の投入は、発塵しない程度に小分けしてマンホールから行えばよい。   There are no particular restrictions on the form of incombustible material. For example, it is possible to adopt a method in which powdered or lump-shaped products are filled in a bag. After ignition at the top of the furnace, it may be selectively added to a position where the flame is strong. After ignition, it is possible to open the manhole at the top of the furnace. Therefore, the input after ignition may be performed in small portions so as not to generate dust.

内容積2700m3の高炉で、従来方法(ケース1)と本発明方法(ケース2および3)を実施した。実施条件を表1に示す。 The conventional method (case 1) and the method of the present invention (cases 2 and 3) were carried out in a blast furnace with an internal volume of 2700 m 3 . Implementation conditions are shown in Table 1.

ケース1は、一般的な高炉スラグを不燃物として使用して休風を行った。投入量は40トンで、全てを休風前に投入した。投入した高炉スラグの固相析出温度は1470℃である。これは、初回溶銑温度(送風再開後の最初に出銑した溶銑の温度)1345℃よりも125℃高い。そのために出滓率が悪く、荷下がり不良が発生したため風量復帰時間(休風前の風量まで復帰する時間)が56時間と著しく長い。なお、出滓率は「出滓時間÷出銑時間×100」で定義されるもので、これが小さいということは、不燃物が多すぎて炉内温度の上昇が十分でないこと、もしくは炉内温度での投入不燃物等の溶解が不十分であることを意味する。   In case 1, a general blast furnace slag was used as an incombustible material, and the wind was stopped. The input amount was 40 tons, and everything was input before the wind break. The solid phase precipitation temperature of the blast furnace slag that was input is 1470 ℃. This is 125 ° C higher than the initial hot metal temperature (temperature of the hot metal first produced after resumption of air blowing) of 1345 ° C. For this reason, the output rate is poor and the unloading failure occurs, so the air volume return time (the time to return to the air volume before resting) is 56 hours. The output rate is defined as “output time ÷ output time x 100”. The small value means that there are too many non-combustibles and the temperature inside the furnace is not sufficient, or the temperature inside the furnace. This means that the incombustibles etc. are not sufficiently dissolved in

ケース2では、Al 2 3 の含有率が低く、CaO/SiO 2 も小さい組成の不燃物を投入した。この不燃物の固相析出温度は、1420℃である。投入量はケース1と同じであり、全てを休風の前に投入した。この場合は、初回出滓率は83.7%に向上し、風量復帰時間が30時間に短縮された。これは、不燃物の固相析出温度が低いので炉内で溶融しやすいこと、および溶融スラグの粘度が小さいことによる。 In Case 2, an incombustible material having a low Al 2 O 3 content and a small CaO / SiO 2 content was added. The solid phase deposition temperature of this incombustible material is 1420 ° C. The input amount was the same as in Case 1, and everything was input before the break. In this case, the initial output rate improved to 83.7%, and the air flow return time was shortened to 30 hours. This is due to the fact that the solid phase deposition temperature of the incombustible material is low, so that it is easy to melt in the furnace, and the viscosity of the molten slag is small.

ケース3では、休風前の不燃物の投入量を20トンとした。投入量が少ないことと、炉内原料の表面状態が均一ではないために、原料表面の一部に火炎の強い部分が生じた。その部分を炉頂マンホールから確認して、そこへ土嚢用の袋に詰めた不燃物を追加投入した。その量は0.7トンである。その結果、火炎は作業に支障がない程度に抑制された。結局、投入総量は20.7トンであった。   In Case 3, the amount of incombustible material input before the wind break was 20 tons. Due to the small amount of input and the surface condition of the raw material in the furnace was not uniform, a strong flame portion was formed on a part of the raw material surface. That part was confirmed from the furnace top manhole, and additional incombustible material packed in a sandbag bag was added there. The amount is 0.7 tons. As a result, the flame was suppressed to such an extent that the work was not hindered. In the end, the total input was 20.7 tons.

表1に示すとおり、ケース3でも初回出滓率は81.4%に向上し、風量復帰時間は29時間で、ケース1よりも著しく改善されている。しかも、不燃物投入量はケース2の約半分になっている。   As shown in Table 1, in case 3 as well, the initial output rate improved to 81.4%, and the air flow return time was 29 hours, which is significantly improved over case 1. Moreover, the amount of incombustible material input is about half that of Case 2.

Figure 0004100361
Figure 0004100361

本発明の操業方法によれば、減尺操業時に火炎を抑制できるだけでなく、生成する溶滓の流動性が改善され、休風後の送風再開が円滑に実現でき、以後の炉況不調も防止できる。また、火炎が強い位置への不燃物の選択投入によれば、生成するスラグの量を減らすことができる。スラグ量の減少は、スラグの溶解熱の減少を意味し、その分だけ炉熱回復が早くなる。また、長期休風後の炉熱低下による操業不能の危険を防止する効果もある。   According to the operation method of the present invention, not only the flame can be suppressed during the reduced scale operation, but also the fluidity of the hot metal produced can be improved, and the resumption of air blowing after a pause can be realized smoothly, and the subsequent furnace condition is prevented. it can. Moreover, according to the selective injection | pouring of the incombustible material to the position where a flame is strong, the quantity of slag to produce | generate can be reduced. A decrease in the amount of slag means a decrease in the heat of melting of the slag, and the furnace heat recovery is accelerated accordingly. It also has the effect of preventing the risk of inoperability due to a decrease in furnace heat after long periods of off-air.

高炉の炉命延長が要求されている中で、減尺長時間休風による補修工事の頻度が大きくなるが、本発明はこのような事態に対処するのに極めて有用である。   While there is a demand for extending the life of blast furnaces, the frequency of repair work due to reduced wind breaks increases, but the present invention is extremely useful in dealing with such situations.

休風時間と、送風再開後の初回出銑の溶銑温度との関係を示す図である。It is a figure which shows the relationship between a rest time and the hot metal temperature of the first extraction after ventilation resumption. Al23が15%のときのCaO−SiO2−MgO系状態図である。Al 2 O 3 is CaO-SiO 2 -MgO system phase diagram when 15%.

Claims (2)

減尺休風を行う際に炉頂火炎抑制のために投入する不燃物として、固相析出温度が1430℃以下で、CaO/SiO 2 が0.13〜1.15、Al 2 3 が10.0〜15.0%、MgOが13.3%以下で、CaO、SiO 2 、Al 2 3 およびMgOの合計が95%以上の不燃物を使用することを特徴とする高炉の減尺操業方法。ただし、上記の%は質量%であるAs non-combustible material to be introduced to reduce the furnace top flame when performing scaled off-air, the solid phase deposition temperature is 1430 ° C or less , CaO / SiO 2 is 0.13-1.15, Al 2 O 3 is 10.0-15.0%, MgO is 13.3% or less, CaO, SiO 2, Al 2 O 3 , and reducing scale operation method of the blast furnace, characterized in that the sum of MgO uses incombustible material 95% or more. However, said% is the mass% . 炉頂着火後、不燃物の一部を火炎の強い位置に選択的に投入することを特徴とする請求項1に記載の高炉の減尺操業方法 2. The reduced operation method of a blast furnace according to claim 1, wherein a part of the incombustible material is selectively put into a strong flame position after the top ignition of the furnace .
JP2004063475A 2004-03-08 2004-03-08 Reduced blast furnace operation method Expired - Fee Related JP4100361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063475A JP4100361B2 (en) 2004-03-08 2004-03-08 Reduced blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063475A JP4100361B2 (en) 2004-03-08 2004-03-08 Reduced blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2005248293A JP2005248293A (en) 2005-09-15
JP4100361B2 true JP4100361B2 (en) 2008-06-11

Family

ID=35029052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063475A Expired - Fee Related JP4100361B2 (en) 2004-03-08 2004-03-08 Reduced blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4100361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012596B2 (en) * 2008-03-14 2012-08-29 住友金属工業株式会社 Reduced blast furnace operation method

Also Published As

Publication number Publication date
JP2005248293A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP2006312757A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
CA2698888C (en) Method for manufacturing molten iron
CN101796199B (en) Process for producing molten iron
JP4100361B2 (en) Reduced blast furnace operation method
US3093497A (en) Sprayable basic refractory composition for repairing the hot basic refractory linings of high temperature furnaces, and method
CN103060514B (en) Slag-making method and semi-steel smelting method capable of preventing semi-steel steel-making converter from dedusting and exploding
JP2017061716A (en) Method for increasing temperature of charging material and residual material in furnace at blast furnace bottom
JP6147298B2 (en) Thermal spray material
WO2023233957A1 (en) Blast-furnace operation method and blast furnace
JP5811019B2 (en) Reduced blast method for blast furnace
JP5012596B2 (en) Reduced blast furnace operation method
RU2576281C2 (en) Method and system for furnace skull removal
JP6743621B2 (en) Blast furnace operation method
JP3832451B2 (en) Blast furnace operation method
JP2005308231A (en) Waste melting furnace and method of blowing gas therein
JP3879539B2 (en) Blast furnace operation method
CN115612779A (en) Method for preventing combustion explosion in dust removal system during ignition of oxygen lance in converter steelmaking
JP2024013311A (en) Blast furnace operation method
CN111710135B (en) Early warning and control process for brick collapse of blast furnace hot blast stove fire well wall
JP6740779B2 (en) Method of melting ferrous material
JPH05171231A (en) Method for activating furnace core in blast furnace
JP2023152641A (en) Blast furnace operation method
JP5538771B2 (en) Waste melting treatment method
JPH06248366A (en) Reduction furnace for zinc and lead and its operating method
JPS5935962B2 (en) How to reheat a dormant blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4100361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees