JP4094453B2 - Method and apparatus for disinfecting cleaning wastewater - Google Patents
Method and apparatus for disinfecting cleaning wastewater Download PDFInfo
- Publication number
- JP4094453B2 JP4094453B2 JP2003046036A JP2003046036A JP4094453B2 JP 4094453 B2 JP4094453 B2 JP 4094453B2 JP 2003046036 A JP2003046036 A JP 2003046036A JP 2003046036 A JP2003046036 A JP 2003046036A JP 4094453 B2 JP4094453 B2 JP 4094453B2
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- water
- turbidity
- wastewater
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、飲料水を中心とする上水の浄水過程、及び農水産業に用いられる用水の製造過程において、ろ過洗浄によって生じるシストを含む洗浄排水中の微生物を殺菌消毒する方法及び装置に関する。ここで洗浄排水とは、砂ろ過や膜ろ過の目詰まりを解消するために行われる逆洗浄時に発生した排水、あるいはその排水の濃縮過程後に発生した排水又は上澄水である。
【0002】
【従来の技術】
飲料水を中心とする一般的な浄水過程、及び畜産や養殖などの農水産業を中心とする産業用水の製造過程において、凝集沈殿・砂ろ過及び膜ろ過の逆洗浄時に生じるろ過洗浄排水は、従来ほとんどの場合何の処理もされないまま河川放流・下水放流されてきた。この洗浄排水には、クリポトスポリジウムオーシストなどの病原性微生物が、河川に存在する固形物などとともに濃縮されているので、下流域に浄水場が存在する場合には飲料水原水を汚染する、河川水を利用して畜産を行う場合には家畜に感染しさらに病原体を増殖させる、あるいは親水公園などに利用する場合などでは直接人間を汚染する、などの二次的感染を引き起こす恐れがあった。
【0003】
一方、渇水時の場合などを考慮することを含め、貴重な水資源のリサイクルという観点から、このような洗浄排水を全て河川放流せず、沈殿池を用いて固液分離してから、その上澄み液を再び原水に返送することも行われ始めている。しかしながら、このようにすると、これらの病原性微生物が再び原水に混入してしまい、この返送を繰り返すことで原水に病原性微生物が濃縮されてしまうため、より一層の汚染の問題が生じてしまう。大腸菌のような微生物は、後段の過程である塩素注入により殺菌されてしまうが、クリプトスポリジウムに関しては、凝集沈殿・砂ろ過ではオーシストは除去されず、また通常投入される濃度の塩素でも殺滅できないため、飲料水を汚染し人間が感染してしまう恐れもあった。
このため、近年になって放流、リサイクルどちらの場合においても、洗浄排水を紫外線(UV)・オゾン・熱によって殺菌する方法が検討され始めてきた。
【0004】
さらに、高電圧パルスによる殺菌方法も研究され、例えば、円筒状電極と、該円筒の中心軸付近に該円筒と絶縁して配設された線状電極とにより構成される容器内に被処理液を保持し、線状電極と円筒状電極との間に高電圧パルスを印加することにより、被処理液中の細菌等を殺菌する方法が提案されている(特許文献1)。
また、広帯域スペクトル多色光の短持続時間高強度のパルスを用いて水中のウイルスを照射することによりウイルスを不活化する方法も提案されている(特許文献2)。さらに、処理タンク内に供給された被処理水中に、被処理水の絶縁破壊強度電圧以上の電圧でパルス放電を行うことにより、微生物を不活化する方法も研究されている(特許文献3)。
【0005】
【特許文献1】
特開昭63−82666号公報
【特許文献2】
特表平11−514277号公報
【特許文献3】
特開2000−237755号公報
【0006】
【発明が解決しようとする課題】
しかしながら、UVを用いた方法においては、洗浄排水のような濁質を多く含む水への適用では、UVが濁質成分に吸収されてしまうため、透過率が非常に低くなり適さない。またUVランプ自身の寿命や交換に必要な時間、UVランプやその保護管表面の汚れや破損などの問題もある。
オゾンを用いた処理においては、濁質成分とオゾンが反応してしまうため殺菌効果が十分でなく、しかもオゾンとの化学反応により発生した副生成物の問題や、オゾンガスの取り扱いの問題などもある。
【0007】
熱を用いた方法は、殺菌効果を確実にするためには長時間を要し、反応槽の設置面積が大きいこと、熱交換器を用いても処理後の排水が原水より高温になるため、そのまま河川放流した場合には生態系に影響を与える恐れや、凝集濾過・沈殿工程に返送しても、後のプロセスに影響を与える恐れがある。高電圧パルスによる殺菌方法では、断続的な処理となるし、どのようなパルスをどの位与えれば微生物を不活化できるのかはっきりとしていない。
【0008】
本発明は、上記従来技術の問題点を克服し、低コストで、かつ維持管理が容易な洗浄排水中のシストを含む病原性微生物を確実に殺菌できる、洗浄排水の消毒方法及び装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、シストを含む洗浄排水に、パルス放電の放電エネルギーが、
(a)該洗浄排水の濁度と次式の関係にあり、
log(放電エネルギー)=α×log(濁度)
(α:装置によって決まる係数)
しかも
(b)0.01〜10kWh/m 3 −排水量であるの放電エネルギーを用い、また直径が0.1〜15mm、好ましくは1〜8mmの放電電極を用いて、パルス放電を行うことにより、紫外線、衝撃波、ラジカルを発生させて、洗浄排水中のシストを含む病原性微生物を殺菌消毒が低コストで、かつ維持管理が容易にできることを見出し、本発明を成すに至った。
すなわち、本発明は、下記の手段により上記課題を解決した。
【0010】
(1)ろ過洗浄によって生じるシストを含む洗浄排水にパルス放電を加える消毒方法であって、該パルス放電の放電エネルギーが、
(a)該洗浄排水の濁度と次式の関係にあり、
log(放電エネルギー)=α×log(濁度)
(α:装置によって決まる係数)
しかも
(b)0.01〜10kWh/m 3 −排水量である
放電エネルギーを用いて洗浄排水にパルス放電を加えること
を特徴とするろ過洗浄排水の消毒方法。
(2)洗浄排水を導入する貯留式反応槽又は流通式反応部、該貯留式反応槽又は流通式反応部の内部に設置され該洗浄排水の濁度を測定するための濁度計、該貯留式反応槽又は流通式反応部の内部に設置され該洗浄排水にパルス放電を加える少なくとも一対のパルス放電電極より構成される洗浄排水の消毒装置であって、該パルス放電の放電エネルギーが、
(a)該洗浄排水の濁度と次式の関係にあり、
log(放電エネルギー)=α×log(濁度)
(α:装置によって決まる係数)
しかも
(b)0.01〜10kWh/m 3 −排水量である
放電エネルギーを用いて洗浄排水にパルス放電を加えること
を特徴とするろ過洗浄によって生じる洗浄排水に含まれるシストを不活化させる装置。
【0011】
【発明の実施の形態】
以下に、本発明の実施の形態を図面に基づいて詳細に説明する。
なお、実施態様及び実施例を説明する全図において、同一機能を有する構成要素は同一符号を付け、その繰り返しの説明は省略する。
本発明で用いるパルス電源は、コンデンサを用いた静電エネルギー蓄積型、コイルを用いた誘導エネルギー蓄積型、蒸気タービンやフライホイールを用いた運動エネルギー蓄積型、爆薬を用いた化学エネルギー蓄積型など、特に限定されないが、小型でかつ制御性の良い静電エネルギー蓄積型が望ましい。
【0012】
シストの消毒殺菌においては、放電電圧や放電周波数が運転因子の一つであるが、効果的に殺菌消毒を行う要因が処理流量に投与する放電エネルギーが重要であることを見出した。このため濁度を含む洗浄排水のような濁水においては、その濁度をモニターし、その濁度に見合った放電エネルギーを選択するようコンピュータ制御を行うことによって、効率良く殺菌消毒できる。このコンピュータ制御を行うことで、電気エネルギーを無駄に使用しないため地球温暖化防止に貢献できるだけでなく、放電に伴う電極材料の過剰な消耗を防げるため省資源にも役立つ。病原性シストを不活化するための洗浄排水の濁度と放電エネルギーの関連、及び不活化率の放電電極直径の関係を明らかにし、本発明をするに至った。
【0013】
実用上好ましい形態としては、ろ過洗浄によって生じるシストを含む洗浄排水に0.01〜10kWh/m3、好ましくは0.1〜3kWh/m3の放電エネルギーの範囲で、濁度に比例する放電エネルギーを用いてパルス放電を加える方法、及び上記洗浄排水の少なくとも一部を原水に循環することを特徴とする方法、また放電電極の直径が0.1〜15mm、好ましくは1〜8mmであることを特徴とする消毒方法がある。
0.01kWh/m3以下のエネルギーの放電では放電により十分な殺菌消毒が望める紫外線やラジカル、衝撃波が発生せず、しかも10kWh/m3以上のエネルギーでは十分な殺菌消毒が望めるものの消費電力が大きすぎて電気代及び設備も巨大になりコストが膨大になる。
【0014】
本発明では、与える放電エネルギーは、前記したように原水の濁度によって定まるが、その関係を一般的に言うと、与える放電エネルギーは、原水の濁度に比例した量となる。さらに、その関係については不活化率をどの程度とするかによってかなり異なってくるが、もっとも高い不活化率として99.9%を達成しよとする場合には、与える放電エネルギーは、大体原水の濁度の指数関数で比例する(実施例2参照)。ただ、本発明では、不活化率として90%以上を目的としており、実用的な範囲として不活化率が低目の90%に近い処理結果がでればよいとする場合には、前記のような高い割合の放電エネルギーでなくともよく、一次関数的あるいは二次関数的な比例関係での放電エネルギーを与えるようにしてもよい。なお、必要とする放電エネルギーは、後述するように、放電電極の直径や被処理水の量によっても変わってくるから、比較する際にはこれらの条件が同じであることとする。いずれにしても、本発明は、与える放電エネルギーが原水の濁度によって定まる関係を初めて見出したものである。
【0015】
また、放電に対して重要な因子となる放電電極の直径に関しては、0.1mm以下の直径では先端の電界強度は強まり容易に放電するものの放電による電極の消耗が激しく実用的でない。直径が15mm以上の電極に関しては、電極消耗による短小化は少ないものの、放電が電極のある一点で行われやすいため、発生した紫外線が電極により遮られて紫外線が照射されない領域が発生して十分に不活化できないなどの問題、電極先端の電界強度が弱まり放電が生じづらい又は安定した放電ができないという問題が生じる。このため適当な太さの電極が存在する。
【0016】
一方、洗浄排水は通常河川放流や下水放流されるが、その一部は水の有効利用の観点から、原水に返送される場合もある。この返送排水中に病原性シストが含まれる場合には、ろ過原水に再びシスト汚染の危険性が生じるため、返送排水を消毒殺菌する必要が生じる。この場合、返送過程に本殺菌消毒方法を用いればより安全な水を各家庭に供給することができる。
【0017】
洗浄排水の最も適したパルス放電装置は、例えば図1のような構造を持つ。この装置はコンピュータ1、パルス電源2、鉄を主成分とする炭素鋼材などの水中放電電極(パルス電極)3及び両者をつなぐ電気ケーブル4、洗浄排水5を入れるかあるいは通す反応槽6又は配管から構成されている。コンピュータ1は放電電圧、放電エネルギー、放電間隔、電極間距離などを制御する。洗浄排水5の濁度をモニタし、その濁度に応じた放電条件を設定することも可能である。洗浄排水5の処理は、貯留式反応槽6でも流通式反応槽7(図2参照)でもよい。
【0018】
図1は貯留式の反応槽の場合を示しており、水中放電電極3は反応槽6上部より浸漬しても、反応槽6に固定してもよい。流通式の場合は、図2に示すように配管の途中に水中放電電極3を取り付ければよい。いずれも処理後の排水は、配管を通して河川へ放流、下水へ放流又は原水着水囲8へ返送される。
【0019】
図3は、浄水場の凝集沈殿の洗浄排水に本発明を適用した場合の例を示す。通常の凝集沈殿を用いた浄水場では、河川又は井戸などから原水9を取り入れ、
急速混和池10、緩速混和池11を経て、沈殿池12で凝集沈殿、ろ過池13で砂ろ過又は膜ろ過が行われ、配水池14へ続く後工程へと流れている。ろ過池13ではろ材の目詰まりを解消するために、間欠的に逆方向水流により洗浄が行われ、その洗浄排水5は排水池15へ送水される。また排水池15でもその沈殿物17は排泥池16へ、排泥池16の上澄み液18は排水池15へと送水されるのである。沈殿池12で発生した沈殿物は排泥池16へ、排泥池16の上澄み液18は排水池15へと送水され、排水池15の一部19が原水9へと返送され濁質成分を濃縮する。なお、3aはパルス放電装置(放電電極部)である。
【0020】
このような一連の浄水過程では、凝集沈殿・ろ過の際に原水9に含まれる砂やプランクトンを含む濁質成分とともに、クリプトスポリジウムのような病原性微生物が除去される。このため、ろ過洗浄排水5にはこれらの成分が多少なり含まれることになり、排水池15の一部を着水囲8へ返送を繰り返す度に原水側に濃縮され、凝集沈殿・ろ過を行っても配水池14へ混入してしまう恐れが起きる。大腸菌のようなの塩素耐性を持たない微生物の場合には、後工程である塩素注入による殺菌消毒により死滅するが、クリプトスポリジウムのような塩素耐性を持つ生物に対しては、飲料水が汚染される危険が生じてしまい、重大な問題となる。
【0021】
本発明は、図3に示した位置にパルス放電装置を配備することによって、このような濁質成分を含む洗浄排水5中のクリプトスポリジウムでも殺菌消毒でき、飲料水の安全を確保できるものである。
【0022】
【実施例】
以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
【0023】
実施例1
(実験方法)
図4に示すように、棒状の対電極3、3を持つ内容積1.2リットルのステンレス鋼製反応容器20を用いて、浄水場から発生する凝集沈殿洗浄排水に、クリプトスポリジウムオーシストを添加した試験用のクリプトスポリジウム添加処理水21の中でパルス放電を行い、クリプトスポリジウムが不活化するかどうかの判定を行った。
【0024】
(実験条件)
パルス放電条件は、パルス電圧5.4kV、対電極直径6mm、放電回数12回または24回、パルスエネルギー:72J/pulse又は144J/pulseである。また各条件に対し、クリプトスポリジウムの添加量は2×107個/リットル、処理水量1リットルである。被処理水には、洗浄排水として浄水場凝集沈殿洗浄排水(濁度54度)、洗浄排水と同じ導電率を有する塩化ナトリウムを溶解した蒸留水、該蒸留水に模擬濁質としてカオリンを懸濁して、濁度40度に調整した水の3種類を用いた。通常、浄水場の洗浄排水の濁度は5度から20度であり、40度は極めて濁っている状態である。
【0025】
放電後の処理水は、濃縮してから顕微鏡でクリプトスポリジウムオーシストの個数を調べ、コントロール群を含めて免疫不全マウスに投与した。各処理条件に対する投与マウス数は3個体である。投与されたマウス糞便中のクリプトスポリジウムオーシストの個数を計数し、コントロール群から排出されるオーシスト数とを比較することでパルス放電処理効果を判定した。
【0026】
(結果)
(1)放電条件が放電回数12回、放電エネルギー72J/pulse、洗浄排水の場合、マウス3個体より得られた不活化率は、それぞれ88.5%、93.7%、97.9%であった。
(2)放電条件が放電回数24回、放電エネルギー72J/pulse、洗浄排水の場合、マウス3個体より得られた不活化率は、それぞれ94.5%、90.0%、99.8%であった。
(3)放電条件が放電回数24回、放電エネルギー144J/pulse、洗浄排水の場合、マウス3個体より得られた不活化率は、それぞれ99.6%、99.8%、92,5%であった。
【0027】
(4)放電条件が放電回数12回、放電エネルギー72J/pulse、塩化ナトリウム溶解蒸留水の場合、マウス3個体より得られた不活化率は、すべて99.9%以上であった。
(5)放電条件が放電回数12回、放電エネルギー72J/pulse、カオリン懸濁した塩化ナトリウム溶解蒸留水の場合、マウス3個体より得られた不活化率は、すべて99.9%以上であった。
この結果からパルス放電処理による洗浄排水中の病原性微生物の殺菌消毒には、高い効果があることが確かめられた。
【0028】
実施例2
本実験では、洗浄排水の濁度による不活化率の変化を調べた。
(実験方法)
図4に示すように、棒状の対電極3、3を持つ内容積1リットルと10リットルの2種類のステンレス鋼製反応容器20を用いて、浄水場から発生する凝集沈殿洗浄排水に、クリプトスポリジウムオーシストを添加した試験用のクリプトスポリジウム添加処理水21の中でパルス放電を行い、クリプトスポリジウムが不活化するかどうかの判定を行った。放電電極としては、電極直径が4mm、6mm、12mmの3種類を用意し、変えていくつかの組合せを作った。
【0029】
(実験条件)
パルス放電条件は、パルス電圧5.4kV、電極直径4、6、12mm、放電回数3,6、12、15、24、30,60回、パルスエネルギー:290J/pulseである。また各条件に対し、クリプトスポリジウムの添加量は2×107個/リットル、処理水量1リットル又は10リットルである。
被処理水には、洗浄排水として洗浄排水と同じ導電率を有する塩化ナトリウムを溶解した蒸留水、該蒸留水に模擬濁質としてカオリンを懸濁して、濁度を2度、10度、40度及び80度に調整した水の4種類を用いた。
(実験結果)
実験結果を第1表に示す。また、これらの実験のうち、不活化率が99.9%以上得られる場合の原水の濁度と放電エネルギーとの関係を表すグラフを図5に示す。このグラフによると、不活化率が99.9%以上を達成しようとする場合には、不活化に必要な放電エネルギーと原水の濁度との関係は、以下の式で表されると考える。
Log(放電エネルギー)=α×log(濁度)
ここでαは、実装置における管径や管材質、配線の抵抗損失などにより定まる装置係数である。また、不活化率が90%以上でよいとすると、必要な放電エネルギーと原水の濁度との関係は、もっとゆるやかな比例関係となる。
【0030】
【表1】
【0031】
実施例3
本実験では、放電電極の直径による不活化率の変化を調べた。
(実験方法)
図4に示すように、棒状の対電極3、3を持つ内容積10リットルのステンレス鋼製反応容器20を用いて、浄水場から発生する凝集沈殿洗浄排水に、クリプトスポリジウムオーシストを添加した試験用のクリプトスポリジウム添加被処理水21の中でパルス放電を行い、クリプトスポリジウムが不活化するかどうかの判定を行った。放電電極としては、第2表に示すように、電極直径が0.05〜25mmの範囲にある9種類を用意した。
【0032】
(実験条件)
パルス放電条件は、パルス電圧5.4kV、対電極間隔6mm、放電回数30回、パルスエネルギー:290J/pulse、消費電力0.24kWh/m3である。また各条件に対し、クリプトスポリジウムの添加量は2×107個/リットル、処理水量10リットルである。
被処理水には、洗浄排水として洗浄排水と同じ導電率を有する塩化ナトリウムを溶解した蒸留水、該蒸留水に模擬濁質としてカオリンを懸濁して、濁度を40度に調整した水を用いた。
(実験結果)
実験結果を第2表に示す。
【0033】
【表2】
【0034】
【発明の効果】
本発明では、固液分離の洗浄排水中においてパルス放電を行う。水中のパルス放電では、紫外線から赤外線までの強力な光線、衝撃波、ラジカルが発生する。この紫外線は、通常殺菌に用いられている紫外線ランプの強度に比べ非常に高く、しかも、紫外線ランプのように単スペクトルではなく連続スペクトルを持つため、紫外線ランプが適用できない洗浄排水のように濁質を多く含む水中においても広範に伝搬し、殺菌消毒することができる。
【0035】
パルス放電では、従来の凝集沈殿・砂ろ過および膜ろ過の洗浄排水を処理するためのUVランプを用いた方法に比べ、UVランプ自身の寿命や交換、UVランプやその保護管表面の汚れや破損などの問題がない。このため、維持管理に必要な時間もコストも少ない。オゾンを用いた処理と比べると、濁質成分との化学反応が少ないため十分な殺菌効果が得られ、しかもオゾンとの化学反応による副生成物の発生がなくクリーンな処理であり、ガスを扱わないため装置の取り扱いも容易である。さらに、熱を用いた方法に比べ、殺菌にかかる時間も短く設置面積も極めて小さい。処理後の排水の温度は処理前と同じであるため、そのまま河川放流しても生態系に影響を与えず、凝集ろ過・沈殿工程に返送しても後のプロセスに影響を与えることはない。
【0036】
シストの消毒殺菌においては、放電電圧や放電周波数が主要因でなく、処理流量に投与する放電エネルギーが重要であり、濁度を含む洗浄排水のような濁水においては、その濁度をモニタし、その濁度に見合った0.01から10kWh/m3、好ましくは0.1〜3kWh/m3の放電エネルギーをコンピュータで制御して放電させることによって、効率よく殺菌消毒できる。コンピュータ制御を行うことで、電気エネルギーを無駄に使用しないため地球温暖化防止に貢献できるだけでなく、放電に伴う電極材料の過剰な消耗を防げるため省資源にも役立つ。また放電電極の直径を0.1〜15mm、好ましくは1〜8mmとして放電させることで、反応容器内に等方的にかつ紫外線を発生し、かつ電極消耗や電極先端の電界強度低下による放電の不安定性を除去し、長時間の安定性を向上させることができる。さらに洗浄排水の一部が原水に返送される場合には、ろ過原水に再びシスト汚染の危険性を取り除き、より安全な水を各家庭に供給することができるのである。
【0037】
また、この処理を行うことで、洗浄排水を河川放流・下水放流しても、下流域に浄水場の飲料水原水を汚染するようなことはない。特に、上流域に牛などの畜産が行われている地域には有効である。魚類の養殖場、農業用水や畜産用水などの産業用水においても有効な殺菌消毒ができる。
本発明における水中放電では、電極の一部が溶出することがあるが、主成分が鉄である電極を用いることで、凝集沈殿の際に溶出した鉄成分が凝集効果を高めるため、固液分離を容易にするだけでなく、鉄分の回収が可能となる。しかも、凝集剤をも減少させることができる。また、重金属を含む電極を用いた場合と比べ、溶出金属の人体への濃縮が起こるようなことはなくなり、安全性が高まる。
【図面の簡単な説明】
【図1】パルス放電電極を設けた貯留式反応槽を用いた場合の処理ブロック図である。
【図2】パルス放電電極を設けた流通式反応槽を用いた場合の処理ブロック図である。
【図3】本発明を浄水場の浄水過程に適用した場合の処理フロー図である。
【図4】本発明の効果確認実験装置のブロック図である。
【図5】実施例2における実験で、不活化率が99.9%以上得られる場合の原水の濁度と放電エネルギーとの関係を示すグラフである。
【符号の説明】
1 コンピュータ
2 パルス電源
3 水中放電電極
3a パルス放電装置
4 電気ケーブル
5 洗浄排水
6 貯留式反応槽
7 流通式反応槽
8 河川(下水)放流
9 原水
10 急速混和池
11 緩速混和池
12 沈殿池
13 ろ過池
14 配水池
15 排水池
16 排泥池
17 沈殿物
18 上澄み液
19 排水の一部
20 実験用反応槽(反応容器)
21 クリプトスポリジウム添加被処理水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for sterilizing microorganisms in cleaning wastewater containing cysts produced by filtration and cleaning in the purification process of clean water mainly for drinking water and the manufacturing process of water used in the agricultural and fisheries industry. Here, the washing waste water is waste water generated at the time of back washing performed to eliminate clogging of sand filtration or membrane filtration, or waste water or supernatant water generated after the concentration process of the waste water.
[0002]
[Prior art]
In the general water purification process centering on drinking water and the industrial water production process centering on the agriculture and fisheries industry such as livestock and aquaculture, the filtration washing wastewater generated during the reverse washing of coagulation sedimentation, sand filtration and membrane filtration has been conventionally In most cases, it has been discharged into rivers and sewage without any treatment. In this washing wastewater, pathogenic microorganisms such as Krypotospodium oocysts are concentrated together with solids etc. present in the river, so if there is a water purification plant in the downstream area, it will contaminate raw drinking water, When livestock is produced using river water, there is a risk of causing secondary infection such as infecting livestock and further propagating pathogens, or directly contaminating humans when used in water parks, etc. .
[0003]
On the other hand, from the viewpoint of recycling precious water resources, including the case of drought, etc., all such washing wastewater is not discharged into the river but separated into solid and liquid using a sedimentation basin, and then the supernatant. The liquid is also being returned to the raw water again. However, in this case, these pathogenic microorganisms are mixed again in the raw water, and the pathogenic microorganisms are concentrated in the raw water by repeating this return, so that a further problem of contamination arises. Microorganisms such as Escherichia coli are sterilized by chlorine injection, which is a subsequent process. However, for Cryptosporidium, oocysts are not removed by coagulation sedimentation and sand filtration, and cannot be killed even by the concentration of chlorine that is normally added. For this reason, there is a risk that drinking water is contaminated and humans are infected.
For this reason, in recent years, in both cases of discharge and recycling, methods for sterilizing washing wastewater with ultraviolet rays (UV), ozone, and heat have begun to be studied.
[0004]
Further, a sterilization method using a high voltage pulse has been studied. For example, a liquid to be treated is contained in a container composed of a cylindrical electrode and a linear electrode disposed in the vicinity of the central axis of the cylinder and insulated from the cylinder. Has been proposed, and a high voltage pulse is applied between the linear electrode and the cylindrical electrode to sterilize bacteria and the like in the liquid to be treated (Patent Document 1).
In addition, a method for inactivating a virus by irradiating the virus in water with a short-duration, high-intensity pulse of broadband spectrum polychromatic light has also been proposed (Patent Document 2). Furthermore, a method for inactivating microorganisms by performing pulse discharge in the water to be treated supplied into the treatment tank at a voltage equal to or higher than the dielectric breakdown strength voltage of the water to be treated has been studied (Patent Document 3).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 63-82666 [Patent Document 2]
JP 11-514277 A [Patent Document 3]
Japanese Patent Laid-Open No. 2000-237755
[Problems to be solved by the invention]
However, in the method using UV, application to water containing a large amount of turbidity such as washing wastewater is not suitable because UV is absorbed by the turbid component, and the transmittance is very low. In addition, there are problems such as the lifetime of the UV lamp itself, the time required for replacement, and the UV lamp and the surface of its protective tube.
In the treatment using ozone, the turbid component reacts with ozone, so the sterilizing effect is not sufficient, and there are also problems of by-products generated by chemical reaction with ozone and the handling of ozone gas. .
[0007]
The method using heat takes a long time to ensure the sterilization effect, the installation area of the reaction tank is large, and even after using the heat exchanger, the treated wastewater becomes hotter than the raw water, If it is discharged into the river as it is, it may affect the ecosystem, and even if it is returned to the coagulation filtration / sedimentation process, it may affect the subsequent processes. The high voltage pulse sterilization method is an intermittent treatment, and it is not clear what kind of pulse and how much pulse can be applied to inactivate microorganisms.
[0008]
The present invention provides a cleaning wastewater disinfection method and apparatus that can overcome the above-described problems of the prior art, and can reliably sterilize pathogenic microorganisms including cysts in cleaning wastewater at low cost and easy to maintain. For the purpose.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have a discharge energy of pulse discharge in cleaning wastewater containing cysts .
(A) The turbidity of the washing wastewater is in the relationship of
log (discharge energy) = α × log (turbidity)
(Α: coefficient determined by the device)
Moreover
(B) 0.01 to 10 kWh / m 3- discharge energy of a drainage amount, and pulse discharge using a discharge electrode having a diameter of 0.1 to 15 mm, preferably 1 to 8 mm. The present inventors have found that shock waves and radicals are generated, and that pathogenic microorganisms including cysts in washing wastewater can be sterilized and disinfected at low cost and can be easily maintained.
That is, this invention solved the said subject by the following means.
[0010]
(1) A disinfection method for applying pulse discharge to cleaning wastewater containing cysts produced by filtration cleaning , wherein the discharge energy of the pulse discharge is
(A) The turbidity of the washing wastewater is in the relationship of
log (discharge energy) = α × log (turbidity)
(Α: coefficient determined by the device)
Moreover
(B) 0.01 to 10 kWh / m 3 −the amount of drainage
A method for disinfecting filtered cleaning wastewater, characterized by applying pulse discharge to the cleaning wastewater using discharge energy .
(2) A storage-type reaction tank or flow-type reaction section for introducing cleaning waste water, a turbidimeter installed inside the storage-type reaction tank or flow-type reaction section for measuring the turbidity of the cleaning waste water, and the storage A cleaning wastewater disinfection device comprising at least a pair of pulse discharge electrodes that are installed inside a reaction tank or a flow reaction section and applies pulse discharge to the cleaning wastewater, and the discharge energy of the pulse discharge is:
(A) The turbidity of the washing wastewater is in the relationship of
log (discharge energy) = α × log (turbidity)
(Α: coefficient determined by the device)
Moreover
(B) 0.01 to 10 kWh / m 3 −the amount of drainage
Apply pulsed discharge to cleaning wastewater using discharge energy
The device which inactivates the cyst contained in the washing waste water generated by the filtration washing characterized by the above.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
In all the drawings for explaining the embodiments and examples, components having the same function are denoted by the same reference numerals, and repeated description thereof is omitted.
The pulse power source used in the present invention is an electrostatic energy storage type using a capacitor, an induction energy storage type using a coil, a kinetic energy storage type using a steam turbine or a flywheel, a chemical energy storage type using an explosive, etc. Although not particularly limited, an electrostatic energy storage type that is small and has good controllability is desirable.
[0012]
In disinfecting and disinfecting cysts, the discharge voltage and discharge frequency are one of the operating factors, but it has been found that the discharge energy administered to the treatment flow rate is important as a factor for effectively disinfecting and disinfecting. For this reason, turbid water such as washing wastewater containing turbidity can be sterilized and sterilized efficiently by monitoring the turbidity and performing computer control to select the discharge energy corresponding to the turbidity. Performing this computer control not only contributes to preventing global warming because electric energy is not wasted, but also helps save resources because it prevents excessive consumption of the electrode material accompanying discharge. The present inventors have clarified the relationship between the turbidity of cleaning wastewater for inactivating pathogenic cysts and discharge energy, and the relationship between the inactivation rate and the discharge electrode diameter.
[0013]
Discharge energy, a practical preferred embodiment, 0.01~10kWh / m 3 in the cleaning waste water containing cysts caused by filtration washing, preferably in the range of discharge energy of 0.1~3kWh / m 3, which is proportional to the turbidity And a method characterized by circulating at least a part of the washing waste water into the raw water, and the discharge electrode has a diameter of 0.1 to 15 mm, preferably 1 to 8 mm. There is a characteristic disinfection method.
Discharges with an energy of 0.01 kWh / m 3 or less do not generate ultraviolet rays, radicals, or shock waves that can be sufficiently sterilized by discharge, and with an energy of 10 kWh / m 3 or more, sufficient sterilization can be expected, but power consumption is large. Too much electricity costs and facilities become huge, and the cost becomes enormous.
[0014]
In the present invention, the applied discharge energy is determined by the turbidity of the raw water as described above, but generally speaking, the given discharge energy is an amount proportional to the turbidity of the raw water. Furthermore, the relationship varies considerably depending on how much the inactivation rate is set, but when the highest inactivation rate is to be achieved, 99.9%, the discharge energy to be given is roughly the raw water. It is proportional to the exponential function of turbidity (see Example 2). However, in the present invention, the inactivation rate is intended to be 90% or more, and in the practical range, the inactivation rate should be a low 90% processing result as described above. The discharge energy may not be a high proportion of the discharge energy but may be a discharge energy having a linear function or a quadratic function proportional relationship. As will be described later, the required discharge energy varies depending on the diameter of the discharge electrode and the amount of water to be treated. Therefore, these conditions are the same when compared. In any case, the present invention has found for the first time a relationship in which the discharge energy applied is determined by the turbidity of the raw water.
[0015]
In addition, regarding the diameter of the discharge electrode, which is an important factor for discharge, when the diameter is 0.1 mm or less, the electric field strength at the tip is increased and the discharge is easily performed, but the electrode is consumed by the discharge and is not practical. For electrodes with a diameter of 15 mm or more, although shortening due to electrode consumption is small, discharge is easily performed at a certain point on the electrode, so that a region where the generated ultraviolet light is blocked by the electrode and not irradiated with ultraviolet light is sufficiently generated. Problems such as inability to inactivate, electric field intensity at the tip of the electrode weakens, makes it difficult for discharge to occur, or prevents stable discharge. For this reason, an electrode having an appropriate thickness exists.
[0016]
On the other hand, washing wastewater is usually discharged into rivers and sewage, but some of it is returned to raw water from the viewpoint of effective use of water. When pathogenic cysts are included in this return wastewater, there is a risk of cyst contamination in the filtered raw water again, so it is necessary to disinfect the return wastewater. In this case, if this sterilization method is used in the return process, safer water can be supplied to each household.
[0017]
The most suitable pulse discharge device for cleaning waste water has a structure as shown in FIG. This apparatus includes a
[0018]
FIG. 1 shows the case of a storage-type reaction tank. The underwater discharge electrode 3 may be immersed from the upper part of the reaction tank 6 or fixed to the reaction tank 6. In the case of the flow type, the underwater discharge electrode 3 may be attached in the middle of the pipe as shown in FIG. In any case, the treated waste water is discharged into the river through the pipe, discharged into the sewage, or returned to the raw
[0019]
FIG. 3 shows an example in which the present invention is applied to washing drainage of coagulated sediment in a water purification plant. In a water purification plant using ordinary coagulation sedimentation,
After passing through the
[0020]
In such a series of water purification processes, pathogenic microorganisms such as Cryptosporidium are removed together with turbid components including sand and plankton contained in the
[0021]
In the present invention, by disposing a pulse discharge device at the position shown in FIG. 3, even Cryptosporidium in the cleaning
[0022]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[0023]
Example 1
(experimental method)
As shown in FIG. 4, Cryptosporidium oocyst was added to the coagulation sediment washing waste water generated from the water purification plant using a 1.2 liter stainless steel reaction vessel 20 having rod-shaped counter electrodes 3 and 3. It was determined whether or not Cryptosporidium was inactivated by performing pulse discharge in the test Cryptosporidium-added treated water 21.
[0024]
(Experimental conditions)
The pulse discharge conditions are a pulse voltage of 5.4 kV, a counter electrode diameter of 6 mm, a discharge frequency of 12 or 24 times, and a pulse energy of 72 J / pulse or 144 J / pulse. For each condition, the amount of Cryptosporidium added is 2 × 10 7 pieces / liter and the amount of treated water is 1 liter. In the water to be treated, water purification plant coagulation sedimentation washing wastewater (turbidity 54 degrees) as washing wastewater, distilled water in which sodium chloride having the same conductivity as the washing wastewater is dissolved, and kaolin suspended in the distilled water as a simulated turbidity. Three types of water adjusted to a turbidity of 40 degrees were used. Usually, the turbidity of the washing waste water at the water purification plant is 5 to 20 degrees, and 40 degrees is very cloudy.
[0025]
After the discharge, the treated water was concentrated and the number of Cryptosporidium oocysts was examined with a microscope and administered to immunodeficient mice including the control group. The number of mice administered for each treatment condition is 3 individuals. The number of Cryptosporidium oocysts in the administered mouse feces was counted, and the effect of the pulse discharge treatment was determined by comparing with the number of oocysts discharged from the control group.
[0026]
(result)
(1) When the discharge conditions are 12 discharges, discharge energy 72 J / pulse, and washing waste water, the inactivation rates obtained from 3 mice were 88.5%, 93.7%, and 97.9%, respectively. there were.
(2) When the discharge conditions are 24 discharges, discharge energy 72 J / pulse, and washing waste water, the inactivation rates obtained from 3 mice were 94.5%, 90.0%, and 99.8%, respectively. there were.
(3) When the discharge conditions are 24 discharges, discharge energy 144 J / pulse, and washing waste water, the inactivation rates obtained from 3 mice were 99.6%, 99.8%, 92, 5%, respectively. there were.
[0027]
(4) When the discharge conditions were 12 discharges, discharge energy 72 J / pulse, and sodium chloride-dissolved distilled water, the inactivation rates obtained from 3 mice were all 99.9% or more.
(5) When the discharge conditions were 12 discharges, discharge energy 72 J / pulse, kaolin-suspended sodium chloride-dissolved distilled water, the inactivation rates obtained from 3 mice were all 99.9% or more. .
From this result, it was confirmed that sterilization and sterilization of pathogenic microorganisms in washing wastewater by pulse discharge treatment has a high effect.
[0028]
Example 2
In this experiment, the change in the inactivation rate due to the turbidity of the washing waste water was examined.
(experimental method)
As shown in FIG. 4, Cryptosporidium is used for the coagulation sediment washing drainage generated from the water purification plant using two types of stainless steel reaction vessels 20 having an internal volume of 1 liter and 10 liters having rod-shaped counter electrodes 3 and 3. It was determined whether or not Cryptosporidium was inactivated by performing pulse discharge in test Cryptosporidium addition treated water 21 to which oocyst was added. As the discharge electrodes, three types of electrode diameters of 4 mm, 6 mm, and 12 mm were prepared, and various combinations were made.
[0029]
(Experimental conditions)
The pulse discharge conditions are pulse voltage 5.4 kV,
In the water to be treated, distilled water in which sodium chloride having the same conductivity as the washing waste water is dissolved as washing waste water, kaolin is suspended in the distilled water as a simulated turbidity, and the turbidity is 2 degrees, 10 degrees, 40 degrees. And four types of water adjusted to 80 degrees.
(Experimental result)
The experimental results are shown in Table 1. Moreover, the graph showing the relationship between the turbidity of raw | natural water and discharge energy in case an inactivation rate is obtained 99.9% or more among these experiments is shown in FIG. According to this graph, when the inactivation rate is about 99.9% or more, the relationship between the discharge energy necessary for inactivation and the turbidity of raw water is expressed by the following equation.
Log (discharge energy) = α × log (turbidity)
Here, α is a device coefficient determined by a tube diameter, a tube material, a resistance loss of wiring, and the like in an actual device. If the inactivation rate may be 90% or more, the relationship between the required discharge energy and the turbidity of the raw water is a more gentle proportional relationship.
[0030]
[Table 1]
[0031]
Example 3
In this experiment, the change in the inactivation rate due to the diameter of the discharge electrode was examined.
(experimental method)
As shown in FIG. 4, for a test in which Cryptosporidium oocysts are added to a coagulation sediment washing drainage generated from a water purification plant using a 10 liter stainless steel reaction vessel 20 having rod-shaped counter electrodes 3 and 3 In the Cryptosporidium-added water 21 to be treated, pulse discharge was performed to determine whether Cryptosporidium was inactivated. As discharge electrodes, as shown in Table 2, nine types of electrode diameters in the range of 0.05 to 25 mm were prepared.
[0032]
(Experimental conditions)
The pulse discharge conditions are a pulse voltage of 5.4 kV, a counter electrode interval of 6 mm, a discharge frequency of 30 times, a pulse energy of 290 J / pulse, and a power consumption of 0.24 kWh / m 3 . For each condition, the amount of Cryptosporidium added is 2 × 10 7 pieces / liter and the amount of treated water is 10 liters.
For the water to be treated, distilled water in which sodium chloride having the same conductivity as the washing waste water is dissolved, and water in which kaolin is suspended as a simulated turbidity in the distilled water and the turbidity is adjusted to 40 degrees are used. It was.
(Experimental result)
The experimental results are shown in Table 2.
[0033]
[Table 2]
[0034]
【The invention's effect】
In the present invention, pulse discharge is performed in the washing waste water for solid-liquid separation. In pulse discharge in water, powerful light rays, shock waves, and radicals from ultraviolet to infrared are generated. This UV light is much higher than the intensity of UV lamps normally used for sterilization, and has a continuous spectrum instead of a single spectrum like UV lamps. Even in water containing a large amount of water, it can be widely propagated and sterilized.
[0035]
Compared with conventional methods using UV lamps for treating waste water from coagulation sedimentation, sand filtration, and membrane filtration, pulsed discharges are used for life and replacement of UV lamps, and the UV lamps and their protective tube surfaces are dirty or damaged. There is no problem. For this reason, the time and cost required for maintenance are small. Compared to treatment with ozone, chemical reaction with turbid components is small, so a sufficient bactericidal effect can be obtained, and there is no generation of by-products due to chemical reaction with ozone. The device is easy to handle. Furthermore, compared with the method using heat, the time required for sterilization is short and the installation area is extremely small. Since the temperature of the wastewater after treatment is the same as that before treatment, it does not affect the ecosystem even if it is discharged into the river as it is, and it does not affect the subsequent process even if it is returned to the coagulation filtration / sedimentation process.
[0036]
In disinfection and sterilization of cysts, the discharge voltage and discharge frequency are not the main factors, and the discharge energy applied to the treatment flow rate is important. In turbid water such as washing wastewater containing turbidity, the turbidity is monitored, its commensurate with turbidity 0.01 to 10 kWh / m 3, preferably by discharging by controlling the discharge energy of 0.1~3kWh / m 3 on a computer, can be efficiently sterilized. By performing computer control, not only wastes electric energy but also contributes to the prevention of global warming, and it also helps to save resources because it prevents excessive consumption of electrode materials due to discharge. In addition, by discharging the discharge electrode with a diameter of 0.1 to 15 mm, preferably 1 to 8 mm, ultraviolet rays are generated isotropically in the reaction vessel, and discharge due to electrode consumption or a decrease in electric field strength at the electrode tip. Instability can be removed and long-term stability can be improved. Furthermore, when a part of the washing wastewater is returned to the raw water, the risk of cyst contamination is removed again from the filtered raw water, and safer water can be supplied to each household.
[0037]
In addition, by performing this treatment, even if the washing wastewater is discharged into the river and sewage, the drinking water source water of the water purification plant is not contaminated in the downstream area. This is particularly effective in areas where livestock such as cattle is produced in the upstream area. Effective sterilization can also be performed in fish farms, industrial water such as agricultural water and livestock water.
In the underwater discharge in the present invention, a part of the electrode may be eluted, but by using an electrode whose main component is iron, the iron component eluted during the aggregation precipitation enhances the aggregation effect. This makes it possible to collect iron. Moreover, the flocculant can be reduced. Further, compared to the case where an electrode containing heavy metal is used, the concentration of the eluted metal in the human body does not occur and the safety is improved.
[Brief description of the drawings]
FIG. 1 is a processing block diagram in the case of using a storage reaction tank provided with a pulse discharge electrode.
FIG. 2 is a processing block diagram in the case of using a flow-type reaction tank provided with a pulse discharge electrode.
FIG. 3 is a process flow diagram when the present invention is applied to a water purification process in a water purification plant.
FIG. 4 is a block diagram of an effect confirmation experiment apparatus of the present invention.
5 is a graph showing the relationship between turbidity of raw water and discharge energy when an inactivation rate of 99.9% or more is obtained in the experiment in Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF
21 Water treated with Cryptosporidium
Claims (2)
(a)該洗浄排水の濁度と次式の関係にあり、
log(放電エネルギー)=α×log(濁度)
(α:装置によって決まる係数)
しかも
(b)0.01〜10kWh/m 3 −排水量である
放電エネルギーを用いて洗浄排水にパルス放電を加えること
を特徴とするろ過洗浄排水の消毒方法。A disinfection method for applying pulse discharge to cleaning wastewater containing cysts produced by filtration cleaning , wherein the discharge energy of the pulse discharge is:
(A) The turbidity of the washing wastewater is in the relationship of
log (discharge energy) = α × log (turbidity)
(Α: coefficient determined by the device)
Moreover
(B) 0.01 to 10 kWh / m 3 −the amount of drainage
A method for disinfecting filtered cleaning wastewater, characterized by applying pulse discharge to the cleaning wastewater using discharge energy .
(a)該洗浄排水の濁度と次式の関係にあり、(A) The turbidity of the washing wastewater is in the relationship of
log(放電エネルギー)=α×log(濁度) log (discharge energy) = α × log (turbidity)
(α:装置によって決まる係数)(Α: coefficient determined by the device)
しかもMoreover
(b)0.01〜10kWh/m(B) 0.01 to 10 kWh / m 33 −排水量である-The amount of wastewater
放電エネルギーを用いて洗浄排水にパルス放電を加えることApply pulsed discharge to cleaning wastewater using discharge energy
を特徴とするろ過洗浄によって生じる洗浄排水に含まれるシストを不活化させる装置。A device that inactivates cysts contained in cleaning wastewater generated by filtration and cleaning.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003046036A JP4094453B2 (en) | 2002-02-25 | 2003-02-24 | Method and apparatus for disinfecting cleaning wastewater |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002047967 | 2002-02-25 | ||
JP2002-47967 | 2002-02-25 | ||
JP2003046036A JP4094453B2 (en) | 2002-02-25 | 2003-02-24 | Method and apparatus for disinfecting cleaning wastewater |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003311277A JP2003311277A (en) | 2003-11-05 |
JP4094453B2 true JP4094453B2 (en) | 2008-06-04 |
Family
ID=29551921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003046036A Expired - Fee Related JP4094453B2 (en) | 2002-02-25 | 2003-02-24 | Method and apparatus for disinfecting cleaning wastewater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4094453B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007069108A (en) * | 2005-09-06 | 2007-03-22 | Ebara Corp | Discharge treatment system |
-
2003
- 2003-02-24 JP JP2003046036A patent/JP4094453B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003311277A (en) | 2003-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6403030B1 (en) | Ultraviolet wastewater disinfection system and method | |
US6447720B1 (en) | Ultraviolet fluid disinfection system and method | |
DK2227442T3 (en) | Apparatus and method for treatment of ballast water | |
WO2011120250A1 (en) | Method and system for ship ballast water treatment | |
KR20150122876A (en) | Water treatment apparatus of chlorine-uv combined oxidation for removing algae-caused noxious substance, and variable control method of chlorine dosage and uv dose using the same | |
JP4555081B2 (en) | Marine seawater treatment method and apparatus | |
CA2336524A1 (en) | Method and apparatus for fluid treatment by uv-radiation | |
KR100636292B1 (en) | Tap of water purifier having sterilizing lamp | |
JP4094453B2 (en) | Method and apparatus for disinfecting cleaning wastewater | |
CN209307099U (en) | A kind of Medical Wastewater Disposal System | |
CN102774938A (en) | Device for treating living creatures in ship ballast water by utilizing sinusoidal pulse electric field | |
KR101174451B1 (en) | Water treatment system | |
KR102402357B1 (en) | Imported aquatic products quarantine facility with breeding water purification and filtration equipment | |
CN215798962U (en) | Ultrapure water device for laboratory | |
CN205556335U (en) | Drinking water combination sterilizing equipment | |
KR101723071B1 (en) | System and method for circulate type of water purification | |
KR101159512B1 (en) | Groundwater purifying apparatus having a sterilizer for removing harmful microorganisms including norovirus and method thereof | |
JP2004249207A (en) | Ultraviolet irradiation method in deactivation treatment of protozoans | |
CN100457642C (en) | An apparatus for purifying and sterilizing | |
Roswinabila et al. | The effectiveness of ultraviolet based methods versus other novel methods in the disinfection of escherichia coli found in drinking water: A systematic review | |
CN215517097U (en) | Energy-concerving and environment-protective medical sewage treatment system | |
Liu et al. | Batch UV Disinfection for Small Flow Onsite Wastewater Treatment | |
CN211035544U (en) | Microwave electrodeless ultraviolet catalytic oxidation sterilization equipment | |
Adewale et al. | Decontamination of Treated Wastewater By means of a Modern Ultraviolet LED Reactor System | |
CN202594837U (en) | Device for processing living organisms in ballast water by use of high-voltage pulse electric field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060106 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071126 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110314 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120314 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130314 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140314 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |