JP4098450B2 - Cold start method for waste heat recovery equipment of combined cycle power plant - Google Patents

Cold start method for waste heat recovery equipment of combined cycle power plant Download PDF

Info

Publication number
JP4098450B2
JP4098450B2 JP34655699A JP34655699A JP4098450B2 JP 4098450 B2 JP4098450 B2 JP 4098450B2 JP 34655699 A JP34655699 A JP 34655699A JP 34655699 A JP34655699 A JP 34655699A JP 4098450 B2 JP4098450 B2 JP 4098450B2
Authority
JP
Japan
Prior art keywords
main steam
pressure
heat recovery
condenser
cold start
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34655699A
Other languages
Japanese (ja)
Other versions
JP2001165405A (en
Inventor
康善 中島
豊 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP34655699A priority Critical patent/JP4098450B2/en
Publication of JP2001165405A publication Critical patent/JP2001165405A/en
Application granted granted Critical
Publication of JP4098450B2 publication Critical patent/JP4098450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【0001】
【発明の属する技術分野】
この発明は、コンバインドサイクル発電プラントの排熱回収設備において、特にコールド起動時に復水器が真空度一定値以下に低下しないようにしたコンバインドサイクル発電プラントの排熱回収設備のコールド起動方法に関する。
【0002】
【従来の技術】
最近、エネルギーの有効利用を図るための発電設備として、いわゆるコンバインドサイクル発電プラントがある。この発電プラントは、主に発電機、この発電機を駆動する蒸気タービンとガスタービンを備え、かつ、ガスタービンからの排ガスを回収し、この排ガスの余熱を利用して蒸気を発生させて蒸気タービンへ送気する排熱回収ボイラと、蒸気タービンで仕事を終えた蒸気を回収して復水する復水器を有する排熱回収設備が設けられている。
【0003】
図4はコンバインドサイクル発電プラントの排熱回収設備を示す概略構成図である。
【0004】
この排熱回収設備は、ガスタービン(図示しない)からの排気ガスEGの熱を回収し、この熱により蒸発した蒸気を高圧、中圧及び低圧蒸気タービンに送気する排熱回収ボイラAと、真空ポンプ(図示しない)により常に一定値以上の真空度に維持され、コンバインドサイクル発電プラントの通常運転時に蒸気タービンから回収された蒸気を冷却して復水する復水器Bとを備え、排熱回収ボイラAから蒸気タービンへ蒸気を送気する高圧主蒸気管1、中圧主蒸気管2、低圧主蒸気管3に高圧主蒸気ドレン管4、中圧主蒸気ドレン管5及び低圧主蒸気ドレン管6の一端がそれぞれ接続され、これら各ドレン管4、5、6の他端は復水器Bにそれぞれ接続されている。
【0005】
上記排熱回収ボイラAは、ガスタービンからの排気ガスの熱を回収する排熱回収ボイラの排ガスダクトCと、この排熱回収ボイラの排ガスダクトCに設置された高圧蒸気ドラム7、中圧蒸気ドラム8及び低圧蒸気ドラム9とを備えている。これらの蒸気ドラムは、排熱回収ボイラの排ガスダクトC内に挿入された高圧蒸発器10、中圧蒸発器11及び低圧蒸発器12にそれぞれ接続され、各蒸気ドラムに収納された水がそれぞれ対応する蒸発器を通して循環することで排気ガスと熱交換されるようになっている。
【0006】
また、上記排熱回収ボイラの排ガスダクトC内には、各蒸気ドラム7、8、9で発生した蒸気をそれぞれ過熱して高圧主蒸気管1、中圧主蒸気管2、低圧主蒸気管3を通して高圧、中圧、低圧蒸気タービンへ個別に送気する高圧過熱器13、中圧過熱器14及び低圧過熱器15が設けられている。
【0007】
一方、過熱器13、14及び15の出口側の高圧主蒸気管1、中圧主蒸気管2及び低圧主蒸気管3にそれぞれ高圧過熱器出口弁16、中圧過熱器出口弁17及び低圧過熱器出口弁18が設けられている。また、主蒸気管1、2及び3の蒸気タービン側に高圧主蒸気止め弁19、中圧主蒸気止め弁20及び低圧主蒸気止め弁21がそれぞれ配置されている。さらに復水器B側の上記主蒸気ドレン管4、5、6に高圧主蒸気ドレン弁22、中圧主蒸気ドレン弁23及び低圧主蒸気ドレン弁24がそれぞれ設けられている。
【0008】
ところで、このような構成のコンバインドサイクル発電プラントの排熱回収設備において、発電運転前やメンテナンス後の再運転前に、前記蒸気ドラム7、8及び9に封入されている窒素(N2)、主蒸気管1、2及び3に滞留している空気を排除する目的で排熱回収設備をコールド起動する必要がある。
【0009】
従来、この排熱回収設備のコールド起動方法としては、過熱器出口弁16、17及び18と主蒸気ドレン弁22、23及び24をそれぞれ同時に開いて、残留気体を復水器Bに流入させ、真空ポンプ(図示しない)によって外部に抜くようにしている。
【0010】
【発明が解決しようとする課題】
しかし、このような排熱回収設備のコールド起動方法では、窒素や空気を集中的に復水器に流入させると、復水器の真空度が突辺的に低下する事象が発生するという問題があった。
【0011】
本発明は上記のような事情に鑑みてなされたもので、コールド起動時、復水器へ流入する気体の流量を制限して、復水器の真空度が一定値以下に低下することを防止できるコンバインドサイクル発電プラントの排熱回収設備のコールド起動方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するため、ガスタービンの排気ガスを排ガスダクト内に設けた複数の過熱器で熱回収し、各過熱器から出力される主蒸気をそれぞれの主蒸気管を介して各蒸気タービンに供給し、この各蒸気タービンの排気を共通の復水器で復水すると共に、前記各過熱器の出口と各主蒸気管に設けた主蒸気止め弁との間の主蒸気トレン管を前記復水器に主蒸気ドレン弁を介して接続してなるコンバインドサイクル発電プラントの排熱回収設備のコールド起動方法において、前記過熱器及び前記主蒸気ドレン管に封入された気体を前記復水器に流入させる際、前記各主蒸気ドレン弁は、前記復水器の真空度が所定値以下に低下しない流量となるように設定された開度で開き、互いに開時間帯が重ならないような時間に設定された開タイミングで制御されることにある。
【0015】
このようなコールド起動方法によれば、制限された気体が復水器へ流入するので、復水器の真空度が一定値以下に低下することを防止できる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0017】
本発明によるコールド起動方法が適用されるコンバインドサイクル発電プラントの排熱回収設備については図4を用いて実施の形態を説明する。
【0018】
図1は本発明によるコールド起動方法の第1の実施の形態を説明するためのタイミング図である。図4の排熱回収設備をコールド起動するにあたり、まず、高圧主蒸気ドレン弁22に開指令を与えて所定時間Tのみ全開させ、高圧蒸気ドラム7及び高圧過熱器13に封入された窒素、主蒸気管1に滞留しているる空気を復水器Bへ排出する。
【0019】
次に、ドレン弁22の開指令タイミングから第1の設定時間τ1(τ1>T)が経過すると、中圧主蒸気ドレン弁23に開指令を与えて所定時間Tのみ全開させ、中圧蒸気ドラム8及び中圧過熱器14に封入された窒素、主蒸気管2に滞留している空気を復水器Bへ排気する。
【0020】
その後、ドレン弁22の開タイミングから第2の設定時間τ2(試運転時に調整する)が経過すると、低圧主蒸気ドレン弁24を所定時間Tのみ全開させ、低圧蒸気ドラム9及び低圧過熱器15に封入された窒素、主蒸気管3に滞留している空気を復水器Bへ排気する。この場合、第1の設定時間τ1、第2の設定時間τ2は、高圧ドレン弁22、中圧ドレン弁23及び低圧ドレン弁24が全開となる開時間帯が重ならないように、かつ、各開時間帯で気体が復水器Bへ排気しても復水器Bの真空度が一定値以下に低下しないような時間に設定されている。
【0021】
図2は、本発明によるコールド起動方法の第2の実施の形態を説明するためのタイミング図である。図4の排熱回収設備をコールド起動するにあたり、まず、高圧主蒸気ドレン弁22に開指令を与えて所定時間Tのみ全開させ、高圧蒸気ドラム7及び高圧過熱器13に封入された窒素、主蒸気管1に滞留している空気を復水器Bへ排気する。
【0022】
次に、ドレン弁22の閉タイミングから第3の設定時間τ3が経過すると、中圧主蒸気ドレン弁23に開指令を与えて所定時間Tのみ全開させ、中圧蒸気ドラム8及び中圧過熱器14に封入された窒素、主蒸気管2に滞留している空気を復水器Bへ排気する。
【0023】
その後、ドレン弁23の閉タイミングから第4の設定時間τ4が経過すると、低圧主蒸気ドレン弁24を所定時間Tのみ全開させ、低圧蒸気ドラム9及び低圧過熱器15に封入された窒素、主蒸気管3に滞留している空気を復水器Bへ排気する。この場合、第3の設定時間τ3、第4の設定時間τ4は、高圧ドレン弁22、中圧ドレン弁23及び低圧ドレン弁24が全開となる開時間帯が重ならないように、かつ、各開時間帯で気体が復水器Bへ排気しても復水器Bの真空度が一定値以下に低下しないような時間に設定されている。
【0024】
図3は、本発明によるコールド起動方法の第3の実施の形態を説明するためのタイミング図である。排熱回収設備をコールド起動するにあたり、ドレン弁22、23及び24は同時に開き、復水器Bによる窒素や空気の流出が終了後閉じる。この場合、各ドレン弁は、同時に開させても復水器Bへ排気する気体により復水器Bの真空度が一定値以下に低下しないような開度に制御されている。
【0025】
なお、各ドレン弁22〜24は必ずしも一斉に開かせる必要はなく、任意にずらして開かせても良い。要は、すべてのドレン弁が開いている状態で、復水器の真空度が一定値以下に低下しなければ良い。
【0026】
【発明の効果】
以上述べたように本発明によれば、コールド起動時、復水器へ流入する気体の流量を制限することで、復水器の真空度が一定値以下に低下することを防止できるコンバインドサイクル発電プラントの排熱回収設備のコールド起動方法を提供できる。
【図面の簡単な説明】
【図1】本発明によるコールド起動方法の第1の実施の形態を説明するためのタイミング図である。
【図2】本発明によるコールド起動方法の第2の実施の形態を説明するためのタイミング図である。
【図3】本発明によるコールド起動方法の第3の実施の形態を説明するためのタイミング図である。
【図4】コンバインドサイクル発電プラントの排熱回収設備を示す図である。
【符号の説明】
A…排熱回収ボイラ
B…復水器
C…排熱回収ボイラの排ガスダクト
1…高圧主蒸気管
2…中圧主蒸気管
3…低圧主蒸気管
4…高圧主蒸気ドレン管
5…中圧主蒸気ドレン管
6…低圧主蒸気ドレン管
7…高圧蒸気ドラム
8…中圧蒸気ドラム
9…低圧蒸気ドラム
10…高圧蒸発器
11…中圧蒸発器
12…低圧蒸発器
13…高圧過熱器
14…中圧過熱器
15…低圧過熱器
16…高圧過熱器出口弁
17…中圧過熱器出口弁
18…低圧過熱器出口弁
19…高圧主蒸気止め弁
20…中圧主蒸気止め弁
21…低圧主蒸気止め弁
22…高圧主蒸気ドレン弁
23…中圧主蒸気ドレン弁
24…低圧主蒸気ドレン弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold start method for exhaust heat recovery equipment of a combined cycle power plant, in which the condenser does not decrease below a certain vacuum level when the cold start is performed.
[0002]
[Prior art]
Recently, there is a so-called combined cycle power plant as a power generation facility for effective use of energy. This power plant mainly includes a power generator, a steam turbine and a gas turbine that drive the power generator, collects exhaust gas from the gas turbine, generates steam using residual heat of the exhaust gas, and generates steam. An exhaust heat recovery facility is provided that includes an exhaust heat recovery boiler that supplies air to the steam generator and a condenser that recovers and condenses the steam that has finished work in the steam turbine.
[0003]
FIG. 4 is a schematic configuration diagram showing exhaust heat recovery equipment of a combined cycle power plant.
[0004]
The exhaust heat recovery equipment recovers heat of exhaust gas EG from a gas turbine (not shown), and exhaust heat recovery boiler A that sends steam evaporated by the heat to high-pressure, intermediate-pressure and low-pressure steam turbines; A vacuum pump (not shown) that is always maintained at a vacuum level above a certain value, and is provided with a condenser B that cools and collects steam collected from the steam turbine during normal operation of the combined cycle power plant. High-pressure main steam pipe 1, medium-pressure main steam pipe 2, low-pressure main steam pipe 3, high-pressure main steam drain pipe 4, medium-pressure main steam drain pipe 5 and low-pressure main steam drain for sending steam from recovery boiler A to the steam turbine One end of each pipe 6 is connected, and the other end of each of the drain pipes 4, 5, 6 is connected to the condenser B.
[0005]
The exhaust heat recovery boiler A includes an exhaust gas duct C of an exhaust heat recovery boiler that recovers heat of exhaust gas from a gas turbine, a high-pressure steam drum 7 installed in the exhaust gas duct C of the exhaust heat recovery boiler, and an intermediate pressure steam. A drum 8 and a low-pressure steam drum 9 are provided. These steam drums are respectively connected to the high-pressure evaporator 10, the intermediate-pressure evaporator 11 and the low-pressure evaporator 12 inserted in the exhaust gas duct C of the exhaust heat recovery boiler, and the water stored in each steam drum corresponds to each. By circulating through the evaporator, heat exchange with the exhaust gas is achieved.
[0006]
Further, in the exhaust gas duct C of the exhaust heat recovery boiler, the steam generated in each of the steam drums 7, 8, 9 is superheated, and the high-pressure main steam pipe 1, the medium-pressure main steam pipe 2, and the low-pressure main steam pipe 3. A high-pressure superheater 13, an intermediate-pressure superheater 14, and a low-pressure superheater 15 that individually supply air to the high-pressure, intermediate-pressure, and low-pressure steam turbines are provided.
[0007]
On the other hand, the high-pressure main steam pipe 1, the medium-pressure main steam pipe 2 and the low-pressure main steam pipe 3 on the outlet side of the superheaters 13, 14 and 15 are respectively connected to the high-pressure superheater outlet valve 16, the medium-pressure superheater outlet valve 17 and the low-pressure superheater. A vessel outlet valve 18 is provided. Further, a high-pressure main steam stop valve 19, an intermediate-pressure main steam stop valve 20, and a low-pressure main steam stop valve 21 are arranged on the steam turbine side of the main steam pipes 1, 2, and 3, respectively. Further, the main steam drain pipes 4, 5 and 6 on the condenser B side are provided with a high pressure main steam drain valve 22, an intermediate pressure main steam drain valve 23 and a low pressure main steam drain valve 24, respectively.
[0008]
By the way, in the exhaust heat recovery facility of the combined cycle power plant having such a configuration, nitrogen (N 2 ) enclosed in the steam drums 7, 8 and 9, main power before power generation operation and before re-operation after maintenance. It is necessary to cold start the exhaust heat recovery facility for the purpose of eliminating the air staying in the steam pipes 1, 2 and 3.
[0009]
Conventionally, as a cold starting method of this exhaust heat recovery equipment, the superheater outlet valves 16, 17 and 18 and the main steam drain valves 22, 23 and 24 are simultaneously opened, and the residual gas is caused to flow into the condenser B. A vacuum pump (not shown) is used to pull out.
[0010]
[Problems to be solved by the invention]
However, in such a cold start method of exhaust heat recovery equipment, there is a problem that when nitrogen or air is intensively flowed into the condenser, an event occurs in which the vacuum degree of the condenser decreases suddenly. there were.
[0011]
The present invention has been made in view of the above circumstances, and restricts the flow rate of the gas flowing into the condenser at the time of cold start to prevent the condenser vacuum from being lowered below a certain value. An object of the present invention is to provide a cold start method for exhaust heat recovery equipment of a combined cycle power plant that can be used.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention recovers heat of the exhaust gas of a gas turbine by a plurality of superheaters provided in an exhaust gas duct, and the main steam output from each superheater is passed through each main steam pipe. The steam is supplied to each steam turbine, and the exhaust of each steam turbine is condensed by a common condenser, and the main steam train between the outlet of each superheater and the main steam stop valve provided in each main steam pipe is used. In a cold start method for exhaust heat recovery equipment of a combined cycle power plant, wherein a pipe is connected to the condenser via a main steam drain valve, the gas enclosed in the superheater and the main steam drain pipe is supplied to the condenser. When flowing into the water device, each main steam drain valve opens at an opening degree set so that the vacuum degree of the condenser does not decrease below a predetermined value, so that the open time zones do not overlap each other. Open time set for a long time It is to be controlled by timing.
[0015]
According to such a cold start method, since the restricted gas flows into the condenser, it is possible to prevent the vacuum degree of the condenser from being lowered to a certain value or less.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
An embodiment of the exhaust heat recovery facility of the combined cycle power plant to which the cold start method according to the present invention is applied will be described with reference to FIG.
[0018]
FIG. 1 is a timing diagram for explaining a first embodiment of a cold start method according to the present invention. When the exhaust heat recovery facility of FIG. 4 is cold-started, first, an open command is given to the high-pressure main steam drain valve 22 to fully open it for a predetermined time T, and the main nitrogen, sealed in the high-pressure steam drum 7 and the high-pressure superheater 13, The air staying in the steam pipe 1 is discharged to the condenser B.
[0019]
Next, when the first set time τ1 (τ1> T) has elapsed from the opening command timing of the drain valve 22, an opening command is given to the intermediate pressure main steam drain valve 23 to fully open it for a predetermined time T, and the intermediate pressure steam drum 8 and nitrogen sealed in the intermediate pressure superheater 14 and the air remaining in the main steam pipe 2 are exhausted to the condenser B.
[0020]
Thereafter, when the second set time τ2 (adjusted during the trial operation) has elapsed from the opening timing of the drain valve 22, the low-pressure main steam drain valve 24 is fully opened only for a predetermined time T and enclosed in the low-pressure steam drum 9 and the low-pressure superheater 15. The nitrogen and the air remaining in the main steam pipe 3 are exhausted to the condenser B. In this case, the first set time τ1 and the second set time τ2 are set so that the open time periods when the high pressure drain valve 22, the intermediate pressure drain valve 23, and the low pressure drain valve 24 are fully opened do not overlap with each other. Even when gas is exhausted to the condenser B in the time zone, the time is set such that the vacuum degree of the condenser B does not decrease below a certain value.
[0021]
FIG. 2 is a timing diagram for explaining a second embodiment of the cold start method according to the present invention. When the exhaust heat recovery facility of FIG. 4 is cold-started, first, an open command is given to the high-pressure main steam drain valve 22 to fully open it for a predetermined time T, and the main nitrogen, sealed in the high-pressure steam drum 7 and the high-pressure superheater 13, The air staying in the steam pipe 1 is exhausted to the condenser B.
[0022]
Next, when the third set time τ3 elapses from the closing timing of the drain valve 22, an open command is given to the intermediate pressure main steam drain valve 23 to fully open it for a predetermined time T, and the intermediate pressure steam drum 8 and the intermediate pressure superheater are set. The nitrogen encapsulated in 14 and the air remaining in the main steam pipe 2 are exhausted to the condenser B.
[0023]
Thereafter, when the fourth set time τ4 has elapsed from the closing timing of the drain valve 23, the low-pressure main steam drain valve 24 is fully opened for a predetermined time T, and nitrogen and main steam sealed in the low-pressure steam drum 9 and the low-pressure superheater 15 are opened. The air staying in the pipe 3 is exhausted to the condenser B. In this case, the third set time τ3 and the fourth set time τ4 are set so that the open time periods in which the high pressure drain valve 22, the intermediate pressure drain valve 23 and the low pressure drain valve 24 are fully opened do not overlap with each other. Even when gas is exhausted to the condenser B in the time zone, the time is set such that the vacuum degree of the condenser B does not decrease below a certain value.
[0024]
FIG. 3 is a timing chart for explaining a third embodiment of the cold start method according to the present invention. When the exhaust heat recovery equipment is cold-started, the drain valves 22, 23 and 24 are simultaneously opened and closed after the outflow of nitrogen and air by the condenser B is completed. In this case, each drain valve is controlled to an opening degree so that the vacuum degree of the condenser B does not decrease below a certain value by the gas exhausted to the condenser B even if it is opened simultaneously.
[0025]
Note that the drain valves 22 to 24 are not necessarily opened all at once, and may be opened arbitrarily. In short, it is only necessary that the vacuum degree of the condenser does not drop below a certain value with all drain valves open.
[0026]
【The invention's effect】
As described above, according to the present invention, the combined cycle power generation that can prevent the vacuum degree of the condenser from decreasing to a certain value or less by restricting the flow rate of the gas flowing into the condenser at the cold start. A cold start method for the exhaust heat recovery equipment of the plant can be provided.
[Brief description of the drawings]
FIG. 1 is a timing diagram for explaining a first embodiment of a cold start method according to the present invention;
FIG. 2 is a timing diagram for explaining a second embodiment of a cold start method according to the present invention;
FIG. 3 is a timing diagram for explaining a third embodiment of a cold start method according to the present invention;
FIG. 4 is a diagram showing an exhaust heat recovery facility of a combined cycle power plant.
[Explanation of symbols]
A ... Waste heat recovery boiler B ... Condenser C ... Exhaust heat recovery boiler exhaust gas duct 1 ... High pressure main steam pipe 2 ... Medium pressure main steam pipe 3 ... Low pressure main steam pipe 4 ... High pressure main steam drain pipe 5 ... Medium pressure Main steam drain pipe 6 ... Low pressure main steam drain pipe 7 ... High pressure steam drum 8 ... Medium pressure steam drum 9 ... Low pressure steam drum 10 ... High pressure evaporator 11 ... Medium pressure evaporator 12 ... Low pressure evaporator 13 ... High pressure superheater 14 ... Medium pressure superheater 15 ... Low pressure superheater 16 ... High pressure superheater outlet valve 17 ... Medium pressure superheater outlet valve 18 ... Low pressure superheater outlet valve 19 ... High pressure main steam stop valve 20 ... Medium pressure main steam stop valve 21 ... Low pressure main Steam stop valve 22 ... High pressure main steam drain valve 23 ... Medium pressure main steam drain valve 24 ... Low pressure main steam drain valve

Claims (1)

ガスタービンの排気ガスを排ガスダクト内に設けた複数の過熱器で熱回収し、各過熱器から出力される主蒸気をそれぞれの主蒸気管を介して各蒸気タービンに供給し、この各蒸気タービンの排気を共通の復水器で復水すると共に、前記各過熱器の出口と各主蒸気管に設けた主蒸気止め弁との間の主蒸気トレン管を前記復水器に主蒸気ドレン弁を介して接続してなるコンバインドサイクル発電プラントの排熱回収設備のコールド起動方法において、
前記過熱器及び前記主蒸気ドレン管に封入された気体を前記復水器に流入させる際、前記各主蒸気ドレン弁は、前記復水器の真空度が所定値以下に低下しない流量となるように設定された開度で開き、互いに開時間帯が重ならないような時間に設定された開タイミングで制御されることを特徴とするコンバインドサイクル発電プラントの排熱回収設備のコールド起動方法。
The exhaust gas of the gas turbine is heat recovered by a plurality of superheaters provided in the exhaust gas duct, and main steam output from each superheater is supplied to each steam turbine via the respective main steam pipes. The main steam drain pipe is connected to the main steam drain valve between the outlet of each superheater and the main steam stop valve provided in each main steam pipe. In the cold start method of the exhaust heat recovery equipment of the combined cycle power plant that is connected through
When the gas sealed in the superheater and the main steam drain pipe flows into the condenser, each main steam drain valve has a flow rate at which the degree of vacuum of the condenser does not decrease below a predetermined value. set to open in the opening, a cold start process of the exhaust heat recovery system of the combined cycle power plant, characterized in that it is controlled by the opening timing set in such time as not to overlap the open time zone to each other in.
JP34655699A 1999-12-06 1999-12-06 Cold start method for waste heat recovery equipment of combined cycle power plant Expired - Fee Related JP4098450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34655699A JP4098450B2 (en) 1999-12-06 1999-12-06 Cold start method for waste heat recovery equipment of combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34655699A JP4098450B2 (en) 1999-12-06 1999-12-06 Cold start method for waste heat recovery equipment of combined cycle power plant

Publications (2)

Publication Number Publication Date
JP2001165405A JP2001165405A (en) 2001-06-22
JP4098450B2 true JP4098450B2 (en) 2008-06-11

Family

ID=18384234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34655699A Expired - Fee Related JP4098450B2 (en) 1999-12-06 1999-12-06 Cold start method for waste heat recovery equipment of combined cycle power plant

Country Status (1)

Country Link
JP (1) JP4098450B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105317482B (en) * 2015-12-03 2017-09-22 中国能源建设集团华北电力试验研究院有限公司 A kind of Combined Cycle Unit starts method
CN112343678B (en) * 2020-11-05 2022-12-27 华能国际电力股份有限公司玉环电厂 Starting control method of thermal power generating unit

Also Published As

Publication number Publication date
JP2001165405A (en) 2001-06-22

Similar Documents

Publication Publication Date Title
US6983585B2 (en) Combined cycle plant
RU2610976C2 (en) Heat recovery steam generator (versions) and control system for steam generator
CN105157007B (en) Steam pipe washing method for 1000MW ultra-supercritial double reheat boiler
JPH11200816A (en) Combined cycle power generation plant
JP2011179494A (en) Systems and methods for prewarming heat recovery steam generator piping
US20100263605A1 (en) Method and system for operating a steam generation facility
JPH1037713A (en) Combined cycle power plant
JP4098450B2 (en) Cold start method for waste heat recovery equipment of combined cycle power plant
JP5613921B2 (en) Exhaust heat recovery boiler and method for preventing corrosion in the can
JP3769363B2 (en) Waste heat recovery boiler
JP2003329201A (en) Exhaust heat recovery boiler, combined power generation method and device
JP7066572B2 (en) Temporary piping system for boiler blow-out and boiler blow-out method
JP2004169625A (en) Co-generation plant and its starting method
JP2000304204A (en) Drain discharging device for boiler
JPH10331607A (en) Exhaust heat recovery boiler blowing device and a boiler blowing-out method
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JPH1193618A (en) Steam pressure control method for gas turbine steam cooling system
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP2999122B2 (en) Control equipment for complex plant
JP2002371807A (en) Turbine equipment and steam converting device
JP2923122B2 (en) Drain recovery equipment for nuclear power plants
JP2011111925A (en) Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
JP2001090507A (en) Electric power plant
JP2002303158A (en) Steam cooling system and method for gas turbine
JP2002129911A (en) Auxiliary steam attemperator and its operating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees