JP4094573B2 - Manufacturing method of glass optical element - Google Patents
Manufacturing method of glass optical element Download PDFInfo
- Publication number
- JP4094573B2 JP4094573B2 JP2004059516A JP2004059516A JP4094573B2 JP 4094573 B2 JP4094573 B2 JP 4094573B2 JP 2004059516 A JP2004059516 A JP 2004059516A JP 2004059516 A JP2004059516 A JP 2004059516A JP 4094573 B2 JP4094573 B2 JP 4094573B2
- Authority
- JP
- Japan
- Prior art keywords
- molded
- glass material
- glass
- mold
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B40/00—Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
- C03B40/04—Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it using gas
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/61—Positioning the glass to be pressed with respect to the press dies or press axis
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/66—Means for providing special atmospheres, e.g. reduced pressure, inert gas, reducing gas, clean room
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/80—Simultaneous pressing of multiple products; Multiple parallel moulds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Description
本発明は、成形型に被成形ガラス素材を供給する方法及びこの方法に使用するため装置に関する。さらに本発明は、上記本発明の方法を用いた、プレス成形後において研削や研磨を必要としない、高精度のレンズ等のガラス光学素子を含むガラス光学素子の製造方法に関する。特に、本発明は、より高い面精度を有するガラス光学素子を高い生産効率で製造する方法に関する。 The present invention relates to a method of supplying a glass material to be molded to a mold and an apparatus for use in this method. Furthermore, this invention relates to the manufacturing method of the glass optical element containing glass optical elements, such as a high precision lens, which does not require grinding and grinding | polishing after press molding using the method of the said invention. In particular, the present invention relates to a method for producing a glass optical element having higher surface accuracy with high production efficiency.
軟化ガラスが融着せず、鏡面加工が可能な型材料を精密加工した成形型を用い、プレス成形後において研削や研磨を必要としない、高精度のレンズ等のガラス光学素子の成形方法が近年種々開発されてきた。プレス成形により、要求されるレンズを得るには表面形状精度や表面の品質(滑らかな面粗度)とともに、肉厚、外径、偏心等のスペックを満足させなければならない。屈折率や透過率等の内部品質が良好であることは勿論である。 In recent years, there are various molding methods for glass optical elements such as high-precision lenses that do not require grinding or polishing after press molding, using molds that are made by precision processing of mold materials that do not fuse softened glass and can be mirror finished. Has been developed. In order to obtain the required lens by press molding, the surface shape accuracy and surface quality (smooth surface roughness) as well as specifications such as thickness, outer diameter, and eccentricity must be satisfied. Of course, the internal quality such as refractive index and transmittance is good.
さらに、このようなガラス光学素子の成形方法を実用化するに当たっては、どの程度の生産性が得られるかが大きな問題となっている。即ち、より短い時間でより多くのガラス光学素子を生産できるかが、大きな課題である。生産性を向上させる手段の1つは、複数のガラス素材を並行して加工することであり、もう1つは1回の加工時間を短縮することである。それぞれについて種々の改良方法が提案されている。1回の加工時間の短縮には、成形型の加熱冷却のサイクルをより短縮する必要があり、そのため、成形条件の内の成形時のガラス素材と成形型の温度条件を種々工夫している。 Furthermore, in putting such a glass optical element molding method into practical use, it is a big problem how much productivity can be obtained. That is, it is a big problem whether more glass optical elements can be produced in a shorter time. One of the means for improving productivity is to process a plurality of glass materials in parallel, and the other is to shorten the processing time for one time. Various improved methods have been proposed for each. In order to shorten the processing time for one time, it is necessary to further shorten the heating / cooling cycle of the mold, and therefore, various glass conditions at the time of molding and temperature conditions of the mold are devised.
例えば、特開平7−10556号公報(特許文献1)には、107〜109 ポアズの範囲の粘度を有するガラス素材をこのガラス素材が1010〜1012ポアズの粘度を示す温度の成形型で加圧成形する方法が記載されている。また、特開平9−12317号公報(特許文献2)には105.5 〜109 ポアズの範囲の粘度を有するガラス素材をこのガラス素材が108 〜1012ポアズの粘度を示す温度の成形型(但し、成形型の温度はガラス素材の温度より低い)で加圧成形する方法が記載されている。何れの方法も成形型の温度を不必要に高くしないことで、昇温及び降温に要する時間を短縮してサイクルタイムを短縮している。 For example, in Japanese Patent Application Laid-Open No. 7-10556 (Patent Document 1), a glass material having a viscosity in the range of 10 7 to 10 9 poise is formed into a mold having a temperature at which the glass material exhibits a viscosity of 10 10 to 10 12 poise. Describes the method of pressure molding. Japanese Patent Application Laid-Open No. 9-12317 (Patent Document 2) discloses a glass material having a viscosity in the range of 10 5.5 to 10 9 poise and a mold having a temperature at which the glass material exhibits a viscosity of 10 8 to 10 12 poise ( However, a method is described in which the temperature of the mold is lower than that of the glass material. In either method, the temperature of the mold is not increased unnecessarily, thereby shortening the time required for temperature increase and decrease and reducing the cycle time.
このように、軟化ガラスが融着せず、鏡面加工が可能な型材料を精密加工した成形型を用いて、高精度のレンズ等のガラス光学素子を成形する方法が近年注目され、種々開発されている。さらに、いずれの方法でも、成形型の成形面の劣化防止のため、成形型以外の場所で加熱軟化したガラス素材を成形前に成形型に移送し、成形している。例えば、被成形ガラス素材は、通常、球状又はマーブル形状(偏平した球形)プリフォームの形態で、浮上皿、吸着パッド等により成形型の下型の上方に移送し、次いで落下させることにより、成形型に供給されている。 As described above, a method for molding a glass optical element such as a high-precision lens using a molding die obtained by precision processing of a mold material that can be mirror-polished without softened glass has attracted attention and has been developed in recent years. Yes. Further, in any method, in order to prevent deterioration of the molding surface of the molding die, the glass material heated and softened at a place other than the molding die is transferred to the molding die before molding and molded. For example, the glass material to be molded is usually formed in the form of a spherical or marble (flattened spherical) preform, which is transferred to the upper part of the lower part of the mold by a flotation plate or a suction pad, and then dropped. Supplied to the mold.
例えば、特開平6-340430号公報(特許文献3)には、溶融させたガラスを、多孔質部材表面からガスを噴出する、水平方向に開閉可能な割型からなる浮上皿で搬送し、成形型上で割型を開いてガラスを成形型に供給する方法が開示されている。また、特開平8-133758号公報(特許文献4)には、ガラスプリフォームを、ガラスプリフォームの径より小さいか、等しいか、または大きい開口径を有し、その底部に気流を供給する少なくとも一つの細孔を設けた浮上治具を用いて当該細孔からの気流により浮上させながら加熱軟化させ、またはガラスプレスの外径の曲率に近似する球面または平面を有する多孔質の浮上治具を用いて多孔質からの気流により浮上させながら加熱することにより軟化させ、かつ加熱軟化したガラスプリフォームを落下させることにより成形型に供給する方法が開示されている。また、特開平8-259242号公報(特許文献5)には、ガラスプリフォームを、ラッパ状の上方開口部を有する形状の浮上治具を用いて、中央部付近下方の複数の細孔から吹き出る気流により回転浮上させながら加熱することにより軟化させ、かつ加熱軟化したガラスプリフォームを落下させることにより成形型に供給する方法が開示されている。
しかしながら、上記方法のように、被成形ガラス素材を自然落下させることにより成形型 (下型) に供給する場合、被成形ガラス素材の形状や大きさ(重量)等により以下のような問題があった。例えば、比較的小型の被成形ガラス素材では、落下途中の気流の状態や浮上皿等との接触等により、下型の成形面上に落下せず、成形型外に飛び出してしまうことがあった。或いは、非球状の被成形ガラス素材の場合、下型上に落下してもその位置が成形面の中心からずれることがあり、このような状態で成形を行うと、成形材料が型内に均一に広がりにくく偏肉が発生し、また、成形材料が型からはみ出たりして不良品を生じることがあった。特に、気流により浮上中のガラスプリフォームは回転していたり、上下左右に微妙に振動していたりするため、このようなガラスプリフォームを落下させる場合には、落下開始時点でのガラスプリフォームは不安定な状態にある。従って、このような場合には、上記問題が起こりやすかった。 However, when the glass material to be molded is supplied to the mold (lower mold) by dropping naturally as in the above method, there are the following problems depending on the shape and size (weight) of the glass material to be molded. It was. For example, in a relatively small glass material to be molded, due to the state of the air current in the middle of dropping or contact with a floating dish, etc., it may not fall on the molding surface of the lower mold and jump out of the molding mold . Alternatively, in the case of a non-spherical glass material to be molded, even if it falls on the lower mold, its position may deviate from the center of the molding surface. When molding is performed in such a state, the molding material is uniformly in the mold. In some cases, uneven thickness occurs, and the molding material protrudes from the mold, resulting in defective products. In particular, the glass preform that is levitating due to the air current is rotating or vibrating slightly up and down, left and right, so when dropping such a glass preform, the glass preform at the start of dropping is It is in an unstable state. Therefore, in such a case, the above problem is likely to occur.
そこで、本発明の目的は、被成形ガラス素材を落下させることにより成形型に供給するにあたって、落下途中における被成形ガラス素材の成形型外に飛び出し防止できる方法及び装置を提供することにある。さらに、本発明の目的は、被成形ガラス素材を落下させることにより成形型に供給するにあたって、被成形ガラス素材を下型の成形面のほぼ中央に位置させることができる方法及び装置を提供することにある。加えて本発明は、上記方法を利用して被成形ガラス素材の成形型外への飛び出しと不良品の発生を防止したガラス光学素子の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a method and an apparatus capable of preventing the glass material to be molded from jumping out of the mold during the dropping when the glass material to be molded is supplied to the mold by dropping. Furthermore, an object of the present invention is to provide a method and an apparatus capable of positioning a glass material to be molded at substantially the center of a molding surface of a lower mold when supplying the glass material to the mold by dropping the glass material to be molded. It is in. In addition, an object of the present invention is to provide a method for producing a glass optical element that prevents the glass material to be molded from popping out of the mold and the generation of defective products using the above method.
本発明は、上型と下型からなる成形型の下型の成形面上に被成形ガラス素材を上方から落下させることで供給する方法であって、被成形ガラス素材を落下させるためのガイド手段を用い、かつ前記ガイド手段を被成形ガラス素材が下型の成形面上に落下する位置に設けることを特徴とする被成形ガラス素材の供給方法(以下、「供給方法1」と記す)を提供する。 The present invention is a method for supplying a glass material to be molded by dropping it from above onto a molding surface of a lower mold of an upper mold and a lower mold, and a guide means for dropping the glass material to be molded And a method of supplying the glass material to be formed (hereinafter referred to as “supply method 1”), characterized in that the guide means is provided at a position where the glass material to be dropped falls on the molding surface of the lower mold. To do.
また、本発明は、上型と下型からなる成形型の下型の成形面上に被成形ガラス素材を供給する方法であって、被成形ガラス素材を下型の成形面上に供給した後、被成形ガラス素材の位置を被成形ガラス素材の垂直中心と下型の成形面の中心点とが実質的に合致するように修正することを特徴とする被成形ガラス素材の供給方法。(以下、「供給方法2」と記す)を提供する。
Further, the present invention is a method of supplying a glass material to be molded onto a molding surface of a lower mold of an upper mold and a lower mold, and after the glass material to be molded is fed onto a molding surface of the lower mold A method of supplying a glass material to be formed, wherein the position of the glass material to be molded is corrected so that the vertical center of the glass material to be molded and the center point of the molding surface of the lower mold substantially coincide with each other. (Hereinafter referred to as “
さらに、本発明は、上型と下型からなる成形型の下型の成形面上に被成形ガラス素材を上方から落下させることで供給する方法に使用されるガイド手段であって、被成形ガラス素材の落下通路を形成し、かつ被成形ガラス素材を落下させることができるガイド部を有することを特徴とするガイド手段を提供する。 Furthermore, the present invention is a guide means used in a method for supplying a glass material to be molded by dropping it from above onto a molding surface of a lower mold of an upper mold and a lower mold. Provided is a guide means characterized by having a guide section that forms a material drop passage and can drop a glass material to be molded.
さらに、本発明は、上型と下型からなる成形型の下型の成形面上に供給される被成形ガラス素材の位置を修正する方法に使用される手段であって、被成形ガラス素材に当接させて移動させるための被成形ガラス素材当接部を有し、かつ該被成形ガラス素材当接部は開口端面がリング状であるか、または同心円上に配列した突起部を有することを特徴とする位置修正手段を提供する。 Furthermore, the present invention is a means used in a method for correcting the position of a glass material to be molded supplied on a molding surface of a lower mold of a molding die composed of an upper mold and a lower mold, A glass material contact portion to be molded for contact and movement; and the glass material contact portion to be molded has a ring-shaped opening end surface or a protrusion arranged on a concentric circle. A characteristic position correction means is provided.
さらに本発明は、上記本発明の被成形ガラス素材の供給方法1または2を利用して下型の成形面上に供給された被成形ガラス素材を加圧成形することを特徴とするガラス光学素子の製造方法に関する。
Further, the present invention is a glass optical element characterized in that the glass material to be molded supplied to the molding surface of the lower mold is pressure-molded by using the
本発明によれば、被成形ガラス素材を落下させることにより成形型に供給するにあたって、落下途中における被成形ガラス素材の成形型外に飛び出し防止できる方法及び装置を提供することができる。さらに、本発明によれば、被成形ガラス素材を落下させることにより成形型に供給するにあたって、被成形ガラス素材を下型の成形面のほぼ中央に位置させることができる方法及び装置を提供することができる。本発明の光学素子成形材料の供給方法及び装置を用いることで、品質の良好な光学素子を安定して生産することができる。 ADVANTAGE OF THE INVENTION According to this invention, when supplying a shaping | molding glass raw material to a shaping | molding die by dropping, the method and apparatus which can be prevented from jumping out of the shaping | molding glass material in the middle of dropping can be provided. Furthermore, according to the present invention, in supplying a glass material to be molded by dropping the glass material to be molded, a method and an apparatus capable of positioning the glass material to be molded substantially at the center of the molding surface of the lower mold are provided. Can do. By using the method and apparatus for supplying an optical element molding material according to the present invention, it is possible to stably produce an optical element with good quality.
(供給方法1)
本発明の供給方法1は、上型と下型からなる成形型の下型の成形面上に被成形ガラス素材を上方から落下、好ましくは自然落下させることで供給する方法であるが、被成形ガラス素材が供給される成形型の種類、形状、材質等には特に制限はない。被成形ガラス素材の材質、形状等にも制限はなく、形状は、例えば、球状またはマーブル形状であり得る。被成形ガラス素材は、例えば、ガラスプリフォームやガラスゴブであることができ、加熱軟化した状態であっても、加熱していない状態であっても良い。但し、被成形ガラス素材の落下による下型の成形面上への供給は、加熱軟化した状態において有効であるので、本発明の供給方法も加熱軟化した状態の被成形ガラス素材の場合に特に有効である。被成形ガラス素材の上方からの落下は、例えば、被成形ガラス素材を吸着した吸着パッドを下型の上方に配置または移動し、次いで吸着を解除するか、或いは被成形ガラス素材を噴出する気流により保持した分割可能な浮上皿を下型の上方に配置または移動し、次いで浮上皿を分割することで行うことができる。
(Supply method 1)
The supply method 1 of the present invention is a method of supplying a glass material to be formed by dropping it from above onto the lower mold surface of the mold consisting of an upper mold and a lower mold, preferably by dropping naturally. There are no particular restrictions on the type, shape, material, etc. of the mold to which the glass material is supplied. There is no restriction | limiting also in the material, shape, etc. of a to-be-molded glass raw material, For example, a shape may be spherical shape or a marble shape. The glass material to be molded can be, for example, a glass preform or a glass gob, and may be in a heated and softened state or in an unheated state. However, since the supply onto the molding surface of the lower mold by dropping the glass material to be molded is effective in the heat-softened state, the supply method of the present invention is also particularly effective in the case of the glass material to be molded in the heat-softened state. It is. The glass glass material is dropped from above, for example, by placing or moving the suction pad that has adsorbed the glass material to be moved above the lower mold, and then releasing the adsorption, or by an air flow that ejects the glass material to be molded. This can be done by placing or moving the detachable floating dish that is held above the lower mold and then dividing the floating dish.
本発明の方法においては、被成形ガラス素材を落下させるが、被成形ガラス素材は、実質的に垂直に落下させることが好ましい。本発明の方法においては、被成形ガラス素材を実質的に垂直に落下させるためのガイド手段を用い、かつ前記ガイド手段を被成形ガラス素材が下型の成形面上に落下する位置に設ける。上記ガイド手段は、具体的には、被成形ガラス素材の落下通路を形成し、かつ被成形ガラス素材を実質的に垂直に落下させることができるガイド部を有するものであることができる。ガイド手段の被成形ガラス素材の落下通路を形成するガイド部は、被成形ガラス素材を下型の成形面上に導くことができるものであればいかなる構造及び形状であっても良い。例えば、貫通孔を設けた板状(図1及び図2参照)、筒状(図3参照)、漏斗状(図4参照)、脚付きのリング形状(図5参照)等であり得る。ガイド手段については後に詳述する。 In the method of the present invention, the glass material to be molded is dropped, but it is preferable that the glass material to be molded is dropped substantially vertically. In the method of the present invention, guide means for dropping the glass material to be molded substantially vertically is used, and the guide means is provided at a position where the glass material to be molded falls on the molding surface of the lower mold. Specifically, the guide means may have a guide portion that forms a drop passage for the glass material to be molded and that can drop the glass material to be formed substantially vertically. The guide portion forming the glass passage of the glass member to be guided may have any structure and shape as long as it can guide the glass material to be formed on the molding surface of the lower mold. For example, it may have a plate shape (see FIGS. 1 and 2) provided with a through hole, a cylindrical shape (see FIG. 3), a funnel shape (see FIG. 4), a ring shape with legs (see FIG. 5), and the like. The guide means will be described in detail later.
ガイド手段は、被成形ガラス素材を下型の上方に移送する前もしくは後に、または移送と同時に被成形ガラス素材移送位置と下型との間に介挿される。ガイド手段は、被成形ガラス素材の成形型外への飛び出しを有効に防止できるという観点から、下型に近接して配置されることが好ましい。また、ガイド手段は、加熱して使用することが、被成形ガラス素材の温度を維持する上で好ましい。特に、被成形ガラス素材が105.5 〜108 ポアズ程度に加熱軟化している場合には、被成形ガラス素材がガイド手段と接触することでガラス表面にいわゆるチルマークが形成されない温度にまで加熱されていることが必要であり、例えば、被成形ガラス素材の(ガラス転移点−200℃)の温度よりも高い温度であることが好ましい。さらにガイド手段と被成形ガラス素材との融着を防止するという観点から、例えば、被成形ガラス素材のガラス転移点付近(ガラス転移点±100℃、より好ましくはガラス転移点±50℃)、あるいはそれ以下であることが好ましい。 The guide means is inserted between the molding glass material transfer position and the lower mold before or after the molding glass material is transferred to the upper side of the lower mold or simultaneously with the transfer. The guide means is preferably arranged in the vicinity of the lower mold from the viewpoint that the glass material to be molded can be effectively prevented from jumping out of the mold. In addition, it is preferable that the guide means be used by heating in order to maintain the temperature of the glass material to be molded. In particular, when the glass material to be molded is heated and softened to about 10 5.5 to 10 8 poise, the glass material to be molded is heated to a temperature at which a so-called chill mark is not formed on the glass surface by contacting the guide means. For example, the temperature is preferably higher than the temperature of (glass transition point -200 ° C.) of the glass material to be molded. Further, from the viewpoint of preventing fusion between the guide means and the glass material to be molded, for example, near the glass transition point of the glass material to be molded (glass transition point ± 100 ° C., more preferably glass transition point ± 50 ° C.), or It is preferable that it is less than that.
(ガイド手段)
本発明のガイド手段は、被成形ガラス素材の落下通路を形成し、かつ被成形ガラス素材を実質的に垂直に落下させることができるガイド部を有するものである。また、ガイド手段は、ガイド部を移動させるための手段も有する。被成形ガラス素材の落下通路は、通過させる被成形ガラス素材の直径より僅かに大きい内径を有するのが好ましい。内径が下方に向かって小さくなり、最小内径が被成形ガラス素材の直径より僅かに大きい通路がさらに好ましい。ガイド手段は、被成形ガラス素材の通路を有し、被成形ガラス素材の落下位置を水平方向に関して規制し得るガイド部を有するものであれば形状は問わない。ガイド部は、例えば肉厚の板体に貫通孔が設けられたものであり得る(図1参照)。貫通孔は、好ましくは少なくとも一部が下方に向かって狭くなる漏斗形状を有する(図2)。また、ガイド部は、略円筒形状の部材でもあり得る( 図3参照)。さらに、ガイド部は、少なくとも一部が下方に向かって狭くなる漏斗形状の部材でもあり得る(図4参照)。また、ガイド部は、リングに3本以上の脚部材を突設してなるものであり得る。好ましくは、各脚部材は基部から先端部にかけてリング中心方向に傾斜している(図5参照)。
(Guide means)
The guide means of the present invention has a guide portion that forms a drop passage for the glass material to be formed and can drop the glass material to be formed substantially vertically. The guide means also has means for moving the guide portion. It is preferable that the falling passage of the glass material to be molded has an inner diameter slightly larger than the diameter of the glass material to be molded to be passed. A passage having an inner diameter that decreases downward and a minimum inner diameter slightly larger than the diameter of the glass material to be molded is more preferable. The guide means may have any shape as long as it has a passage for the glass material to be molded and has a guide portion that can regulate the dropping position of the glass material to be molded in the horizontal direction. The guide portion may be, for example, a thick plate provided with a through hole (see FIG. 1). The through hole preferably has a funnel shape with at least a portion narrowing downward (FIG. 2). Further, the guide portion may be a substantially cylindrical member (see FIG. 3). Further, the guide portion may be a funnel-shaped member that is at least partially narrowed downward (see FIG. 4). The guide portion may be formed by projecting three or more leg members on the ring. Preferably, each leg member is inclined toward the center of the ring from the base to the tip (see FIG. 5).
また、図6に示すように、成形型が上母型(図示せず)及び下母型2の各々に複数の上型(図示せず)及び下型3を組付けてなり、同時に複数の成形品を成形するものである場合、ガイド部1は、該母型の上面形状にほぼ倣う形状を有し、複数の貫通孔が下型組付け位置に、セット時に全ての貫通孔が下型と同心になるように形成されたものであり得る(図6参照)。この場合も、貫通孔の少なくとも一部が下方に向かって狭くなる漏斗形状であることが好ましい(図7参照)。ガイド手段の材質は、耐熱性の材質であれば特に限定されない。例えば金属、セラミック、炭素材料であり得る。ガイド手段の被成形ガラス素材の落下通路は、被成形ガラス素材の滑動を可能にするために表面加工が施されることもできる。被成形ガラス素材をさらに滑らかにガイドし、しかも被成形ガラス素材に傷等がつくのを防ぐために、上記各形状において存在する角部が曲面化されているのが好ましい。
Further, as shown in FIG. 6, a molding die is formed by assembling a plurality of upper molds (not shown) and
本発明においてガイド手段は、被成形ガラス素材の落下過程の所定のタイミングで、着地させたい位置(成形型中心)に向かうベクトル成分を含む抗力を与えることにより、所望の位置に被成形ガラス素材を着地させるものである。従って、本発明で用いるガイド手段は、所定のタイミングでかかる修正を行うために、それを設ける位置も重要である。例えば、本発明のガイド手段の作用は次の通りである。被成形ガラス素材が、落下前は気流によって浮上していたものである場合、当該被成形ガラス素材は、回転運動、振動運動をしていることが多い。このとき、被成形ガラス素材を落下させるために当該気体による浮上から開放すると、被成形ガラス素材には前記回転運動、振動運動に基づく慣性力が働き、当該開放した位置とは水平方向にずれた位置に着地することになる。しかも、被成形ガラス素材が有する運動エネルギーの作用方向は、規則的に又は不規則に変化しているので、前記開放したときの状態によって、前記ずれの大きさ、前記ずれの方向が異なる。しかし、ガイド手段を用いた場合は、前記ずれの原因である水平方向の慣性力に対して、着地させたい位置(成形型の中心)に向かう水平方向のベクトル成分を有する抗力を与えるので、落下位置を調節することができる。ここで、かかる抗力を与えるタイミングは、ガイド手段を設ける高さや形状を選択することによって選択できる。即ち、ガイド手段を比較的高い位置に設けることで、落下中、比較的初期の段階で被成形ガラス素材に対して前記抗力を与えることができる。また、ガイド手段を比較的低い位置に設けることで、落下中、比較的終わりに近い段階で被成形ガラス素材に対して前記抗力を与えることができる。 In the present invention, the guide means gives the glass material to be formed at a desired position by applying a drag including a vector component toward the position (center of the mold) to be landed at a predetermined timing of the dropping process of the glass material to be formed. Landing. Accordingly, the position of the guide means used in the present invention is also important in order to perform such correction at a predetermined timing. For example, the operation of the guide means of the present invention is as follows. When the glass material to be molded is one that has been levitated by an air current before dropping, the glass material to be molded often performs a rotational motion or a vibration motion. At this time, if the glass material is released from the floating due to the gas in order to drop the glass material to be molded, inertial force based on the rotational motion and vibration motion acts on the glass material to be molded, and the horizontal position deviates from the opened position. Will land on the position. In addition, since the direction of action of kinetic energy of the glass material to be molded changes regularly or irregularly, the magnitude of the deviation and the direction of the deviation differ depending on the state of opening. However, when the guide means is used, a drag having a horizontal vector component toward the landing position (the center of the mold) is applied to the horizontal inertia force that is the cause of the deviation. The position can be adjusted. Here, the timing for applying the drag can be selected by selecting the height and shape of the guide means. That is, by providing the guide means at a relatively high position, the drag can be applied to the glass material to be molded at a relatively early stage during dropping. Further, by providing the guide means at a relatively low position, the drag can be applied to the glass material to be molded at a stage relatively close to the end during dropping.
このとき、ガイド手段を複数個設けることや、縦方向の大きいガイド手段を用いることは、被成形ガラス素材とガイド手段との接触する(即ち、被成形ガラス素材がガイド手段から前記抗力を受け取る)タイミングを増やす方向に働く。例えば、図3のガイド手段は、図1のガイド手段よりもガイド手段が被成形ガラス素材に対して前記抗力を与えるタイミングは多くなる傾向にある。また、ガイド手段の形状や材料は、抗力の向き及び抗力の大きさに影響を与える。このときガイド手段の縦方向の大きさを大きくすることは、抗力を与える高さの範囲を広くすることができる。 At this time, providing a plurality of guide means or using a guide means having a large vertical direction makes contact between the glass material to be molded and the guide means (that is, the glass material to be molded receives the drag from the guide means). Work to increase timing. For example, the guide means in FIG. 3 tends to have more timing when the guide means applies the drag to the glass material to be molded than the guide means in FIG. The shape and material of the guide means influence the direction of the drag and the magnitude of the drag. At this time, increasing the size of the guide means in the vertical direction can widen the range of height to which the drag is applied.
(供給方法2)
本発明の供給方法2は、上型と下型からなる成形型の下型の成形面上に被成形ガラス素材を供給する方法であるが、成形型や被成形ガラス素材については供給方法1とほぼ同様である。但し、本方法は、被成形ガラス素材の形状が、真球以外の大略球形状である場合に特に有効である。真球状の被成形ガラス素材は、成形面の中心に供給されなくても、ガラスの状態によっては回転して自然に成形面の中心に移動することもある。それに対して、真球以外の球形状、例えば、マーブル形状のような偏平状の球形の場合、成形面の中心に供給されなかった場合、回転して自然に成形面の中心に移動することは難しいからである。尚、被成形ガラス素材の下型への供給は、例えば、吸着パッド、浮上皿等から落下させる等の公知の方法により行うことができ、好ましくは、本発明の供給方法1により行う。
(Supply method 2)
The
本発明の供給方法2では、被成形ガラス素材を下型の成形面上に供給した後、被成形ガラス素材の位置を、被成形ガラス素材の垂直方向の中心と下型の成形面の中心とが実質的に合致するように修正する。これにより、被成形ガラス素材が型内に均一に広がるために偏肉が防止され、従って、被成形ガラス素材が型からはみ出たり、不良品を生じることを防止できる。上記被成形ガラス素材の位置の修正は、例えば、開口端面がリング状の被成形ガラス素材当接部または同心円上に配列した突起部を有する被成形ガラス素材当接部を有する位置修正手段を用いて行うことが出来る。位置修正手段の構造等については、後に詳述する。
In the
位置の修正は、被成形ガラス素材当接部の垂直中心が下型の成形面の中心点に一致するように配置し、かつ前記被成形ガラス素材当接部を被成形ガラス素材に当接させながら垂直に降下することで行うことができる。即ち、被成形ガラス素材を下型の成形面上に供給した後、位置修正手段を下型の上方に被成形ガラス素材当接部の中心が下型の成形面の中心点に一致するよう配置または移動させる。次いで、位置修正手段を降下させて被成形ガラス素材の偏肉部周辺に当接させ、さらに当接させながら位置修正手段を降下させることにより、位置の修正を行うことができる。位置修正手段は、例えば、図8に示すように被成形ガラス素材の径よりやや大きい径のリング4を有する手段であり得る。この場合、位置の修正は以下のように行える。リング4をその中心が下型6の成形面6aの中心6bに一致するように配置する(図8A参照)。次いで、リング4を垂直に降下させて被成形ガラス素材5に当接させる(図8B参照)。さらにリング4で被成形ガラス素材5の曲面を押しながら降下させることにより、被成形ガラス素材5の中心5aが成形面6aの中心6bに近づくように移動させることができる( 図8C参照)。
To correct the position, place the molding glass material contact portion so that the vertical center of the molding glass material contact portion coincides with the center point of the molding surface of the lower mold, and bring the molding glass material contact portion into contact with the molding glass material. However, it can be done by descending vertically. That is, after supplying the glass material to be molded onto the molding surface of the lower mold, the position correcting means is arranged above the lower mold so that the center of the glass material abutting portion coincides with the center point of the molding surface of the lower mold. Or move it. Next, the position can be corrected by lowering the position correcting means and bringing it into contact with the periphery of the uneven thickness portion of the glass material to be formed, and further lowering the position correcting means while making contact. The position correcting means can be, for example, a means having a ring 4 having a diameter slightly larger than the diameter of the glass material to be molded as shown in FIG. In this case, the position can be corrected as follows. The ring 4 is arranged so that the center thereof coincides with the center 6b of the
位置修正手段の被成形ガラス素材との当接部材は、上記のようにリング状の他、例えば、同心円上に配列した突起部を有する被成形ガラス素材当接部のように、被成形ガラス素材に対して下型と同心円の位置で当接することができるものであればいかなる形状のものであっても良い。位置修正手段の構造等については、次に詳述する。また、位置修正手段は、加熱して使用することが、被成形ガラス素材の温度を維持する上で好ましい。尚、位置修正手段の加熱温度には制限はないが、例えば、被成形ガラス素材のガラス転移点以下であることができる。 In addition to the ring shape as described above, the abutting member of the position correcting means with the glass material to be molded is, for example, a glass material to be molded such as a glass material abutting portion having protrusions arranged concentrically. Any shape can be used as long as it can come into contact with the lower mold at a concentric position. The structure and the like of the position correction means will be described in detail next. Further, it is preferable that the position correcting means is used by heating in order to maintain the temperature of the glass material to be molded. In addition, although there is no restriction | limiting in the heating temperature of a position correction means, For example, it can be below the glass transition point of a to-be-molded glass raw material.
(位置修正手段)
位置修正手段は、被成形ガラス素材に対して下型と同心円上の位置で当接するものであればいかなる形状のものであっても良く、例えば、リング状や同心円上に配列した突起部を有する被成形ガラス素材当接部を有するものであることができる。また、位置修正手段は、適当な昇降手段及び往復動手段により下型上に配置され得る。
(Position correction means)
The position correcting means may be of any shape as long as it comes into contact with the glass material to be molded at a position concentrically with the lower mold. For example, the position correcting means has a ring-shaped or concentric protrusion. It can have a to-be-shaped glass raw material contact part. Further, the position correcting means can be arranged on the lower mold by appropriate lifting means and reciprocating means.
位置修正手段は、例えば、内径が被成形ガラス素材の径より小さいかほぼ同じであるリング4であり得る(図9A参照)。リングの断面形状は、矩形でも良いが、被成形ガラス素材との当接部がテーパー状になっている(図9B参照)か、円形である(図9C参照)ことが好ましい。この場合、前述のように、リング4をその中心が下型6の水平方向の中心に一致するように配置し(図8A参照)、その後、垂直に降下させて被成形ガラス素材5に当接させ(図8B参照)、さらに被成形ガラス素材の曲面を押しながら降下させることにより、被成形ガラス素材の位置を修正することができる(図8C参照)。下記に例示するいずれの形状の位置修正手段も、被成形ガラス素材と下型と同心円の位置で当接するものであれば、基本的に同じ方法により位置の修正を行い得る。
The position correcting means may be, for example, the ring 4 whose inner diameter is smaller than or substantially the same as the diameter of the glass material to be molded (see FIG. 9A). The cross-sectional shape of the ring may be rectangular, but it is preferable that the contact portion with the glass material to be molded is tapered (see FIG. 9B) or circular (see FIG. 9C). In this case, as described above, the ring 4 is arranged so that the center thereof coincides with the horizontal center of the lower mold 6 (see FIG. 8A), and then lowered vertically to contact the
位置修正手段は、例えば、内径が被成形ガラス素材の径より大きいかまたは同じである円筒でもあり得る。また、位置修正手段は、内径が下端に向かって大きくなり、内径の少なくとも一か所が被成形ガラス素材の径と同じである円筒状であり得る。この場合、位置の修正をすべき被成形ガラス素材の径が多少変動しても対応し得る。即ち、図10に示すように、被成形ガラス素材の径とほぼ同等である場合は、円筒7の下方の部分で位置の修正が行われ、図11に示すように、被成形ガラス素材の径が小さい場合は、円筒の上方の部分で位置の修正が行われる。
The position correcting means may be, for example, a cylinder whose inner diameter is larger than or equal to the diameter of the glass material to be molded. Further, the position correcting means may have a cylindrical shape in which the inner diameter increases toward the lower end, and at least one portion of the inner diameter is the same as the diameter of the glass material to be molded. In this case, even if the diameter of the glass material to be molded whose position is to be corrected fluctuates somewhat, it can be dealt with. That is, as shown in FIG. 10, when the diameter of the glass material to be molded is substantially the same, the position is corrected in the lower part of the
位置修正手段は、肉厚の板体の下面に径が上方に向かって狭くなる碗状の窪み又は台錐状の窪みが形成されたものでもあり得る(図12及び図13参照)。また、位置修正手段は、リング、板体等に同心円上に3本以上の脚部材を突設してなる部材であり得る。好ましくは、各脚部材は基部から先端部にかけて広がる(図14参照)。また、成形型が、上母型及び下母型の各々に複数の上型及び下型を組付けてなるものである場合、位置修正手段は、該母型の横断面形状にほぼ倣う横断面形状を有し、複数の貫通孔、碗状の窪み又は台錐状の窪みが下型組付け位置に、セット時に全ての窪みが下型と同心になるように形成されたものであり得る(図15参照)。 The position correcting means may be one in which a bowl-shaped depression or a trapezoidal depression whose diameter is narrowed upward is formed on the lower surface of the thick plate (see FIGS. 12 and 13). Further, the position correcting means may be a member formed by projecting three or more leg members concentrically on a ring, a plate body or the like. Preferably, each leg member extends from the base to the tip (see FIG. 14). Further, in the case where the molding die is formed by assembling a plurality of upper dies and lower dies in each of the upper mother die and the lower mother die, the position correcting means has a cross section substantially following the cross sectional shape of the mother die. It has a shape, and a plurality of through holes, bowl-shaped depressions or trapezoidal depressions may be formed at the lower mold assembly position, and all depressions may be concentric with the lower mold when set ( FIG. 15).
また、成形型が、上母型及び下母型の各々に複数の上型及び下型を組付けてなるものである場合、位置修正手段は、複数のリングが、下型組付け位置に、セット時に全てのリングが下型と同心になるように連結されたものでもあり得る(図16参照)。位置修正手段の部材は、ある程度の耐熱性の部材であれば特に限定されない。例えば金属、セラミック、炭素系材料であり得る。位置修正手段の被成形ガラス素材に当接する部分は、好ましくは被成形ガラス素材の滑動を可能にするために表面加工が施されている。また、被成形ガラス素材に傷等がつくのを防ぐために、上記各形状において存在する角部が曲面化されているのが好ましい。 Further, in the case where the molding die is formed by assembling a plurality of upper dies and lower dies on each of the upper mother die and the lower mother die, the position correcting means has a plurality of rings at the lower die assembling position, All rings may be connected so as to be concentric with the lower mold when set (see FIG. 16). The member of the position correcting means is not particularly limited as long as it has a certain degree of heat resistance. For example, it can be a metal, a ceramic, or a carbon-based material. The portion of the position correcting means that comes into contact with the glass material to be molded is preferably subjected to surface processing so that the glass material to be molded can slide. In addition, in order to prevent the glass material to be molded from being scratched, it is preferable that the corners existing in the respective shapes are curved.
また、位置修正手段は、加熱して使用することが、被成形ガラス素材の温度を維持する上で好ましい。特に、被成形ガラス素材が105.5 〜108 ポアズ程度に加熱軟化している場合には、被成形ガラス素材が位置修正手段と接触することでガラス表面にいわゆるチルマークが形成されない温度にまで加熱されていることが必要であり、例えば、被成形ガラス素材の(ガラス転移点−200℃)の温度よりも高い温度であることが好ましい。さらに位置修正手段と被成形ガラス素材との融着を防止するという観点から、例えば、被成形ガラス素材のガラス転移点付近(ガラス転移点±100℃、より好ましくはガラス転移点±50℃)、あるいはそれ以下であることが好ましい。 Further, it is preferable that the position correcting means is used by heating in order to maintain the temperature of the glass material to be molded. In particular, when the glass material to be molded is heated and softened to about 10 5.5 to 10 8 poise, the glass material to be molded is heated to a temperature at which a so-called chill mark is not formed on the glass surface by contacting the position correcting means. For example, the temperature is preferably higher than the temperature of (glass transition point -200 ° C.) of the glass material to be molded. Further, from the viewpoint of preventing fusion between the position correcting means and the glass material to be molded, for example, near the glass transition point of the glass material to be molded (glass transition point ± 100 ° C., more preferably glass transition point ± 50 ° C.), Or it is preferable that it is less.
上記本発明の供給方法1及び2、並びにガイド手段及び位置修正手段は、例えば、特開平6-340430号、特開平8-133758号、及び特開平8-259242号に記載の、浮上しながら加熱軟化したガラスプリフォームを成形型に供給するいずれの方法にも適用することができる。
The
(ガラス光学素子の製造方法)
本発明のガラス光学素子の製造方法は、前記本発明の供給方法1により下型の成形面上に供給された被成形ガラス素材、または前記本発明の供給方法2により位置を修正した被成形ガラス素材、または前記本発明の供給方法1により下型の成形面上に供給され、かつ前記本発明の供給方法2により位置を修正した被成形ガラス素材を加圧成形することを特徴とする。被成形ガラス素材を加圧成形する方法や被成形ガラス素材の予熱方法等には特に制限はない。
(Glass optical element manufacturing method)
The glass optical element manufacturing method of the present invention includes a glass material to be molded supplied on the molding surface of the lower mold by the supply method 1 of the present invention, or a glass to be molded whose position is corrected by the
例えば、被成形ガラス素材を加圧成形する方法は、105.5 〜108 ポアズの範囲の粘度を有する被成形ガラス素材をこの被成形ガラス素材が108 〜1010.5ポアズの粘度を示す温度の成形型(但し、被成形ガラス素材の温度は成形型の温度より高い)で初期加圧し成形する工程、成形型及び成形されたガラス(以下、成形ガラスという)をこのガラスの転移点以下に降温させる工程、並びに成形ガラスを成形型から取り出す工程を含むことができる。 For example, a method of pressure-molding a glass material to be molded is a method of molding a glass material having a viscosity in the range of 10 5.5 to 10 8 poise at a temperature at which the glass material to be molded exhibits a viscosity of 10 8 to 10 10.5 poise. A process of initial pressurizing and molding with a mold (however, the temperature of the glass material to be molded is higher than the temperature of the mold), lowering the temperature of the mold and the molded glass (hereinafter referred to as molded glass) below the glass transition point. The process and the process of taking out a shaping | molding glass from a shaping | molding die can be included.
この方法では、前記ガラス素材を該ガラス素材の粘度が105.5 〜108 ポアズの範囲の粘度に相当する温度に加熱して軟化させる。ガラス素材の粘度が108 ポアズ以下であることで、108 〜1010.5ポアズの粘度に相当する温度に予熱した成形型でガラス素材を十分に変形させて成形することが可能である。また、ガラス素材の粘度が105.5 ポアズ以上であることで、成形前にガラス素材が自重により大きく変形することを防ぐことができる。成形型の温度を比較的低温にして安定して、良好な成形を行うには、ガラス素材は、好ましくは106.5 〜107.6 ポアズに相当する温度に加熱して軟化させることが適当である。成形型の予熱の温度は、前記ガラス素材の粘度が108 〜1010.5ポアズに相当する温度とする。粘度が1010.5ポアズに相当する温度未満では、ガラス素材を大きく伸ばして、コバ厚の薄いガラス成形体を得ることが難しくなり、また、高面精度が得にくく、粘度が108 ポアズに相当する温度を超える温度では、成形のサイクルタイムが必要以上に長くなり、また、成形型の寿命が短くなる。成形型の予熱の温度は、好ましくは前記ガラス素材の粘度が108 〜109.6 ポアズに相当する温度とする。尚、成形型の温度は被成形ガラス素材の温度より低く設定する。このようにすることで、サイクルタイムを短縮することが可能になり、かつ成形型の寿命を長くすることができる。 In this method, the glass material is softened by heating to a temperature corresponding to a viscosity of 10 5.5 to 10 8 poise. When the viscosity of the glass material is 10 8 poise or less, the glass material can be sufficiently deformed and molded with a mold preheated to a temperature corresponding to a viscosity of 10 8 to 10 10.5 poise. Moreover, when the viscosity of the glass material is 10 5.5 poise or more, the glass material can be prevented from being greatly deformed by its own weight before molding. In order to stabilize the mold at a relatively low temperature and perform good molding, the glass material is preferably softened by heating to a temperature corresponding to 10 6.5 to 10 7.6 poise. The preheating temperature of the mold is set to a temperature at which the viscosity of the glass material corresponds to 10 8 to 10 10.5 poise. If the viscosity is lower than the temperature corresponding to 10 10.5 poise, it becomes difficult to obtain a glass molded body with a thin edge by greatly stretching the glass material, and it is difficult to obtain high surface accuracy, and the viscosity corresponds to 10 8 poise. If the temperature exceeds the temperature, the molding cycle time becomes longer than necessary, and the life of the mold is shortened. The preheating temperature of the mold is preferably a temperature at which the viscosity of the glass material corresponds to 10 8 to 10 9.6 poise. Note that the temperature of the mold is set lower than the temperature of the glass material to be molded. By doing in this way, it becomes possible to shorten cycle time and prolong the lifetime of a shaping | molding die.
さらに、初期加圧成形開始時において、上型温度を下型温度より低く設定することが、離型時に成形体が上型に貼付くのを防止するという観点から特に好ましい。より具体的には、上型温度を下型温度より5〜20℃低くすることが適当である。 Furthermore, it is particularly preferable to set the upper mold temperature lower than the lower mold temperature at the start of initial pressure molding from the viewpoint of preventing the molded body from sticking to the upper mold at the time of mold release. More specifically, it is appropriate that the upper mold temperature is 5 to 20 ° C. lower than the lower mold temperature.
本発明に用いる成形型は、従来から公知の成形型をそのまま用いることができる。但し、成形型の成形面が非晶質及び/又は結晶質の、グラファイト及び/又はダイヤモンドの、単一成分層又は混合層からなる炭素膜で構成されているものを用いることが好ましい。上記のような炭素膜で構成されている成形面を有する成形型では、成形型の温度が、ガラス素材のガラス転移点以上であっても、ガラスの融着(固着)が生じることはない。上記の炭素膜は、スパッタリング法、プラズマCVD法、CVD法、イオンプレーティング法等の手段で成膜されるものである。スパッタリング法で成膜する場合には、基盤温度250〜600℃、RFパワー密度5〜15W/cm2 、スパッタリング時真空度5×10-4〜5×10-1torrの範囲でスパッタガスとしてArの如き不活性ガスを、スパッタターゲットとしてグラファイトを用いてスパッタリングするのが好ましい。マイクロ波プラズマCVD法により成膜する場合には、基盤温度650〜1000℃、マイクロ波電力200W〜1kW、ガス圧力10-2〜600torrの条件下に、原料ガスとしてメタンガスと水素ガスを用いて成膜するのが好ましい。イオンプレーティング法により形成する場合には、基盤温度を200〜450℃とし、ベンゼンガスをイオン化するのが好ましい。これらの炭素膜はC−H結合を有するものを含む。 As the mold used in the present invention, a conventionally known mold can be used as it is. However, it is preferable to use a mold whose molding surface is composed of an amorphous and / or crystalline carbon film composed of a single component layer or mixed layer of graphite and / or diamond. In a mold having a molding surface composed of the carbon film as described above, even if the temperature of the mold is equal to or higher than the glass transition point of the glass material, glass fusion (adherence) does not occur. The carbon film is formed by means such as sputtering, plasma CVD, CVD, or ion plating. In the case of forming a film by sputtering, Ar is used as a sputtering gas in a range of a base temperature of 250 to 600 ° C., an RF power density of 5 to 15 W / cm 2 , and a vacuum degree of sputtering of 5 × 10 −4 to 5 × 10 −1 torr. It is preferable to sputter such an inert gas using graphite as a sputtering target. When the film is formed by the microwave plasma CVD method, it is formed using methane gas and hydrogen gas as source gases under the conditions of a base temperature of 650 to 1000 ° C., a microwave power of 200 W to 1 kW, and a gas pressure of 10 −2 to 600 torr. A membrane is preferred. When forming by an ion plating method, it is preferable that the base temperature is 200 to 450 ° C. and the benzene gas is ionized. These carbon films include those having C—H bonds.
また、下型の成形面上に供給される被成形ガラス素材は、例えば、被成形ガラス素材を気流により浮上させながら加熱することにより軟化させ、かつ加熱軟化した被成形ガラス素材を落下させることにより成形型に供給することができる。特に、被成形ガラス素材を気流により浮上させながら加熱軟化し、かつ加熱軟化した被成形ガラス素材を予熱した成形型に落下させて移送することが好ましい。被成形ガラス素材が、その自重によって変形する程の低粘性域においては、加熱の際に被成形ガラス素材を保持する治具とガラスの融着を防止するのは容易ではない。本発明では、例えば、治具の内部よりガスを噴出することで、被成形ガラス素材を気流により浮上させる。治具面とガラス両面にガスのレイヤーが形成され、このため治具とガラスが反応することなく、加熱軟化することが可能となる。更に被成形ガラス素材がプリフォームの場合、プリフォームの形状を概ね維持しつつ加熱軟化することができる。また、被成形ガラス素材がガラスゴブであり、不規則な形状で表面にシワ等の表面欠陥がある場合でも、加熱軟化しながら気流により浮上させることで、形状を整え、表面欠陥を消去することも可能である。 Further, the glass material to be molded supplied onto the molding surface of the lower mold is softened by heating the glass material to be molded while being floated by an air flow, and the glass material to be molded that has been softened by heating is dropped. The mold can be supplied. In particular, it is preferable that the glass material to be molded is heated and softened while being floated by an air flow, and the glass material to be heated that has been softened is dropped and transferred to a preheated mold. In a low-viscosity region where the glass material to be formed is deformed by its own weight, it is not easy to prevent the jig holding the glass material to be fused with the glass during heating. In the present invention, for example, the glass material to be molded is floated by the air flow by ejecting gas from the inside of the jig. Gas layers are formed on both the jig surface and the glass surface, so that the jig and the glass can be heated and softened without reacting. Furthermore, when the glass material to be molded is a preform, it can be softened by heating while generally maintaining the shape of the preform. In addition, even when the glass material to be molded is a glass gob and there are surface defects such as wrinkles on the surface with irregular shapes, the shape can be adjusted by levitation by an air flow while softening by heating, and the surface defects can be erased. Is possible.
本発明において被成形ガラス素材の浮上のために用いる気流となるガスとしては、特に制限はない。但し、加熱した被成形ガラス素材が治具と反応しないこと、さらに、加熱した治具の酸化による劣化を防止するという観点から、非酸化性ガスであることが好ましく、例えば窒素等であることが適当である。還元性のガス、例えば水素ガス等を添加することもできる。気流の流量は、気流を吹き出す口の形状や被成形ガラス素材の形状及び重量等を考慮して適宜変更できる。通常の場合、ガス流量は0.005〜20リットル/分の範囲が被成形ガラス素材の浮上に適している。但し、ガス流量が0.005リットル/分未満であると、被成形ガラス素材の重量が300mg以上の場合、被成形ガラス素材を十分に浮上させることができない場合がある。また、ガス流量が20リットル/分を超えると、ガラス重量が2000mg以上の場合でも、浮上治具上のガラスが大きく揺れて、加熱の際に被成形ガラス素材がプリフォームの場合、その形状が変化することがあるからである。さらに被成形ガラス素材の加熱軟化の条件は、ガラスの種類等により適宜変えることができ、軟化した被成形ガラス素材に必要とされる粘度となるように調整される。 There is no restriction | limiting in particular as gas used as the airflow used in order to float a glass raw material to be molded in this invention. However, from the viewpoint that the heated glass material to be molded does not react with the jig and further prevents deterioration of the heated jig due to oxidation, it is preferably a non-oxidizing gas, for example, nitrogen or the like. Is appropriate. A reducing gas such as hydrogen gas can also be added. The flow rate of the airflow can be appropriately changed in consideration of the shape of the mouth for blowing out the airflow, the shape and weight of the glass material to be molded, and the like. In a normal case, a gas flow rate in the range of 0.005 to 20 liters / minute is suitable for floating the glass material to be molded. However, if the gas flow rate is less than 0.005 liter / minute, the glass material to be molded may not be sufficiently floated when the weight of the glass material to be molded is 300 mg or more. In addition, when the gas flow rate exceeds 20 liters / minute, even when the glass weight is 2000 mg or more, the glass on the floating jig is greatly shaken, and when the glass material to be molded is a preform during heating, the shape is Because it may change. Furthermore, the conditions for heat softening of the glass material to be molded can be appropriately changed depending on the type of glass and the like, and are adjusted so as to have a viscosity required for the glass material to be softened.
以下、本発明を実施例により説明する。
参考例
本参考例の方法により被成形ガラス素材を供給する成形装置においては、長尺形状の上母型及び下母型が、各々プレスの上主軸及び下主軸に取り付けられており、上母型(図示せず)及び下母型11には、各々6個の上型(図示せず)及び下型12が取り付けられており、上母型及び下母型の周囲には、これらの長尺形状を倣った形に巻回された誘導加熱コイル13が2箇所、即ち上母型及び下母型の周囲に設けられている(図17参照)。上側のコイルと下側のコイルの間には20mmの隙間を設けた。この装置により、バリウムホウケイ酸ガラス(転移点514 ℃、屈伏点545 ℃)をプレスして外径10mmの両凸形状のレンズが成形される。
Hereinafter, the present invention will be described with reference to examples.
Reference Example In a molding apparatus for supplying a glass material to be molded by the method of this reference example , a long upper mold and a lower mold are respectively attached to an upper main spindle and a lower main spindle of the press. (Not shown) and the lower mother die 11 are each attached with six upper molds (not shown) and a
6個の球状被成形ガラス素材を、図18に示す開閉可能な支持アーム14上に直線上に1列配置(上下型の間隔と等間隔に配置)された6 個の割型式浮上皿15(グラッシーカーボン製)上で、下方から噴出する気流により、浮上させて加熱、軟化させた。その後、支持アーム14を上下の誘導加熱コイル13の間に挿入し、複数の下型12の直上に配置した。同時に、図19に示す長尺板に6個のろうと形状の貫通孔16を形成してなるガイド手段17を支持アーム14と下型12の間に介挿した。その後、支持アーム14を素早く開くことにより、複数の浮上皿15を左右に分割し、複数の被成形ガラス素材を、浮上皿15からそれぞれに対応する下型12上に同時に落下させることにより、下型12上に供給した(図20参照)。被成形ガラス素材は、全て下型12の中心に供給された。尚、ガイド手段17は、被成形ガラス素材のガラス転移温度(514℃)より低い400℃に設定し、被成形ガラス素材のガイド手段17への融着はなかった。その後、直ちに支持アームおよびガイド手段を下型上から後退させ、高周波パワーを切り、下母型を上昇させてプレスを行った。上記操作を1000回繰返行ったが、被成形ガラス素材が成形型外に飛び出すことなく、安定して、しかも品質の良好なレンズが得られた。
Six
実施例1
参考例と同様の成形型により、バリウムホウケイ酸ガラス製の両凸レンズを成形した。但し、本実施例においては、被成形ガラス素材としてマーブル形状に熱間成形された被成形ガラス素材(直径7mm、高さ4.5mm)を用い、参考例と同様にガイド手段を用い、さちに、被成形ガラス素材を分割浮上皿から下型に落下させた後に位置修正手段による位置の修正を行った。位置修正手段としては、図16に示すような被成形ガラス素材径よりわずかに大きい内径を有するリング6個を連結してなるものを用いた。まず、図21に示すように、位置修正手段18を、各リングの中心が対応する下型の中心に合うように配置した(図19参照)。その後、下母型19にセットされた下型20に向かって降下させ、各リングを下型20上の被成形ガラス素材21に当接させた。さらに位置修正手段18を降下させると、被成形ガラス素材21が下型中央に滑り、これにより被成形ガラス素材21の中心と下型20の中心が合い、位置の修正が完了する。次いで、参考例と同様にプレス成形した。表1に示す何れの条件でも、品質の良好なレンズが得られた。
Example 1
A biconvex lens made of barium borosilicate glass was molded using the same mold as in the reference example . However, in this embodiment, a glass material to be molded (
1 ガイド部
3、6 下型
4 位置修正手段
5 被成形ガラス素材
DESCRIPTION OF SYMBOLS 1
Claims (5)
被成形ガラス素材を下型の成形面上に供給した後、被成形ガラス素材の位置を、被成形ガラス素材当接部を有する位置修正手段を用い、被成形ガラス素材当接部を、被成形ガラス素材に当接させながら垂直に降下することで、被成形ガラス素材の垂直中心と下型の成形面の中心点とが実質的に合致するように修正することを特徴とする、前記方法。 In the method of manufacturing a glass optical element, a glass material to be molded is supplied onto a molding surface of a lower mold of an upper mold and a lower mold, and pressure molding is performed.
After the glass material to be molded is supplied onto the molding surface of the lower mold, the position of the glass material to be molded is adjusted using the position correcting means having the glass material abutting part, and the glass material abutting part is molded. The method as described above, wherein the vertical center of the glass material to be molded and the center point of the molding surface of the lower mold are substantially matched by descending vertically while being brought into contact with the glass material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004059516A JP4094573B2 (en) | 1997-05-20 | 2004-03-03 | Manufacturing method of glass optical element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12929897 | 1997-05-20 | ||
JP2004059516A JP4094573B2 (en) | 1997-05-20 | 2004-03-03 | Manufacturing method of glass optical element |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13210098A Division JP3587500B2 (en) | 1997-05-20 | 1998-05-14 | Method for supplying glass material to be molded to molding die, apparatus used for the method, and method for producing glass optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004168660A JP2004168660A (en) | 2004-06-17 |
JP4094573B2 true JP4094573B2 (en) | 2008-06-04 |
Family
ID=32715304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004059516A Expired - Fee Related JP4094573B2 (en) | 1997-05-20 | 2004-03-03 | Manufacturing method of glass optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4094573B2 (en) |
-
2004
- 2004-03-03 JP JP2004059516A patent/JP4094573B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004168660A (en) | 2004-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6370915B1 (en) | Method for supplying glass molding material to molds, and method for manufacturing glass optical elements | |
JP3853622B2 (en) | Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body | |
JP3974200B2 (en) | Glass optical element molding method | |
JP2001019446A (en) | Production of glass product for grinding, production of glass product, production of glass lump for reheating press and producing device for glass lump | |
JPH10338530A (en) | Production of softened glass and floating holder | |
JP3587500B2 (en) | Method for supplying glass material to be molded to molding die, apparatus used for the method, and method for producing glass optical element | |
JP4094572B2 (en) | Manufacturing method of glass optical element | |
JP4368368B2 (en) | Manufacturing method of glass lump, manufacturing apparatus thereof, and manufacturing method of optical element | |
JP4094573B2 (en) | Manufacturing method of glass optical element | |
JP3608768B2 (en) | Glass optical element press molding apparatus and glass optical element molding method | |
JP4460339B2 (en) | Mold press molding apparatus and optical element manufacturing method | |
JP3712575B2 (en) | Glass gob manufacturing method and manufacturing apparatus | |
JP4094210B2 (en) | Manufacturing method of glass optical element and molding die for glass optical element used therefor | |
JP3188676B2 (en) | Method for manufacturing glass molded body | |
JP2003104741A (en) | Press forming apparatus for optical element and method for manufacturing optical element | |
JPH1149523A (en) | Production of glass formed body and apparatus therefor | |
JP4303404B2 (en) | Manufacturing method and apparatus for press-molded body | |
JPH08133758A (en) | Production of glass optical element | |
JP2952185B2 (en) | Glass optical element molding method | |
JP3753415B2 (en) | Glass optical element molding method | |
JP4044373B2 (en) | Manufacturing method of glass optical element | |
JP3246728B2 (en) | Glass optical element molding method | |
JP3243219B2 (en) | Method for manufacturing glass optical element | |
JP4141983B2 (en) | Mold press molding method and optical element manufacturing method | |
JPH08133756A (en) | Production of glass optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140314 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |