JP4097811B2 - Hemodialysis equipment - Google Patents

Hemodialysis equipment Download PDF

Info

Publication number
JP4097811B2
JP4097811B2 JP32292798A JP32292798A JP4097811B2 JP 4097811 B2 JP4097811 B2 JP 4097811B2 JP 32292798 A JP32292798 A JP 32292798A JP 32292798 A JP32292798 A JP 32292798A JP 4097811 B2 JP4097811 B2 JP 4097811B2
Authority
JP
Japan
Prior art keywords
dialysate
pressure
dialyzer
blood
closed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32292798A
Other languages
Japanese (ja)
Other versions
JP2000126283A (en
Inventor
朋之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Kuraray Medical Co Ltd
Original Assignee
Asahi Kasei Kuraray Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kuraray Medical Co Ltd filed Critical Asahi Kasei Kuraray Medical Co Ltd
Priority to JP32292798A priority Critical patent/JP4097811B2/en
Publication of JP2000126283A publication Critical patent/JP2000126283A/en
Application granted granted Critical
Publication of JP4097811B2 publication Critical patent/JP4097811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、腎不全患者の治療に用いられる血液透析装置に関する。
【0002】
【従来の技術】
血液透析装置は腎不全の患者の治療を行う装置として広く普及している。透析療法は単に血液中の老廃物を除去するだけではなく、尿の出ない透析患者から飲食した水分をも除去する、いわゆる除水の役割も果たしている。従って、通常、血液透析装置には透析器に透析液を供給する機能に付加して任意の量の除水を行う機能が備わっている。図5は一般的な血液透析装置の透析液供給及び除水の原理を示している。隔膜チャンバ16は、変位可能な隔膜17で給液室18と廃液室19に分割された変形不能な容器である。まず給液室18が新鮮透析液で満たされ、隔膜17が廃液室19側に限界まで変位した状態で電磁弁12、15を閉、電磁弁13、14を開にし、送液ポンプ9を停止、送液ポンプ10を運転したときの動作を考える。但しここでは除水ポンプ11は無いものとする。給液室18内の透析液は送液ポンプ10により吸引され透析器2の透析液室5を通って廃液室19に移動する。この時透析液の流路は透析器2から見て閉回路となっているため給液室18から透析液室5に流れ込む透析液流量と透析液室5から流れ出し廃液室19に流れ込む透析液流量は等しくなる。やがて給液室18の透析液は全て廃液室19に移動し、隔膜17は給液室18側に限界まで変位した状態となる。そこで、電磁弁12、15を開、電磁弁13、14を閉にし、送液ポンプ9を運転、送液ポンプ10を停止すれば透析器2への透析液の供給は中断され、廃液室19の使用済み透析液が捨てられると同時に給液室18は新鮮透析液で満たされ、再度隔膜17が廃液室19側に限界まで変位した状態になる。以降、この動作を繰り返せば透析器2に断続的に一定量の透析液を供給でき、透析器2に対する透析液の入出量を等しく保った状態で血液透析を行うことができる。次に除水ポンプ11が加わった状態を説明する。前述のように透析液の流路は透析器2から見て常に閉回路を保っているので、除水ポンプ11を所定の流量で運転した場合その送液量は透析器2の半透膜3を介して血液室4から補われることになる。即ち、血液中の水分が除水ポンプ11によって体外に排出される。以上から、一定量の透析液を供給しながら所定の量の除水を行うことができるシステムを構成することができる。但し図5のシステムでは透析器2に対する透析液の供給は間欠的になるため実際には、特公昭56−82号公報に示されるように隔膜チャンバを2個並列に接続しお互いを補いながら連続的に透析液を供給するシステムや、特開平5−146506号公報に示されるように隔膜チャンバに直列にバッファを接続して連続的に透析液を供給するシステムが考案されている。
【0003】
【発明が解決しようとする課題】
しかしながら以上に示した従来技術においては、閉回路から除水ポンプによって発生する吸引力によって除水を行うために閉回路内が陰圧になりがちであり、そのために透析液に溶存する気体(酸素や二酸化炭素)が気泡となって発生し、透析器の半透膜へ付着して透析効率の低下を招いたり、発生した気泡が排出されることで等量の除水誤差が生じるため、閉回路の上流で脱気する必要がある。脱気には陰圧を発生するポンプと発生させた気泡を集めて外部へ排出する機構が必要であり、結果として血液透析装置を複雑で大型なものにしていた。また、脱気することで透析液中の二酸化炭素も抜けて透析液のpHが上がり、炭酸カルシウムが沈殿しやすくなり、煩雑に炭酸カルシウムの除去を行わなければならないという欠点もあった。
以上の点に鑑み、本発明は透析液の脱気を必要とすることなく血液透析が行え、従来技術の問題点を改善した血液透析装置を提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明は、透析器へ透析液と血液を供給し、透析器内に設けられた半透膜を介し透析液と血液を接触させ、血液から老廃物及び水分を除去する血液透析装置において、前記透析器に流入する透析液の流量と前記透析器から流出する透析液の流量を等しく保つための閉回路式透析液供給手段と、前記閉回路式透析液供給手段の閉回路部から所定の流量で透析液を閉回路外へ排出する除水手段と、前記透析器の血液側圧力を所定の圧に調節する圧力調節手段とを有し、前記圧力調節手段により調節された血液側圧力と前記除水手段で発生する圧力損失で決定される前記閉回路部内の透析液圧力を陽圧に保つよう制御することで、透析液の脱気機構を不要とすることを特徴とするものである。
【0005】
【作用】
以上のような構成にしたことにより、複雑な脱気手段を用いることなく透析器を含む透析液閉回路内での気泡発生を抑えることができ、なお且つ炭酸カルシウムの沈殿をも抑えることができる。
【0006】
【実施例】
以下に本発明の実施例を図面に基づき説明する。図1は本発明の第1の実施例の構成を示すものである。透析液の供給は1個の隔膜チャンバ16による閉回路方式により間欠的に行われ、除水はその閉回路から除水ポンプ11により吸引されることで行われるが、詳しくは前述しているのでここでは省略する。患者1の血液は血液ポンプ20にて透析器2に送られ再度患者1に返血される。本例では返血路に絞り22を設けることで流路抵抗を持たせ、透析器2の血液室4における圧力を調節できるようにしている。今、透析器2にUFR(単位圧力差を与えたときの単位時間当りの除水量)10ml/mmHg/hのものを使用し、1時間あたり1000mlの除水を行うものとする。すると透析器2の血液室4透析液室5との間に発生する差圧(以下TMPと呼ぶ)は100mmHgとなる。従って、絞り22を調整して圧力計21が100mmHg以上を示すようにすれば透析液室5の圧力、即ち閉回路内の透析液圧力を陽圧に保つことができる。
図2は本発明の第2の実施例である。閉回路内の透析液圧を圧力計23で測定し、この値が陰圧であればコントローラ24は絞り22の調節軸に接続されたモーターを駆動し、血液回路を絞って流路抵抗を増加させる。その結果、血液側の圧力が上がると同時に透析液圧も上昇する。そして透析液圧が陽圧になったところで絞り22は固定される。また、透析液圧が過度に陽圧になった場合は絞り22は血液回路の流路抵抗を減少させる方向に調節され、透析液圧が適切な陽圧になったところで固定される。
図3は本発明の第3の実施例である。本例ではコントローラを介することなく絞りを調節できるように圧力調整機構25を設けている。圧力調整機構25の詳細を図4に示す。透析器2から出た透析液は圧力調整機構25の透析液入口26から入って透析液出口27から出て行く。この時透析液圧がベロー28に加わるがベロー28の内側は大気圧に開放されると同時にバネ32で支えられており、その結果ペロー28は透析液圧=大気圧+バネ圧となる位置まで移動して止まる。一方ベロー28の収縮は軸29で伝達されチューブ押さえ30で血液回路チューブ31を絞り、血液回路の流路抵抗を変化させる。即ち、透析液圧が下がればベロー28が下方へ移動し血液回路チューブ31を絞って血液回路内の圧力及び透析液圧を上昇させ、透析液圧が上がれば逆に血液回路チューブ31を開放して透析液圧を低下させるように働くため、透析液圧を陽圧で一定圧に保つことができる。
これらの実施例は、1個の隔膜チャンバによる閉回路方式の透析液供給システムを基本にしているが、特公昭56−82号公報に示される2個の隔膜チャンバを並列に接続したシステムや、特開平5−146506号公報に示される隔膜チャンバにバッファを接続したシステムにも適用できることは容易に考え得ることである。
【0007】
【発明の効果】
以上のように本発明では、血液回路上に圧力調整手段を設けて透析液の閉回路内の圧力を陽圧に保つことにより、従来必要であった透析液の脱気機構を不要とし、なお且つ、炭酸カルシウムの沈殿を押さえて頻繁な洗浄作業を軽減することが可能となった。その結果、信頼性、経済性そして保守性の高い透析装置を供給することが可能となった。
【図面の簡単な説明】
【図1】本発明の血液透析装置の第1の実施例を示す図である。
【図2】本発明の血液透析装置の第2の実施例を示す図である。
【図3】本発明の血液透析装置の第3の実施例を示す図である。
【図4】本発明の血液透析装置の第3の実施例における圧力調整機構の詳細を示す図である。
【図5】従来の血液透析装置における閉回路式透析液供給方法及び除水方法を示す図である。
【符号の説明】
1 患者
2 透析器
3 半透膜
4 血液室
5 透析液室
6 透析液供給ライン
7 透析液廃液ライン
8 除水ライン
9,10 送液ポンプ
11 除水ポンプ
12,13,14,15 電磁弁
16 隔膜チャンバ
17 隔膜
18 給液室
19 廃液室
20 血液ポンプ
21,23 圧力計
22 絞り
24 コントローラ
25 圧力調整機構
26 透析液入口
27 透析液出口
28 ベロー
29 軸
30 チューブ押さえ
31 血液回路チューブ
32 バネ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hemodialysis apparatus used for the treatment of patients with renal failure.
[0002]
[Prior art]
Hemodialysis devices are widely used as devices for treating patients with renal failure. Dialysis therapy not only removes waste in the blood, but also plays a role of so-called water removal, which removes the water consumed by dialysis patients who do not produce urine. Therefore, the hemodialysis apparatus is usually provided with a function of removing any amount of water in addition to the function of supplying the dialysate to the dialyzer. FIG. 5 shows the principle of dialysis fluid supply and water removal of a general hemodialysis apparatus. The diaphragm chamber 16 is a non-deformable container divided into a liquid supply chamber 18 and a waste liquid chamber 19 by a displaceable diaphragm 17. First, the supply chamber 18 is filled with fresh dialysate, the diaphragm 17 is displaced to the limit toward the waste solution chamber 19 side, the solenoid valves 12 and 15 are closed, the solenoid valves 13 and 14 are opened, and the feed pump 9 is stopped. Consider the operation when the liquid feed pump 10 is operated. However, here, the water removal pump 11 is not provided. The dialysate in the liquid supply chamber 18 is sucked by the liquid feed pump 10 and moves to the waste liquid chamber 19 through the dialysate chamber 5 of the dialyzer 2. At this time, since the dialysate flow path is a closed circuit when viewed from the dialyzer 2, the dialysate flow rate flows from the supply chamber 18 into the dialysate chamber 5 and the dialysate flow rate flows out from the dialysate chamber 5 and into the waste fluid chamber 19. Are equal. Eventually, all of the dialysate in the liquid supply chamber 18 moves to the waste liquid chamber 19, and the diaphragm 17 is displaced to the limit toward the liquid supply chamber 18 side. Therefore, if the solenoid valves 12 and 15 are opened, the solenoid valves 13 and 14 are closed, the liquid feed pump 9 is operated, and the liquid feed pump 10 is stopped, the supply of dialysate to the dialyzer 2 is interrupted, and the waste liquid chamber 19 As soon as the used dialysate is discarded, the liquid supply chamber 18 is filled with fresh dialysate, and the diaphragm 17 is again displaced to the limit toward the waste liquid chamber 19 side. Thereafter, if this operation is repeated, a certain amount of dialysate can be intermittently supplied to the dialyzer 2, and hemodialysis can be performed while keeping the dialysate 2 in and out of the dialyzer 2 equal. Next, a state where the water removal pump 11 is added will be described. As described above, the dialysate flow path always maintains a closed circuit when viewed from the dialyzer 2, and therefore, when the water removal pump 11 is operated at a predetermined flow rate, the amount of liquid fed is the semipermeable membrane 3 of the dialyzer 2. It will be supplemented from the blood chamber 4 via. That is, water in the blood is discharged from the body by the water removal pump 11. From the above, it is possible to configure a system that can perform a predetermined amount of water removal while supplying a certain amount of dialysate. However, since the dialysate supply to the dialyzer 2 is intermittent in the system shown in FIG. 5, in practice, two diaphragm chambers are connected in parallel as shown in Japanese Examined Patent Publication No. 56-82, and continuous while supplementing each other. In particular, a system for supplying dialysate and a system for continuously supplying dialysate by connecting a buffer in series to a diaphragm chamber as disclosed in Japanese Patent Application Laid-Open No. 5-146506 have been devised.
[0003]
[Problems to be solved by the invention]
However, in the above-described prior art, the closed circuit tends to become negative pressure in order to remove water by the suction force generated by the water removal pump from the closed circuit, and therefore gas dissolved in the dialysate (oxygen) Or carbon dioxide) is generated as air bubbles and adheres to the semipermeable membrane of the dialyzer, leading to a decrease in dialysis efficiency. It is necessary to deaerate upstream of the circuit. Deaeration requires a pump that generates negative pressure and a mechanism that collects the generated bubbles and discharges them to the outside. As a result, the hemodialysis apparatus is complicated and large. Further, by degassing, the carbon dioxide in the dialysate is also removed, the pH of the dialysate is increased, calcium carbonate is likely to precipitate, and there is a disadvantage that the calcium carbonate must be removed complicatedly.
In view of the above points, an object of the present invention is to provide a hemodialysis apparatus which can perform hemodialysis without requiring deaeration of the dialysate and which has improved the problems of the prior art.
[0004]
[Means for Solving the Problems]
The present invention provides a hemodialysis apparatus for supplying dialysate and blood to a dialyzer, bringing the dialysate and blood into contact with each other through a semipermeable membrane provided in the dialyzer, and removing waste and water from the blood. A closed circuit type dialysate supply means for keeping the flow rate of the dialysate flowing into the dialyzer and the flow rate of the dialysate flowing out of the dialyzer, and a predetermined flow rate from the closed circuit portion of the closed circuit type dialysate supply means And a water removing means for discharging the dialysate out of the closed circuit, and a pressure adjusting means for adjusting the blood side pressure of the dialyzer to a predetermined pressure, the blood side pressure adjusted by the pressure adjusting means and the By controlling the dialysate pressure in the closed circuit determined by the pressure loss generated by the water removal means to be positive , the dialysate degassing mechanism is unnecessary .
[0005]
[Action]
By adopting the above configuration, it is possible to suppress the generation of bubbles in the dialysate closed circuit including the dialyzer without using complicated deaeration means, and it is possible to suppress the precipitation of calcium carbonate. .
[0006]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a first embodiment of the present invention. The dialysate is supplied intermittently by a closed circuit system using a single diaphragm chamber 16 and water removal is performed by suction from the closed circuit by the water removal pump 11, as described above in detail. It is omitted here. The blood of the patient 1 is sent to the dialyzer 2 by the blood pump 20 and returned to the patient 1 again. In this example, a restriction 22 is provided in the blood return path to provide flow path resistance so that the pressure in the blood chamber 4 of the dialyzer 2 can be adjusted. It is assumed that a UFR (water removal amount per unit time when a unit pressure difference is given) of 10 ml / mmHg / h is used for the dialyzer 2 and 1000 ml of water is removed per hour. Then, the differential pressure (hereinafter referred to as TMP) generated between the blood chamber 4 and the dialysate chamber 5 of the dialyzer 2 becomes 100 mmHg. Therefore, if the throttle 22 is adjusted so that the pressure gauge 21 indicates 100 mmHg or more, the pressure in the dialysate chamber 5, that is, the dialysate pressure in the closed circuit can be kept positive.
FIG. 2 shows a second embodiment of the present invention. The dialysate pressure in the closed circuit is measured by the pressure gauge 23. If this value is negative pressure, the controller 24 drives the motor connected to the adjusting shaft of the restrictor 22 to restrict the blood circuit and increase the flow resistance. Let As a result, the blood pressure increases and the dialysate pressure also increases. When the dialysate pressure becomes positive, the throttle 22 is fixed. When the dialysate pressure becomes excessively positive, the restrictor 22 is adjusted in a direction to decrease the flow path resistance of the blood circuit, and is fixed when the dialysate pressure becomes an appropriate positive pressure.
FIG. 3 shows a third embodiment of the present invention. In this example, the pressure adjustment mechanism 25 is provided so that the diaphragm can be adjusted without using a controller. Details of the pressure adjustment mechanism 25 are shown in FIG. The dialysate exiting the dialyzer 2 enters from the dialysate inlet 26 of the pressure adjustment mechanism 25 and exits from the dialysate outlet 27. At this time, the dialysate pressure is applied to the bellows 28, but the inside of the bellows 28 is released to the atmospheric pressure and simultaneously supported by the spring 32. As a result, the perot 28 reaches a position where the dialysate pressure = atmospheric pressure + spring pressure. Move and stop. On the other hand, the contraction of the bellows 28 is transmitted by the shaft 29, and the blood circuit tube 31 is squeezed by the tube presser 30 to change the flow path resistance of the blood circuit. That is, when the dialysate pressure decreases, the bellows 28 moves downward to squeeze the blood circuit tube 31 to increase the pressure in the blood circuit and the dialysate pressure. When the dialysate pressure increases, the blood circuit tube 31 is opened. Therefore, the dialysate pressure can be kept constant at a positive pressure.
These examples are based on a closed circuit type dialysate supply system using one diaphragm chamber, but a system in which two diaphragm chambers shown in Japanese Patent Publication No. 56-82 are connected in parallel, It is easily conceivable that the present invention can also be applied to a system in which a buffer is connected to a diaphragm chamber disclosed in JP-A-5-146506.
[0007]
【The invention's effect】
As described above, in the present invention, the pressure adjustment means is provided on the blood circuit to maintain the pressure in the closed circuit of the dialysate at a positive pressure, thereby eliminating the conventionally required dialysate degassing mechanism, In addition, frequent washing operations can be reduced by suppressing the precipitation of calcium carbonate. As a result, it has become possible to supply a dialysis machine with high reliability, economy, and maintainability.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of a hemodialysis apparatus of the present invention.
FIG. 2 is a view showing a second embodiment of the hemodialysis apparatus of the present invention.
FIG. 3 is a view showing a third embodiment of the hemodialysis apparatus of the present invention.
FIG. 4 is a diagram showing details of a pressure adjustment mechanism in a third embodiment of the hemodialysis apparatus of the present invention.
FIG. 5 is a diagram showing a closed-circuit dialysate supply method and a water removal method in a conventional hemodialysis apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Patient 2 Dialyzer 3 Semipermeable membrane 4 Blood chamber 5 Dialysate chamber 6 Dialysate supply line 7 Dialysate waste liquid line 8 Water removal line 9, 10 Liquid feed pump 11 Water removal pump 12, 13, 14, 15 Solenoid valve 16 Diaphragm chamber 17 Diaphragm 18 Supply chamber 19 Waste fluid chamber 20 Blood pumps 21 and 23 Pressure gauge 22 Throttle 24 Controller 25 Pressure adjustment mechanism 26 Dialysate inlet 27 Dialysate outlet 28 Bellow 29 Shaft 30 Tube presser 31 Blood circuit tube 32 Spring

Claims (1)

透析器へ透析液と血液を供給し、透析器内に設けられた半透膜を介し透析液と血液を接触させ、血液から老廃物及び水分を除去する血液透析装置において、前記透析器に流入する透析液の流量と前記透析器から流出する透析液の流量を等しく保つための閉回路式透析液供給手段と、前記閉回路式透析液供給手段の閉回路部から所定の流量で透析液を閉回路外へ排出する除水手段と、前記透析器の血液側圧力を所定の圧に調節する圧力調節手段とを有し、前記圧力調節手段により調節された血液側圧力と前記除水手段で発生する圧力損失で決定される前記閉回路部内の透析液圧力を陽圧に保つよう制御することで、透析液の脱気機構を不要とすることを特徴とする血液透析装置。In a hemodialysis machine that supplies dialysate and blood to a dialyzer, contacts the dialysate and blood through a semipermeable membrane provided in the dialyzer, and removes waste and water from the blood, then flows into the dialyzer A closed circuit type dialysate supply means for keeping the flow rate of the dialysate to be equal to the flow rate of the dialysate flowing out of the dialyzer, and the dialysate at a predetermined flow rate from the closed circuit part of the closed circuit type dialysate supply means A water removal means for discharging out of the closed circuit, and a pressure adjustment means for adjusting the blood side pressure of the dialyzer to a predetermined pressure, and the blood side pressure adjusted by the pressure adjustment means and the water removal means A hemodialysis apparatus characterized by eliminating the dialysate degassing mechanism by controlling the dialysate pressure in the closed circuit portion determined by the generated pressure loss to be positive.
JP32292798A 1998-10-29 1998-10-29 Hemodialysis equipment Expired - Fee Related JP4097811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32292798A JP4097811B2 (en) 1998-10-29 1998-10-29 Hemodialysis equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32292798A JP4097811B2 (en) 1998-10-29 1998-10-29 Hemodialysis equipment

Publications (2)

Publication Number Publication Date
JP2000126283A JP2000126283A (en) 2000-05-09
JP4097811B2 true JP4097811B2 (en) 2008-06-11

Family

ID=18149191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32292798A Expired - Fee Related JP4097811B2 (en) 1998-10-29 1998-10-29 Hemodialysis equipment

Country Status (1)

Country Link
JP (1) JP4097811B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090118536A (en) * 2008-05-14 2009-11-18 탑엠앤에이 주식회사 Blood dialyzing apparatus
JP2011182927A (en) * 2010-03-08 2011-09-22 Asahi Kasei Kuraray Medical Co Ltd Hemodialyzer, liquid replenishment method for blood circuit, method for operating hemodialyzer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04300560A (en) * 1991-03-28 1992-10-23 Toray Ind Inc Dialysis device
JP2912801B2 (en) * 1993-10-06 1999-06-28 株式会社三陽電機製作所 Hemodialysis machine
US5591344A (en) * 1995-02-13 1997-01-07 Aksys, Ltd. Hot water disinfection of dialysis machines, including the extracorporeal circuit thereof

Also Published As

Publication number Publication date
JP2000126283A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
JP3792751B2 (en) Hemodialysis filtration device that can purify alternative liquid
JP3727688B2 (en) Blood filtration device with filtrate flow rate control device and / or hemodiafiltration device
JP4091873B2 (en) Dialysis machine
US4828693A (en) Water pressure regulator for hemodialysis apparatus
JP3695506B2 (en) Dialysis machine and washing priming method
JP4571621B2 (en) Apparatus and method for extracorporeal treatment of blood by selective extraction of solutes
CA2671010C (en) Blood treatment apparatus
JPH0455075B2 (en)
JPH0522549B2 (en)
JP4097811B2 (en) Hemodialysis equipment
JP2912801B2 (en) Hemodialysis machine
WO2021059818A1 (en) Blood purification device
EP1342479B1 (en) Assembly for controlling and regulating flow of a dialysis solution in a haemodiafiltration process
JP3187938B2 (en) Hemodialysis machine
JP2004016675A (en) Hemodialyzer
JP2021010522A (en) Blood purification apparatus and blood purification method
JP2002253668A (en) Automatic deaeration system for blood circuit
WO2024005066A1 (en) Blood purification device and method for controlling liquid feed pump
JP4265720B2 (en) Hemodiafiltration machine
JPS5912905Y2 (en) Artificial kidney dialysate deaerator
CN114144211A (en) Dialysis device with three balancing chambers
JP2000126284A (en) Blood dialysis apparatus
JPH0531181A (en) Hemodialyzer
JP3664901B2 (en) Blood purification equipment
JPS6113968A (en) Dialytic filter apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees