JP4096137B2 - Laser oscillator - Google Patents

Laser oscillator Download PDF

Info

Publication number
JP4096137B2
JP4096137B2 JP1272199A JP1272199A JP4096137B2 JP 4096137 B2 JP4096137 B2 JP 4096137B2 JP 1272199 A JP1272199 A JP 1272199A JP 1272199 A JP1272199 A JP 1272199A JP 4096137 B2 JP4096137 B2 JP 4096137B2
Authority
JP
Japan
Prior art keywords
laser
excitation
solid
members
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1272199A
Other languages
Japanese (ja)
Other versions
JP2000216468A (en
Inventor
基 佐々木
良治 小関
平等  拓範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Corp filed Critical Shibuya Corp
Priority to JP1272199A priority Critical patent/JP4096137B2/en
Publication of JP2000216468A publication Critical patent/JP2000216468A/en
Application granted granted Critical
Publication of JP4096137B2 publication Critical patent/JP4096137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、レーザ発振器に関し、より詳しくはレーザ光をジグザグに反射する励起用部材を備えるレーザ発振器に関する。
【0002】
【従来の技術】
従来、反射面を互いに向き合わせて配置した一対の励起用部材と、上記反射面で交互にジグザグに反射されるレーザ光の光軸上において互いに向き合わせて配置した反射ミラーと出力ミラーと、上記ミラーと励起用部材とで構成される共振器空間内に励起用レーザ光を入射するレーザ手段とを備えたものが知られている(特開平8-162717号公報、特開平10-107365号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら上記両公報では、励起用レーザ光を入射する導入口を励起用部材と反射ミラーとの間、および励起用部材と出力ミラーとの間に設けていた。
このため、上記導入口から共振器空間内に入射される励起用レーザ光の光軸を出力ミラーから取出されるレーザ光線の光軸と一致させなければならず、その調整が煩雑で手間がかかるといった欠点がある。
また従来では、上記両導入口より効率的に共振器空間内に励起用レーザ光を入射させるために、光学系部品(レンズ、ファイバ)を用いて励起用レーザ光をコリメートして導入するようにしていたので、レーザ発振器が高価になるといった欠点がある。
本発明はそのような事情に鑑み、従来の励起用部材を備えるレーザ発振器に比較してレーザ手段から入射される励起用レーザ光の光軸と出力ミラーから出力されるレーザ光線の光軸とを調整する煩雑な調整作業を不用にするとともに、励起用レーザ光をコリメートする光学系部品を省略した安価なレーザ発振器を提供するものである。
【0004】
【課題を解決するための手段】
すなわち請求項1の発明は、反射面を互いに向き合わせて配置した励起用部材と、上記反射面で交互にジグザグに反射されるレーザ光の光軸上において互いに向き合わせて配置した反射ミラーと出力ミラーと、上記ミラーと励起用部材とで構成される共振器空間内に励起用レーザ光を入射するレーザ手段とを備えたレーザ発振器において、
上記励起用部材は、対向するベースに交互に断続的に配設された複数の励起用部材からなっており、これら励起用部材の間に露出するベースを切欠いて上記共振器空間内に励起用レーザ光を導入する導入口を設けたものである。
また請求項2の発明は、反射面を互いに向き合わせて配置した励起用部材と、上記反射面で交互にジグザグに反射されるレーザ光の光軸上において互いに向き合わせて配置した反射ミラーと出力ミラーと、上記ミラーと励起用部材とで構成される共振器空間内に励起用レーザ光を入射するレーザ手段とを備えたレーザ発振器において、
上記励起用部材は、それぞれレーザ光の反射経路に沿って連続する単体の励起用部材からなっており、これら励起用部材の非反射部分を切欠いて上記共振器空間内に励起用レーザ光を導入する導入口を形成したものである。
【0005】
【作用】
上述した構成によれば、上記導入口から共振器空間内に導入された励起用レーザ光を、共振器空間を構成する一対の励起用部材、反射ミラーおよび出力ミラーとでジグザグに反射して共振するとともに、増幅されて所定出力に達したレーザ光を出力ミラーから出力することができる。
また上記導入口は、励起用部材の間に露出するベースや励起用部材の非反射部分に適宜設けることができるので、従来のレーザ発振器に比較して導入口の総面積を増大させることができる。
したがって、共振器空間内に入射される励起用レーザ光の光軸を出力ミラーから出力されるレーザ光線の光軸に一致させる必要がないので、従来行っていた煩雑な光軸の調整作業を省くことができ、また上記導入口の総面積を増大することにより、従来使用していた光学系部品を省いてレーザ発振器を安価にすることができる。
【0006】
【実施例】
以下図示実施例について本発明を説明すると、図1において、1は図示しないレーザ手段としての半導体レーザから入射された励起用レーザ光Lを所定の出力に増幅して出力するレーザ発振器である。
上記レーザ発振器1は、図示しないフレームに上下に平行して配設した上方側の第1基板(ベース)2と下方側の第2基板(ベース)3と、上方側の第1基板2の下端面に、レーザ光L’の反射経路に沿ってそれ自身の一辺の寸法よりも若干広い間隔を開けて配設した励起用部材としての正方形の第1固体レーザ媒質4と、下方側の第2基板3の上端面に、上記第1固体レーザ媒質4に対して重ならないようにして、レーザ光L’の反射経路に沿ってそれ自身の一片の寸法よりも若干広い間隔を開けて配設された励起用部材としての正方形の第2固体レーザ媒質5と、上記両基板2、3の左側に配設されて、その反斜面を一番左側の第1固体レーザ媒質4に対して斜めに向けた反射ミラー7と、上記両基板2、3の右側に配設されて、その反斜面を一番右側の第2固体レーザ媒質5に対して斜めに向けた出力ミラー8とを備えており、これら反射ミラー7と出力ミラー8とはレーザ光L’の光軸上に対向している。そして、これら第1固体レーザ媒質4、第2固体レーザ媒質5、反射ミラー7および出力ミラー8とで励起用レーザ光Lを共振する共振器空間を形成している。
【0007】
上記第1基板2および第2基板3は、銅板(ヒートシンク)10と、この銅板10に接合されて、励起用レーザ光lを透過するサファイヤ板11を備えており、このサファイヤ板11に上記両固体レーザ媒質4、5が接合されている。なお、本実施例では銅板10にサファイヤ板11を接合していたがこれに限定されるものではなく、例えば石英等の励起用レザー光Lを透過する素材であればよい。上記第1固体レーザ媒質4および第2固体レーザ媒質5は、本実施例ではYVO(イットリウムバナデート)結晶に活性イオンとしてNd(ネオジム)を添加したNd:YVOを用いており、このNd:YVOの裏面、すなわちサファイヤ板11側にレーザ光L’を全反射する光反射コートを施した反射面4a、5aを備えている。この反射面4a、5aは、互いに平行する両固体レーザ媒質4、5に準じて互いに平行になっている。
そして本実施例では、Nd:YVOを用いているので波長800nmの励起用レーザ光Lを放射する半導体レーザを用いている。なお、上記Ndに換えて例えばYb(イッテルビウム)等を用いてもよいが、その場合には励起用レーザ光Lの波長を適宜変更しなければならない。
【0008】
しかして本実施例では、離隔して配置した第1固体レーザ媒質4との間、すなわち第2固体レーザ媒質5の上方に位置する第1基板2の銅板10を断続的に切欠いて正方形の導入口12を形成し、この導入口12およびサファイヤ板11を通過した励起用レーザ光Lを共振器空間、具体的には第2固体レーザ媒質5に入射するように設定する一方、第1固体レーザ媒質4の下方に位置する第2基板3の銅板10を断続的に切欠いて正方形の導入口13を形成し、この導入口13およびサファイヤ板11を通過した励起用レーザ光Lを共振器空間、具体的には第1固体レーザ媒質4に入射するように設定している。
このとき、半導体レーザから放射した励起用レーザ光Lは光学系部品等を介さずに入射させており、しかもこの励起用レーザ光Lを出力ミラー8から出力するレーザ光線L”の光軸と異ならせている。
【0009】
上述した構成によれば、第1固体レーザ媒質4および第2固体レーザ媒質5とにそれぞれ入射された励起用レーザ光Lは、Nd:YVOで吸収されてレーザ光L’になると、このレーザ光L’はそれぞれ反射面4a、5aで反射されて他方側に向けて拡散しながら進行するようになる。
具体的には、一番左側の第1固体レーザ媒質4で反射されたレーザ光L’の一部が反射ミラー7および一番左側の第2固体レーザ媒質5に入射され、また中央の第1固体レーザ媒質4で反射されたレーザ光L’の一部が一番左側および中央の第2固体レーザ媒質5に入射され、さらに一番右側の第1固体レーザ媒質4で反射されたレーザ光L’の一部が中央および一番右側の第2レーザ媒質5に入射されるようになる。
これに対し、一番左側の第2固体レーザ媒質5で反射されたレーザ光L’の一部が一番左側および中央の第1固体レーザ媒質4に入射され、また中央の第2固体レーザ媒質5で反射されたレーザ光L’の一部が中央および一番右側の第1固体レーザ媒質4に入射され、さらに一番右側の第2固体レーザ媒質5で反射されたレーザ光L’の一部が一番右側の第1固体レーザ媒質5および出力ミラー8に入射されるようになる。
この結果から理解されるように、上記各第1固体レーザ媒質4、第2固体レーザ媒質5、反射ミラー7および出力ミラー8とでそれぞれに反射されたレーザ光L’は、図1に示すようなジグザグに連続する一本のレーザ光L’となり、これら第1固体レーザ媒質4、第2固体レーザ媒質5、反射ミラー7および出力ミラー8との間、すなわち共振器空間で共振されて所定出力に達したレーザ光L’は出力ミラー8からレーザ光線L”として出力される。
ところで、従来のレーザ発振器では、励起用部材と反射ミラーとの間、および励起用部材と出力ミラーとの間に導入口を設けていたため、入射する励起用レザー光の光軸を出力ミラーから取出されるレーザ光線の光軸と一致させなければならず、その調整が煩雑で、またしかも両導入口から効率的に励起用レーザ光を導入するために光学系部品を使用していたのでレーザ発振器が高価になるといった欠点があるが、上述したように第1基板2および第2基板3とに設けた導入口12、13により励起用レーザ光Lを入射させれば、従来のような煩雑な光軸の調整作業を不用にすることができ、また導入口12、13を多数設ければ従来のように光学系部品を用いなくともよいので、レーザ発振器1を安価に構成することができる。
【0010】
なお上記実施例では、両レーザ媒質4、5の反射面4a、5aを互いに平行に配置しているが、対向する反射面4a、5aの角度は、レーザ光線L’の光軸が回折限界となる角度まで傾けることが可能である。
また上記実施例では、第1固体レーザ媒質4および第2固体レーザ媒質5と同数の導入口12、13を設けているがこれに限定されるものではなく、それ以下でもあってもよい
また本実施例では、第1固体レーザ媒質4と第2固体レーザ媒質5の両方に励起用レーザ光を入射させているがこれに限定されるものではなく、いずれか一方だけに入射するようにしてもよい。
さらに本実施例では、正方形のレーザ媒質4、5を断続的に設けていたがこれに限定されるものではなく、レーザ媒質4、5をレーザ光Lの反射経路に沿って連続する単体としてもよいが、その場合には基板2、3は勿論のことレーザ媒質4、5の非反射部分を切欠かなければならない。
さらに本実施例では、励起用部材を固体レーザ媒質4、5としていたがこれに限定されるものではなく、面発光半導体レーザ素子要素を用いてもよく、この場合には面発光半導体レーザ素子要素を通電する導電性の基板を用いなければならない。
【0011】
【発明の効果】
以上のように、本発明によれば、従来に比較して煩雑な光軸の調整を不要にすることができ、またレーザ発振器を安価にすることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す側面図。
【図2】第1基板2および第1固体レーザ媒質4の斜視図。
【符号の説明】
1…レーザ発振器 4…第1固体レーザ媒質
5…第2固体レーザ媒質 7…反射ミラー
8…出力ミラー 12…導入口
13…導入口
[0001]
[Industrial application fields]
The present invention relates to a laser oscillator, and more particularly to a laser oscillator including an excitation member that reflects laser light in a zigzag manner.
[0002]
[Prior art]
Conventionally, a pair of excitation members arranged with their reflecting surfaces facing each other, a reflecting mirror and an output mirror arranged facing each other on the optical axis of the laser light alternately reflected zigzag by the reflecting surfaces, There are known ones provided with laser means for injecting excitation laser light into a resonator space constituted by a mirror and an excitation member (Japanese Patent Laid-Open Nos. 8-162717 and 10-107365). ).
[0003]
[Problems to be solved by the invention]
However, in both of the above-mentioned publications, the inlet for receiving the excitation laser beam is provided between the excitation member and the reflection mirror, and between the excitation member and the output mirror.
For this reason, the optical axis of the excitation laser beam that enters the resonator space from the introduction port must coincide with the optical axis of the laser beam extracted from the output mirror, which is complicated and laborious to adjust. There are disadvantages.
In addition, conventionally, in order to efficiently make the excitation laser beam enter the resonator space from both the introduction ports, the excitation laser beam is collimated and introduced using optical parts (lens, fiber). As a result, the laser oscillator is expensive.
In view of such circumstances, the present invention provides the optical axis of the excitation laser beam incident from the laser means and the optical axis of the laser beam output from the output mirror in comparison with a laser oscillator having a conventional excitation member. It is an object of the present invention to provide an inexpensive laser oscillator that eliminates the need for complicated adjustment work for adjustment and omits optical system components for collimating excitation laser light.
[0004]
[Means for Solving the Problems]
That is, the invention according to claim 1 is the excitation member having the reflecting surfaces arranged to face each other, the reflecting mirror arranged to face each other on the optical axis of the laser light reflected alternately zigzag by the reflecting surface, and the output In a laser oscillator comprising: a mirror; and a laser unit that makes excitation laser light incident in a resonator space composed of the mirror and the excitation member.
The excitation member is composed of a plurality of excitation members alternately and intermittently disposed on opposing bases, and the base exposed between the excitation members is notched to be excited in the resonator space. An introduction port for introducing laser light is provided.
Further, the invention according to claim 2 is an excitation member in which the reflecting surfaces are arranged to face each other, a reflecting mirror arranged to face each other on the optical axis of the laser light that is alternately reflected in a zigzag manner on the reflecting surface, and an output In a laser oscillator comprising: a mirror; and a laser unit that makes excitation laser light incident in a resonator space composed of the mirror and the excitation member.
Each of the pumping members is composed of a single pumping member that is continuous along the laser beam reflection path, and the pumping laser beam is introduced into the resonator space by cutting off the non-reflective portion of the pumping member. Introducing the inlet.
[0005]
[Action]
According to the above-described configuration, the excitation laser light introduced into the resonator space from the introduction port is reflected in a zigzag manner by the pair of excitation members, the reflection mirror, and the output mirror that constitute the resonator space, and resonates. In addition, the laser light that has been amplified and reaches a predetermined output can be output from the output mirror.
Further, the introduction port can be appropriately provided in the base exposed between the excitation members and the non-reflective portion of the excitation member, so that the total area of the introduction port can be increased as compared with the conventional laser oscillator. .
Therefore, it is not necessary to make the optical axis of the excitation laser beam incident in the resonator space coincide with the optical axis of the laser beam output from the output mirror, so that the conventional complicated adjustment of the optical axis is omitted. In addition, by increasing the total area of the introduction port, it is possible to reduce the cost of the laser oscillator by omitting conventionally used optical components.
[0006]
【Example】
The present invention will be described below with reference to the illustrated embodiments. In FIG. 1, reference numeral 1 denotes a laser oscillator that amplifies and outputs a pumping laser beam L incident from a semiconductor laser (not shown) as a laser means to a predetermined output.
The laser oscillator 1 includes an upper first substrate (base) 2, a lower second substrate (base) 3, and an upper first substrate 2 that are arranged in parallel in a vertical direction on a frame (not shown). A square first solid-state laser medium 4 as an excitation member disposed on the end face with a space slightly larger than the dimension of one side of itself along the reflection path of the laser beam L ′, and a second lower side laser beam. The upper end surface of the substrate 3 is disposed so as not to overlap the first solid-state laser medium 4 with a space slightly larger than the size of one piece of itself along the reflection path of the laser light L ′. The second solid laser medium 5 having a square shape as a pumping member and the left and right sides of the two substrates 2 and 3 are disposed so that the opposite slope is inclined with respect to the first solid laser medium 4 on the leftmost side. The reflection mirror 7 is disposed on the right side of the two substrates 2 and 3 and is obliquely Is provided obliquely with respect to the second solid-state laser medium 5 on the rightmost side, and the reflecting mirror 7 and the output mirror 8 face each other on the optical axis of the laser beam L ′. . The first solid-state laser medium 4, the second solid-state laser medium 5, the reflection mirror 7, and the output mirror 8 form a resonator space that resonates the excitation laser light L.
[0007]
The first substrate 2 and the second substrate 3 include a copper plate (heat sink) 10 and a sapphire plate 11 that is bonded to the copper plate 10 and transmits the excitation laser beam l. Solid laser media 4 and 5 are joined. In the present embodiment, the sapphire plate 11 is bonded to the copper plate 10, but the present invention is not limited to this, and any material that transmits the excitation leather light L such as quartz may be used. In the present embodiment, the first solid-state laser medium 4 and the second solid-state laser medium 5 use Nd: YVO 4 in which Nd (neodymium) is added as an active ion to a YVO 4 (yttrium vanadate) crystal. : Reflected surfaces 4a and 5a provided with a light reflecting coating that totally reflects the laser beam L 'on the back surface of YVO 4 , that is, the sapphire plate 11 side. The reflecting surfaces 4a and 5a are parallel to each other in accordance with both solid-state laser media 4 and 5 that are parallel to each other.
In this embodiment, since Nd: YVO 4 is used, a semiconductor laser that emits excitation laser light L having a wavelength of 800 nm is used. Note that, for example, Yb (ytterbium) or the like may be used instead of the Nd. In that case, the wavelength of the excitation laser beam L must be changed as appropriate.
[0008]
Thus, in this embodiment, a square is introduced by intermittently cutting the copper plate 10 of the first substrate 2 located between the first solid-state laser medium 4 and the first solid-state laser medium 4 that are spaced apart from each other, that is, above the second solid-state laser medium 5. An opening 12 is formed, and the excitation laser light L that has passed through the introduction port 12 and the sapphire plate 11 is set to enter the resonator space, specifically, the second solid-state laser medium 5. The copper plate 10 of the second substrate 3 positioned below the medium 4 is intermittently cut to form a square introduction port 13, and the excitation laser light L that has passed through the introduction port 13 and the sapphire plate 11 is converted into a resonator space, Specifically, it is set so as to be incident on the first solid-state laser medium 4.
At this time, the excitation laser light L radiated from the semiconductor laser is made incident without passing through the optical system components, and the excitation laser light L is different from the optical axis of the laser beam L ″ output from the output mirror 8. It is
[0009]
According to the configuration described above, the excitation laser light L incident on the first solid-state laser medium 4 and the second solid-state laser medium 5 is absorbed by Nd: YVO 4 and becomes laser light L ′. The light L ′ is reflected by the reflecting surfaces 4a and 5a and travels while diffusing toward the other side.
Specifically, a part of the laser light L ′ reflected by the leftmost first solid-state laser medium 4 is incident on the reflection mirror 7 and the leftmost second solid-state laser medium 5, and the center first A part of the laser light L ′ reflected by the solid-state laser medium 4 is incident on the leftmost and central second solid-state laser medium 5 and further reflected by the rightmost first solid-state laser medium 4. A part of 'enters the second laser medium 5 at the center and the rightmost side.
On the other hand, a part of the laser beam L ′ reflected by the leftmost second solid-state laser medium 5 is incident on the leftmost and central first solid-state laser medium 4, and the central second solid-state laser medium. A part of the laser beam L ′ reflected by 5 is incident on the first and rightmost first solid-state laser medium 4 and further reflected by the second solid-state laser medium 5 on the rightmost side. This part is incident on the rightmost first solid-state laser medium 5 and output mirror 8.
As understood from this result, the laser light L ′ reflected by the first solid-state laser medium 4, the second solid-state laser medium 5, the reflection mirror 7 and the output mirror 8 is as shown in FIG. The laser beam L ′ continues in a zigzag manner, and is resonated between the first solid-state laser medium 4, the second solid-state laser medium 5, the reflection mirror 7, and the output mirror 8, that is, in the resonator space, and has a predetermined output. The laser beam L ′ that has reached is output from the output mirror 8 as a laser beam L ″.
By the way, in the conventional laser oscillator, since the introduction port is provided between the excitation member and the reflection mirror and between the excitation member and the output mirror, the optical axis of the incident excitation laser light is taken out from the output mirror. The laser oscillator must be aligned with the optical axis of the laser beam to be adjusted, and the adjustment is complicated, and the optical system parts are used to efficiently introduce the excitation laser beam from both inlets. However, if the excitation laser beam L is made incident through the inlets 12 and 13 provided in the first substrate 2 and the second substrate 3 as described above, it is complicated as in the prior art. The adjustment work of the optical axis can be made unnecessary, and if a large number of inlets 12 and 13 are provided, there is no need to use optical parts as in the prior art, so that the laser oscillator 1 can be configured at low cost.
[0010]
In the above embodiment, the reflecting surfaces 4a and 5a of the laser media 4 and 5 are arranged in parallel to each other. However, the angle of the reflecting surfaces 4a and 5a facing each other is such that the optical axis of the laser beam L ′ is the diffraction limit. It is possible to tilt to a certain angle.
In the above-described embodiment, the same number of inlets 12 and 13 as the first solid-state laser medium 4 and the second solid-state laser medium 5 are provided, but the present invention is not limited to this and may be less. In the embodiment, the excitation laser light is incident on both the first solid-state laser medium 4 and the second solid-state laser medium 5, but the present invention is not limited to this, and may be incident on only one of them. Good.
Further, in the present embodiment, the square laser media 4 and 5 are intermittently provided, but the present invention is not limited to this, and the laser media 4 and 5 may be continuous along the reflection path of the laser light L. In this case, the non-reflective portions of the laser media 4 and 5 as well as the substrates 2 and 3 must be cut out.
Furthermore, in the present embodiment, the excitation member is the solid laser medium 4 or 5, but the present invention is not limited to this, and a surface emitting semiconductor laser element may be used. In this case, the surface emitting semiconductor laser element is used. It is necessary to use a conductive substrate that conducts current.
[0011]
【The invention's effect】
As described above, according to the present invention, it is possible to eliminate the need for complicated adjustment of the optical axis as compared with the prior art, and to obtain an effect that the laser oscillator can be made inexpensive.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of the present invention.
2 is a perspective view of a first substrate 2 and a first solid-state laser medium 4. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Laser oscillator 4 ... 1st solid-state laser medium 5 ... 2nd solid-state laser medium 7 ... Reflection mirror 8 ... Output mirror 12 ... Inlet 13 ... Inlet

Claims (4)

反射面を互いに向き合わせて配置した励起用部材と、上記反射面で交互にジグザグに反射されるレーザ光の光軸上において互いに向き合わせて配置した反射ミラーと出力ミラーと、上記ミラーと励起用部材とで構成される共振器空間内に励起用レーザ光を入射するレーザ手段とを備えたレーザ発振器において、
上記励起用部材は、対向するベースに交互に断続的に配設された複数の励起用部材からなっており、これら励起用部材の間に露出するベースを切欠いて上記共振器空間内に励起用レーザ光を導入する導入口を設けたことを特徴とするレーザ発振器。
Exciting members arranged with their reflecting surfaces facing each other, reflecting mirrors and output mirrors arranged facing each other on the optical axis of the laser light that is alternately reflected in a zigzag manner on the reflecting surfaces, and the mirror and the pumping device In a laser oscillator comprising a laser means for injecting excitation laser light into a resonator space composed of members,
The excitation member is composed of a plurality of excitation members alternately and intermittently disposed on opposing bases, and the base exposed between the excitation members is notched to be excited in the resonator space. A laser oscillator comprising an introduction port for introducing laser light.
反射面を互いに向き合わせて配置した励起用部材と、上記反射面で交互にジグザグに反射されるレーザ光の光軸上において互いに向き合わせて配置した反射ミラーと出力ミラーと、上記ミラーと励起用部材とで構成される共振器空間内に励起用レーザ光を入射するレーザ手段とを備えたレーザ発振器において、
上記励起用部材は、それぞれレーザ光の反射経路に沿って連続する単体の励起用部材からなっており、これら励起用部材の非反射部分を切欠いて上記共振器空間内に励起用レーザ光を導入する導入口を形成したことを特徴とするレーザ発振器。
Exciting members arranged with their reflecting surfaces facing each other, reflecting mirrors and output mirrors arranged facing each other on the optical axis of the laser light that is alternately reflected in a zigzag manner on the reflecting surfaces, and the mirror and the pumping device In a laser oscillator comprising a laser means for injecting excitation laser light into a resonator space composed of members,
Each of the pumping members is composed of a single pumping member that is continuous along the laser beam reflection path, and the pumping laser beam is introduced into the resonator space by cutting off the non-reflective portion of the pumping member. A laser oscillator characterized in that an introduction port is formed.
上記導入口は、励起用レーザ光を透過させる透過部材で閉鎖されていることを特徴とする請求項1又は請求項2に記載のレーザ発振器。 3. The laser oscillator according to claim 1, wherein the introduction port is closed by a transmission member that transmits the excitation laser beam. 上記励起用部材は、固体レーザ媒質であることを特徴とする請求項1ないし請求項3のいずれかに記載のレーザ発振器。It said excitation member, a laser oscillator according to any one of claims 1, characterized in that a solid-state laser medium according to claim 3.
JP1272199A 1999-01-21 1999-01-21 Laser oscillator Expired - Lifetime JP4096137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1272199A JP4096137B2 (en) 1999-01-21 1999-01-21 Laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1272199A JP4096137B2 (en) 1999-01-21 1999-01-21 Laser oscillator

Publications (2)

Publication Number Publication Date
JP2000216468A JP2000216468A (en) 2000-08-04
JP4096137B2 true JP4096137B2 (en) 2008-06-04

Family

ID=11813304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1272199A Expired - Lifetime JP4096137B2 (en) 1999-01-21 1999-01-21 Laser oscillator

Country Status (1)

Country Link
JP (1) JP4096137B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862658B2 (en) * 2016-02-15 2021-04-21 株式会社リコー Optical amplifier, driving method of optical amplifier and optical amplification method

Also Published As

Publication number Publication date
JP2000216468A (en) 2000-08-04

Similar Documents

Publication Publication Date Title
JP4584513B2 (en) Optical amplifier device for solid-state laser (Verstaerker-Anordung)
JP3588195B2 (en) Solid state laser amplifier
US5521932A (en) Scalable side-pumped solid-state laser
JP2753145B2 (en) Frequency doubling laser
US8102893B2 (en) Multiple emitter VECSEL
JP2001083460A (en) Laser device
JP4202730B2 (en) Solid state laser equipment
JP2007081233A (en) Laser oscillator
JP3503588B2 (en) Solid state laser oscillator
JP4096137B2 (en) Laser oscillator
JP3053273B2 (en) Semiconductor pumped solid-state laser
JPH05335662A (en) Solid-state laser device
JP2004296671A (en) Solid-state laser device
JP4101838B2 (en) Solid-state laser excitation module and laser oscillator
JP2000012935A (en) Laser exciting device
JPH09312430A (en) Zig-zag slab solid-state laser and amplifier
JPH09199781A (en) Laser amplifier
JPS63254776A (en) Solid-state laser device
JP2557123B2 (en) Solid-state laser oscillator
JPH0888428A (en) Laser diode pumping solid laser
JPH0567824A (en) Semiconductor excitation solid-state laser
JPH0414279A (en) Semiconductor excitation solid-state laser
JP3320021B2 (en) Laser amplifier
JPH09331092A (en) Solid-state laser system
JP2001068768A (en) Light excited solid-state laser oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

EXPY Cancellation because of completion of term