JP4093672B2 - Rotational molding method and rotational molding machine - Google Patents

Rotational molding method and rotational molding machine Download PDF

Info

Publication number
JP4093672B2
JP4093672B2 JP7669699A JP7669699A JP4093672B2 JP 4093672 B2 JP4093672 B2 JP 4093672B2 JP 7669699 A JP7669699 A JP 7669699A JP 7669699 A JP7669699 A JP 7669699A JP 4093672 B2 JP4093672 B2 JP 4093672B2
Authority
JP
Japan
Prior art keywords
mold
shaft
oil
temperature control
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7669699A
Other languages
Japanese (ja)
Other versions
JP2000263569A (en
Inventor
泰義 野田
昭彦 鈴木
Original Assignee
江南特殊産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南特殊産業株式会社 filed Critical 江南特殊産業株式会社
Priority to JP7669699A priority Critical patent/JP4093672B2/en
Publication of JP2000263569A publication Critical patent/JP2000263569A/en
Application granted granted Critical
Publication of JP4093672B2 publication Critical patent/JP4093672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/04Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould
    • B29C41/06Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould about two or more axes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、型を加熱しながら回転して成形品を成形する回転成形方法及び回転成形機に関するものである。この回転成形方法及び回転成形機は、例えば自動車装備品、街灯シェード、マネキン等の中空成形品の成形に適し、さらには透明中空成形品の成形に特に適している。
【0002】
【従来の技術】
従来の回転成形方法及び回転成形機として、次の二種が知られている。
(1)型を単一の軸線周りに回転するタイプの回転成形機。例えば、図8に示す回転成形機では、型101が軸102により機枠103に回転可能に支持され、モータ104によって回転駆動される。このタイプの回転成形機は、回転の軸が単一なので、型に熱媒体を供給しやすい。そこで、型101の型本体108には加熱配管105が接して設けられ(線接触)、この加熱配管105はスチーム供給装置106に接続されている。回転成形に際しては、パウダー状又はゲル状の熱可塑性樹脂材料107を型101内に投入し、型101をスチームの供給により加熱しながら回転し、樹脂材料107を溶融して型面に付着させ、型101を水シャワーの吹付け等により冷却した後に成形品を取り出すようになっている。
【0003】
(2)型を直交する二つの軸線周りに回転する成形機。このタイプの回転成形機は、回転の軸が二つあるため、型に熱媒体を供給することがこれまでできなかった。そこで、型を外部の離れた所からバーナー炎、電熱ヒーターの輻射熱等により加熱していた。また、型を水シャワーの吹付け等により冷却していた。
【0004】
【発明が解決しようとする課題】
上記(1)の回転成形機によると、型101を単一の軸線周りに回転しているため、樹脂材料107が回転軸線周りの型面に厚く付着し、回転軸線に対し直角をなす型面には薄く付着するなど、成形品の肉厚が不均一になるおそれがあった。また、複雑な形状の成形品の場合に、樹脂材料107を型面の各部に所定の肉厚で付着させるためには、型101を長時間かけて回転するか又は加熱温度を高くする必要があり、成形効率が低下したり、樹脂材料107の色が変色したり(黄変する場合が多い)、物性が低下したりするという問題があった。なお、前記回転に加えて、型101を揺動させる試みもなされているが、これらの問題を解消するまでには至っていない。
【0005】
上記(2)の回転成形機によると、型を外部の離れた所からバーナー炎、電熱ヒーターの輻射熱等により加熱していたため、型の加熱温度制御の精度が低いとともに、型の温度分布の均一性が低いため、成形品の肉厚が不均一になり、内面にうねりが生じるという問題があった。特に、透明中空成形品の場合に内面にうねりが生じると、外部から歪んで見えるため、透明中空成形品を回転成形で成形するのは困難とされており、これまでの我国の技術では、特に大型の透明樹脂成形品を見栄えよく回転成形することが事実上できなかった。
【0006】
また、バーナー炎、電熱ヒーターの輻射熱では、型を加熱するのに長時間を要し、水シャワーの吹付け等では、型を冷却するのに長時間を要していた。一具体例として、パウダー状のポリカーボネイト樹脂材料を使用し、型の加熱温度を280℃としたい場合に、同加熱温度に達するまでの時間は約40分もかかっていた。また、同加熱温度から型を十分に冷却するまでの時間は約20分もかかっていた。従って、1回の回転成形に要する時間は60分以上であり、成形効率が非常に低いとともに、樹脂材料に変色及び物性劣化が生じるおそれがあった。また、加熱温度の制御の精度も低く、加熱するたびに加熱温度は異なっていた。
【0007】
そこで、本発明の課題は、型の温度制御の精度と温度分布の均一性とを高め、内面のなめらかな中空状の樹脂成形品を短時間で効率よく回転成形することができる回転成形方法及び回転成形機を提供することにある。
【0008】
【課題を解決するための手段】
上記の課題を解決するために、次のような各手段をとった。
[A] 第一軸(5)と、第一軸(5)により端部が支持されたコ字形の旋回体(4)と、旋回体(4)の中央部に回転可能に支持された第二軸(11)と、第二軸(11)に取り付けられた型(70)とからなる回転成形機であって、第一軸(5)と旋回体(4)とが一体に旋回回転し、第二軸(11)が第一軸(5)及び旋回体(4)とは無関係に旋回回転するように構成され、型(70)は、表面に成形面を有する殻体状の型本体(74)と、型本体(74)の裏面に面結合された温度調節管(76)とを含み、第二軸(11)は中空状に形成され、第二軸(11)の内側にはパイプ(54)が挿入され、パイプ(54)の外周面と第二軸(11)の内周面との隙間によって温度調節管(76)へオイルを送るオイル通路(55)が形成され、温度調節管(76)を経たオイルはパイプ(54)の内部を通るように構成されたことを特徴とする回転成形機。
[B] 上記A記載の回転成形機を使用し、温度調節管(76)に加熱したオイルを供給して型本体(74)を急速且つ均一に加熱し、第一軸(5)と旋回体(4)とを一体に旋回回転させるとともに、第二軸(11)を第一軸(5)及び旋回体(4)とは無関係に旋回回転させ、パウダー状又はゲル状の熱可塑性樹脂材料を前記加熱した型の成形面に溶融付着させて中空状の樹脂成形品を回転成形した後、温度調節管(76)に冷却したオイルを供給して型本体(74)を急速且つ均一に冷却し、前記回転成形された樹脂成形品を凝固させることを特徴とする回転成形方法。
これらの手段において、以下のような態様をとることができる。
(1)表面に成形面を有する殻体状の型本体と、該型本体の裏面に面結合された温度調節管とを含む型を使用し、前記型の外部から温度調節管に加熱したオイルを供給して型本体を急速且つ均一に加熱し、前記型を方向の異なる二つの軸の周りに回転させ、前記型本体内に投入したパウダー状又はゲル状の熱可塑性樹脂材料を成形面に溶融付着させて回転成形し、前記型の外部から温度調節管に冷却したオイルを供給して型本体を急速且つ均一に冷却し、前記回転成形された成形品を凝固させてから前記回転を止めることを特徴とする回転成形方法。
【0009】
(2)表面に成形面を有する殻体状の型本体と、該型本体の裏面に直接結合された電熱ヒーターと、該型本体の裏面に面結合された温度調節管とを含む型を使用し、前記電熱ヒーターに給電して型本体を急速且つ均一に加熱し、前記型を方向の異なる二つの軸の周りに回転させ、前記型本体内に投入したパウダー状又はゲル状の熱可塑性樹脂材料を成形面に溶融付着させて回転成形し、前記型の外部から温度調節管に冷却したオイルを供給して型本体を急速且つ均一に冷却し、前記回転成形された成形品を凝固させてから前記回転を止めることを特徴とする回転成形方法。
【0010】
これら(1)(2)の回転成形方法は、熱可塑性樹脂の種類や色彩において特に限定されるものではないが、成形品の内面にうねりが生じにくいという作用効果があるため、特に内面が見える場合、すなわち、熱可塑性樹脂が透明樹脂であり、成形品が透明樹脂成形品である場合に最適である。ここで、透明とは、無色透明のみならず、有色透明、半透明等を含む意味である。
【0011】
これら(1)(2)の回転成形方法は、型本体の加熱温度において特に限定されるものではないが、樹脂の変色や物性低下が問題となる高温域、すなわち型本体の加熱温度が200〜320℃である場合に最適である。同方法は型本体を急速に加熱及び冷却して、樹脂に加わる熱量を最少限とすることができるという作用効果があるため、このような高温域でも樹脂の変色や物性低下を防ぐことができるからである。
【0012】
これら(1)(2)の回転成形方法において、型本体の加熱時間が30分未満であることが好ましく、また、型本体の冷却時間が15分未満であることが好ましい。成形効率を高めるためと、樹脂の変色や物性低下を防ぐためである。
【0013】
(3)機枠と、該機枠に第一軸により回転可能に支持された旋回体と、該旋回体を回転駆動する手段と、該旋回体に前記第一軸とは方向の異なる第二軸により回転可能に支持された型と、該型を回転駆動する手段とを備え、前記型は、表面に成形面を有する殻体状の型本体と、該型本体の裏面に面結合された温度調節管とを含み、前記型の外部にオイル供給装置が設けられるとともに、該オイル供給装置と前記温度調節管との間でオイルを循環させる配管機構が設けられ、該配管機構が第一軸上に設けられた第一回転継手と第二軸上に設けられた第二回転継手とを含むことを特徴とする回転成形機。
【0014】
この(3)の回転成形機において、温度調節管が型本体の裏面に面結合されているとは、温度調節管と型本体の裏面とが線接触ではなく、面積のある面を介して接合されているという意味である。温度調節管の温度を型本体の裏面に高い伝導率で且つ均一に伝えるためである。面結合の態様は、特に限定されないが、温度調節管が型本体の裏面に当接するように配設され、多数の貫通孔を有し且つ表面に導電性を有する薄状体が温度調節管に裏面側から被せられるとともに型本体に仮止めされ、型本体の裏面、温度調節管及び薄状体に電鋳被覆部が電鋳形成されており、該薄状体と電鋳被覆部とを介して温度調節管が型本体の裏面に面結合されている態様が好ましい。
【0015】
また、型をバランスよく回転できるように、第一軸及び第二軸を型の略中心で直交する2直線上に配置するのが好ましい。
【0016】
また、加熱用オイル及び冷却用オイルを型本体に選択的に供給できるように、オイル供給装置にオイル加熱器とオイル冷却器とを設けるとよい。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1〜図4に示すように、回転成形機の機枠1はベース2と左右一対のスタンド3とから構成されている。スタンド3の間にはコ字形の旋回体4が配置され、スタンド3の上端には第一軸5が設けられ、第一軸5により旋回体4が機枠1に水平軸線の周りに回転可能に支持されている。一方のスタンド3にはモータ6が設置され、その出力軸はギヤ7,8を介して一方の第一軸5に連結され、モータ6が旋回体4を回転駆動する手段を構成している。
【0018】
旋回体4の内側には型取付部材10が配置され、旋回体4の略中心部には第二軸11が設けられ、第二軸11により型取付部材10が旋回体4に第一軸5と直交する軸線の周りに回転可能に支持されている。旋回体4のコーナ部にはモータ12が設置され、その出力軸は鎖車13、チェーン14、鎖車15を介して第二軸11に連結され、モータ12が型取付部材10を回転駆動する手段を構成している。なお、モータ12の給電線16(図2参照)は一方の第一軸5を貫通させて配線されている。
【0019】
型取付部材10の上面には型70が載置され、ボルト18等の取付手段によって取り付けられている。図7に示すように、型70は開閉可能な上型71と下型72とからなる分割型であって、上型71及び下型72はいずれも、箱状の支持枠73と、支持枠73に支持されて表面に成形面75を有する殻体状の型本体74と、型本体74の裏面に面結合された温度調節管76とを含む。前記第一軸5及び第二軸11は、型70の略中心で直交する2直線上に配置されている。
【0020】
本実施形態の型本体74は電鋳により作製されたニッケル合金製の殻体で、肉厚は約3mm、成形面75は直径260mmの球面である。型本体74の裏面には、銅製で外径10mm、肉厚1mmの連続した温度調節管76が当接するように湾曲されながら配設され、隣り合う温度調節管76の中心間ピッチは30〜100mm程度で満遍なく配設されている。温度調節管76には、線径0.3mmのステンレス鋼線よりなる14メッシュの金網77が裏面側から山形状に被せられるとともに、該金網77は型本体74にスポット溶接によって仮止めされている。型本体74の裏面、温度調節管76及び金網77には銅製の電鋳被覆部78が電鋳形成されている。金網77の網目は電鋳被覆部78で塞がれている。また、金網77の多数の網目を通して、金網77と型本体74の裏面との間、及び、金網77と温度調節管76との間にも電鋳被覆部78が付着しているため、温度調節管76と型本体74の裏面とのは面結合で強固に接合され、熱的にもしっかり結合している。
【0021】
ベース2の一端部には、オイル供給装置26が設置されている。このオイル供給装置26は、オイル加熱器27とオイル冷却器28とポンプ29と出口側バルブ30と入口側バルブ31とを備え、各バルブ30,31を切り換えることにより、加熱用オイル又は冷却用オイルを型70の内部配管に選択的に供給できるように構成されている。
【0022】
オイル供給装置26と型70との間には、加熱用オイル又は冷却用オイルを循環させる配管機構33が設けられている。この配管機構33は、加熱用オイル又は冷却用オイルを、オイル供給装置26から配管34→第一回転継手35→配管36→第二回転継手37→下側分岐管38→配管81の経路を通して、上型71の温度調節管76に送る。該温度調節管76を通って上型71の型本体74を加熱又は冷却したオイルは、型70内の連絡管83を経て下型72の温度調節管76に送られる。該温度調節管76を通って下型72の型本体74を加熱又は冷却したオイルは、配管82→上側分岐管39→第二回転継手37→配管40→第一回転継手35→配管41の経路を通って、オイル供給装置26に還流するように構成されている。第一回転継手35は第一軸5上に設けられ、第二回転継手37は第二軸11上に設けられている。
【0023】
図5に示すように、第二軸11は中空状に形成され、上下一対のブッシュ43,44により旋回体4に回転可能に支持されている。第二軸11の中間部には前記鎖車15がキー45を介して挿着され、第二軸11の下端部にはネジ46が形成されている。ネジ46にはナット47が締め付けられ、ナット47に第二回転継手37の回転軸48がボルト49で結合されている。
【0024】
第二軸11の上端部には、型取付部材10に固定されるフランジ50と、下側分岐管38に接続される出口51と、上側分岐管39に接続される入口52とが設けられている。第二軸11の内側にはパイプ54が挿入され、パイプ54と第二軸11との隙間によってオイル通路55が形成されている。そして、パイプ54の上端は入口52に連通し、オイル通路55の上端は出口51に連通している。
【0025】
図6に示すように、第二回転継手37のボディ57には前記回転軸48が一対の軸受58,59により回転可能に支持され、その内側にパイプ54の下端部が挿入されている。パイプ54と回転軸48との隙間は通路60を形成し、この通路60は第二軸11側のオイル通路55に接続されている。ボディ57には入口61と出口62とが設けられ、入口61は回転軸48の孔63を介し通路60に連通し、出口62はパイプ54に連通している。
【0026】
なお、ボディ57は入口61及び出口62に接続される配管36,40(図2参照)によって回り止めされている。第二回転継手37には、ボディ57と回転軸48との隙間を密閉するシールリング64、回転軸48の鍔部48aをシールリング64に圧接させるバネ65、通路60の下端を密閉するパッキン66が設けられ、第二軸11及び回転軸48の端面間には、通路55,60からのオイル漏れを防止するガスケット67(図5参照)が介装されている。また、第一回転継手35は第二回転継手37と同様に構成されている。
【0027】
上記構成の回転成形機を使用して、成形品を回転成形するには、まず、オイル加熱器27で加熱したオイルをオイル供給装置26から温度調節管76に供給して、型本体74を急速且つ均一に加熱する。このとき、型70は静止していてもよいが、次のように回転している方が好ましい。
【0028】
旋回体4をモータ6で第一軸5の周りに回転させるとともに、型取付部材10をモータ12で第二軸11の周りに回転させ、もって型70を方向の異なる二つの軸5,11の周りに回転させ、型本体74内に投入したパウダー状又はゲル状の熱可塑性樹脂材料80を成形面75に溶融付着させて回転成形する。
【0029】
その後、バルブ30,31を切り換え、オイル冷却器28で冷却したオイルをオイル供給装置26から温度調節管76に供給して型本体74を急速且つ均一に冷却し、回転成形された球殻状の成形品を凝固させてから前記回転を止め、該成形品を脱型する。
【0030】
一具体例として、パウダー状の透明ポリカーボネイト樹脂材料を使用し、加熱温度300℃のオイルを温度調節管76に供給したところ、型本体74の加熱温度は280℃となり、同加熱温度に達するまでの時間は約12分と急速であった。また、加熱温度の制御の精度も高く、何回行っても加熱温度は正確であった。その後、ポリカーボネイト樹脂材料を投入し、さらに回転と加熱とを約8分続けて回転成形した。従って、トータルの加熱時間は約20分である。その後、冷却温度30℃のオイルを温度調節管76に供給したところ、型本体74の冷却温度は50℃となり、同冷却温度に達するまでの冷却時間は約8分であった。従って、1回の回転成形に要する時間は30分弱であり、成形効率が非常に高いとともに、樹脂材料の変色及び物性劣化を防止することができた。
【0031】
そして、温度調節管76と型本体74の裏面とが金網77及び電鋳被覆部78を介して面結合されていて、熱伝導率が高いとともに、温度調節管76の温度が型本体74の広い面積に伝わったので、型本体74の部位による温度のバラツキを防止でき、型本体74を均一に加熱することができた。このため、球殻状の透明成形品の内面がうねることなくなめらかになり、外部から見たときに歪んで見えることも無く、さらにボイドの発生もなかったため、美観に優れた良質の透明成形品を得ることができた。勿論、球殻状以外の各種中空形状(例えば、楕円球殻状、正多面体殻状等)の透明成形品も同様に回転成形することができる。このような良質の中空状の透明成形品は、これまでの我国の技術では回転成形することができなかったものであり、例えば街灯シェード等として使用することができ、さらに新しい用途を開拓することもできる。
【0032】
なお、本発明は前記実施形態に限定されるものではなく、例えば次のように、発明の趣旨から逸脱しない範囲で適宜変更して具体化することもできる。
(1)旋回体を垂直な第一軸の周りに回転させ、型取付部材及び型を水平な第二軸の周りに回転させること。
(2)第一軸及び第二軸を、型の中心からずれた所で直交する2直線上に配置したり、型の略中心又は中心からずれた所で斜めに交差する2直線上に配置したりすること。
(3)型本体に多数の通気孔を有するものを使用し、型本体の裏面を減圧し、成形材料を型本体の表面に吸引しながら回転成形すること。
(4)型本体の裏面に電熱ヒーターを直接結合し、該電熱ヒーターに給電して型本体を急速且つ均一に加熱するように変更すること。冷却は前記温度調節管により行う。
【0033】
【発明の効果】
以上詳述したように、本発明の回転成形方法及び回転成形機によれば、型の温度制御の精度と温度分布の均一性とを高め、内面のなめらかな中空状の樹脂成形品を短時間で効率よく回転成形することができる、という優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の実施形態に係る回転成形機の斜視図である。
【図2】同回転成形機の正面図である。
【図3】同回転成形機の平面図である。
【図4】同回転成形機の側面図である。
【図5】同回転成形機における型取付部材の支持構造を示す断面図である。
【図6】同回転成形機における回転継手の内部構造を示す断面図である。
【図7】同回転成形機における型の内部構造を示す断面図である。
【図8】従来の回転成形機を示す概略図である。
【符号の説明】
1 機枠
4 旋回体
5 第一軸
6 モータ
10 型取付部材
11 第二軸
12 モータ
26 オイル供給装置
27 オイル加熱器
28 オイル冷却器
33 配管機構
35 第一回転継手
37 第二回転継手
70 型
74 型本体
75 成形面
76 温度調節管
77 金網
78 電鋳被覆部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotational molding method and a rotational molding machine that rotate a mold while heating to mold a molded product. This rotational molding method and rotational molding machine are suitable for molding hollow molded products such as automobile equipment, streetlight shades, mannequins, etc., and more particularly suitable for molding transparent hollow molded products.
[0002]
[Prior art]
The following two types are known as conventional rotational molding methods and rotational molding machines.
(1) A rotary molding machine that rotates a mold around a single axis. For example, in the rotary molding machine shown in FIG. 8, the mold 101 is rotatably supported on the machine frame 103 by a shaft 102 and is driven to rotate by a motor 104. Since this type of rotary molding machine has a single axis of rotation, it is easy to supply a heat medium to the mold. Therefore, a heating pipe 105 is provided in contact with the mold body 108 of the mold 101 (line contact), and the heating pipe 105 is connected to the steam supply device 106. At the time of rotational molding, a powdery or gel-like thermoplastic resin material 107 is put into the mold 101, the mold 101 is rotated while being heated by supplying steam, and the resin material 107 is melted and adhered to the mold surface. A molded product is taken out after the mold 101 is cooled by spraying a water shower or the like.
[0003]
(2) A molding machine that rotates the mold around two orthogonal axes. Since this type of rotary molding machine has two rotation axes, it has not been possible to supply a heat medium to the mold. Therefore, the mold was heated from outside by a burner flame, radiant heat of an electric heater, or the like. The mold was cooled by spraying a water shower.
[0004]
[Problems to be solved by the invention]
According to the rotational molding machine of (1) above, since the mold 101 is rotated around a single axis, the resin material 107 is thickly attached to the mold surface around the rotational axis, and the mold surface is perpendicular to the rotational axis. There was a risk that the thickness of the molded product would be non-uniform, such as thin adhesion. Further, in the case of a molded product having a complicated shape, in order to attach the resin material 107 to each part of the mold surface with a predetermined thickness, it is necessary to rotate the mold 101 for a long time or to increase the heating temperature. There are problems that the molding efficiency is lowered, the color of the resin material 107 is discolored (often yellowing), and the physical properties are lowered. In addition to the rotation, attempts have been made to swing the mold 101, but these problems have not been solved.
[0005]
According to the rotary molding machine of (2) above, since the mold is heated from a remote location by a burner flame, radiant heat of an electric heater, etc., the accuracy of the mold heating temperature control is low and the mold temperature distribution is uniform. Since the property is low, there is a problem that the thickness of the molded product becomes uneven and the inner surface is wavy. In particular, in the case of a transparent hollow molded product, if waviness occurs on the inner surface, it appears to be distorted from the outside, so it is difficult to mold the transparent hollow molded product by rotational molding. It was virtually impossible to rotationally mold a large transparent resin molded product with a beautiful appearance.
[0006]
In addition, it takes a long time to heat the mold in the burner flame and the radiant heat of the electric heater, and it takes a long time to cool the mold in spraying a water shower. As a specific example, when a powdered polycarbonate resin material is used and the heating temperature of the mold is set to 280 ° C., it takes about 40 minutes to reach the heating temperature. Also, it took about 20 minutes from the same heating temperature to sufficiently cool the mold. Accordingly, the time required for one rotation molding is 60 minutes or more, and the molding efficiency is very low, and the resin material may be discolored and deteriorated in physical properties. Moreover, the precision of the control of the heating temperature is low, and the heating temperature is different each time it is heated.
[0007]
Therefore, the object of the present invention is to improve the temperature control accuracy of the mold and the uniformity of the temperature distribution, and a rotational molding method capable of efficiently rotationally molding a hollow resin molded product having a smooth inner surface in a short time. It is to provide a rotary molding machine.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the following measures were taken.
[A] A first shaft (5), a U-shaped swivel body (4) whose end is supported by the first shaft (5), and a first swivel member supported rotatably at the center of the swivel body (4). A rotary molding machine comprising a two-axis (11) and a mold (70) attached to the second axis (11), wherein the first axis (5) and the swivel body (4) rotate integrally. The second shaft (11) is configured to rotate and rotate independently of the first shaft (5) and the swivel body (4), and the mold (70) is a shell-shaped mold body having a molding surface on the surface. (74) and a temperature control pipe (76) surface-coupled to the back surface of the mold body (74), the second shaft (11) is formed in a hollow shape, The pipe (54) is inserted, and an oil passage (55) for sending oil to the temperature control pipe (76) is formed by a gap between the outer peripheral surface of the pipe (54) and the inner peripheral surface of the second shaft (11). The rotary molding machine is characterized in that the oil that has passed through the temperature control pipe (76) passes through the inside of the pipe (54).
[B] Using the rotary molding machine described in A above, heated oil is supplied to the temperature control pipe (76) to heat the mold body (74) rapidly and uniformly, and the first shaft (5) and the swivel body (4) and the second shaft (11) are swirled and rotated independently of the first shaft (5) and the swiveling body (4), and a powdery or gel-like thermoplastic resin material is obtained. After rotating and molding a hollow resin molded product by melting and adhering to the molding surface of the heated mold, a cooled oil is supplied to the temperature control pipe (76) to cool the mold body (74) rapidly and uniformly. The rotational molding method characterized by solidifying the rotationally molded resin molded product.
In these means, the following aspects can be taken.
(1) Oil heated from the outside of the mold to the temperature control tube using a mold including a shell-shaped mold body having a molding surface on the surface and a temperature control tube surface-bonded to the back surface of the mold body The mold body is heated rapidly and uniformly, the mold is rotated around two axes having different directions, and the powdery or gel-like thermoplastic resin material introduced into the mold body is applied to the molding surface. It is melt-adhered and rotationally molded, and the mold body is rapidly and uniformly cooled by supplying cooled oil to the temperature control tube from the outside of the mold, and the rotationally molded product is solidified and then the rotation is stopped. A rotational molding method characterized by the above.
[0009]
(2) Use of a mold including a shell-shaped mold body having a molding surface on the surface, an electric heater directly coupled to the back surface of the mold body, and a temperature control tube surface-coupled to the back surface of the mold body A powder-like or gel-like thermoplastic resin that is supplied to the electric heater, rapidly and uniformly heats the die body, rotates the die around two different axes, and is put into the die body The material is melt-adhered to the molding surface and rotationally molded. The cooled body is rapidly and uniformly cooled by supplying cooled oil to the temperature control tube from the outside of the mold, and the rotationally molded molded product is solidified. The rotation molding method is characterized in that the rotation is stopped.
[0010]
The rotational molding methods of (1) and (2) are not particularly limited in the type and color of the thermoplastic resin, but the inner surface is particularly visible because of the effect that the inner surface of the molded product is less likely to swell. In other words, it is optimal when the thermoplastic resin is a transparent resin and the molded product is a transparent resin molded product. Here, “transparent” means not only colorless and transparent, but also includes colored and translucent.
[0011]
The rotational molding methods of (1) and (2) are not particularly limited in the heating temperature of the mold body. However, the heating temperature of the mold body is 200 to 200, which is a high temperature range in which discoloration of the resin and deterioration of physical properties are problematic. It is optimal when it is 320 ° C. Since this method has the effect of heating and cooling the mold body rapidly and minimizing the amount of heat applied to the resin, it can prevent resin discoloration and physical properties from being lowered even in such a high temperature range. Because.
[0012]
In these rotational molding methods (1) and (2), the heating time of the mold body is preferably less than 30 minutes, and the cooling time of the mold body is preferably less than 15 minutes. This is to increase molding efficiency and to prevent discoloration and deterioration of physical properties of the resin.
[0013]
(3) A machine frame, a revolving body supported rotatably on the machine frame by a first axis, a means for rotationally driving the revolving body, and a second direction in which the first axis differs in the revolving body. A mold rotatably supported by a shaft, and means for rotationally driving the mold, the mold being surface-bonded to a shell-shaped mold body having a molding surface on the surface, and a back surface of the mold body An oil supply device provided outside the mold, and a piping mechanism for circulating oil between the oil supply device and the temperature control tube. A rotary molding machine including a first rotary joint provided on a second rotary joint provided on a second shaft.
[0014]
In the rotary molding machine of (3), the fact that the temperature control tube is surface-bonded to the back surface of the mold body means that the temperature control tube and the back surface of the mold body are not in line contact but joined via a surface having an area. It means that it has been. This is because the temperature of the temperature control tube is uniformly transmitted to the back surface of the mold body with high conductivity. The mode of surface bonding is not particularly limited, but the temperature control tube is disposed so as to contact the back surface of the mold body, and a thin body having a plurality of through holes and having conductivity on the surface is used as the temperature control tube. Covered from the back side and temporarily fixed to the mold body, an electroformed coating part is electroformed on the back surface of the mold body, the temperature control tube and the thin body, and the thin body and the electroformed coating part are interposed therebetween. Thus, it is preferable that the temperature control tube is surface-bonded to the back surface of the mold body.
[0015]
Moreover, it is preferable to arrange | position a 1st axis | shaft and a 2nd axis | shaft on two straight lines orthogonal at the approximate center of a type | mold so that a type | mold can be rotated with sufficient balance.
[0016]
Further, an oil heater and an oil cooler may be provided in the oil supply device so that the heating oil and the cooling oil can be selectively supplied to the mold body.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 4, the machine casing 1 of the rotary molding machine includes a base 2 and a pair of left and right stands 3. A U-shaped revolving body 4 is arranged between the stands 3, and a first shaft 5 is provided at the upper end of the stand 3, and the revolving body 4 can be rotated around the horizontal axis on the machine frame 1 by the first shaft 5. It is supported by. One stand 3 is provided with a motor 6, and its output shaft is connected to one first shaft 5 via gears 7 and 8, and the motor 6 constitutes a means for driving the revolving body 4 to rotate.
[0018]
A mold mounting member 10 is disposed inside the revolving body 4, a second shaft 11 is provided at a substantially central portion of the revolving body 4, and the mold mounting member 10 is connected to the revolving body 4 by the second shaft 11. Is supported so as to be rotatable about an axis perpendicular to the axis. A motor 12 is installed at the corner of the revolving body 4, and its output shaft is connected to the second shaft 11 through a chain wheel 13, a chain 14, and a chain wheel 15, and the motor 12 drives the mold mounting member 10 to rotate. Means. The power supply line 16 (see FIG. 2) of the motor 12 is wired through the first shaft 5.
[0019]
A die 70 is placed on the upper surface of the die attaching member 10 and attached by attaching means such as a bolt 18. As shown in FIG. 7, the mold 70 is a split mold composed of an upper mold 71 and a lower mold 72 that can be opened and closed. Both the upper mold 71 and the lower mold 72 are a box-shaped support frame 73 and a support frame. 73, a shell-shaped mold main body 74 supported on 73 and having a molding surface 75 on the surface, and a temperature control tube 76 surface-bonded to the back surface of the mold main body 74. The first shaft 5 and the second shaft 11 are arranged on two straight lines that are orthogonal to each other at the approximate center of the mold 70.
[0020]
The die body 74 of this embodiment is a nickel alloy shell produced by electroforming, and has a wall thickness of about 3 mm and a molding surface 75 having a spherical surface with a diameter of 260 mm. On the back surface of the mold main body 74, a continuous temperature adjusting tube 76 made of copper and having an outer diameter of 10 mm and a wall thickness of 1 mm is disposed so as to be in contact with each other. The pitch between the centers of the adjacent temperature adjusting tubes 76 is 30 to 100 mm. It is evenly arranged. A 14-mesh metal mesh 77 made of a stainless steel wire having a wire diameter of 0.3 mm is put on the temperature control tube 76 in a mountain shape from the back side, and the metal mesh 77 is temporarily fixed to the die body 74 by spot welding. . On the back surface of the mold main body 74, the temperature control tube 76 and the metal mesh 77, a copper electroformed coating portion 78 is electroformed. The mesh of the metal mesh 77 is closed with an electroformed coating portion 78. In addition, since the electroformed coating portion 78 is also attached between the wire mesh 77 and the back surface of the die main body 74 and between the wire mesh 77 and the temperature adjustment pipe 76 through a large number of meshes of the wire mesh 77, the temperature adjustment is performed. The tube 76 and the back surface of the mold body 74 are firmly bonded by surface bonding and are also firmly bonded thermally.
[0021]
An oil supply device 26 is installed at one end of the base 2. The oil supply device 26 includes an oil heater 27, an oil cooler 28, a pump 29, an outlet side valve 30, and an inlet side valve 31. By switching the valves 30 and 31, heating oil or cooling oil is provided. Can be selectively supplied to the internal piping of the mold 70.
[0022]
A piping mechanism 33 for circulating heating oil or cooling oil is provided between the oil supply device 26 and the mold 70. This piping mechanism 33 passes heating oil or cooling oil from the oil supply device 26 through a path of piping 34 → first rotary joint 35 → pipe 36 → second rotary joint 37 → lower branch pipe 38 → pipe 81. It is sent to the temperature control pipe 76 of the upper mold 71. The oil that has heated or cooled the mold main body 74 of the upper mold 71 through the temperature control pipe 76 is sent to the temperature control pipe 76 of the lower mold 72 through the communication pipe 83 in the mold 70. The oil that has heated or cooled the die main body 74 of the lower die 72 through the temperature control pipe 76 is a path of the pipe 82 → the upper branch pipe 39 → the second rotary joint 37 → the pipe 40 → the first rotary joint 35 → the pipe 41. It is configured to pass through and return to the oil supply device 26. The first rotary joint 35 is provided on the first shaft 5, and the second rotary joint 37 is provided on the second shaft 11.
[0023]
As shown in FIG. 5, the second shaft 11 is formed in a hollow shape and is rotatably supported by the revolving body 4 by a pair of upper and lower bushes 43 and 44. The chain wheel 15 is inserted into the middle portion of the second shaft 11 via a key 45, and a screw 46 is formed at the lower end portion of the second shaft 11. A nut 47 is fastened to the screw 46, and a rotating shaft 48 of the second rotary joint 37 is coupled to the nut 47 with a bolt 49.
[0024]
The upper end of the second shaft 11 is provided with a flange 50 fixed to the mold mounting member 10, an outlet 51 connected to the lower branch pipe 38, and an inlet 52 connected to the upper branch pipe 39. Yes. A pipe 54 is inserted inside the second shaft 11, and an oil passage 55 is formed by a gap between the pipe 54 and the second shaft 11. The upper end of the pipe 54 communicates with the inlet 52, and the upper end of the oil passage 55 communicates with the outlet 51.
[0025]
As shown in FIG. 6, the rotary shaft 48 is rotatably supported by a body 57 of the second rotary joint 37 by a pair of bearings 58 and 59, and a lower end portion of the pipe 54 is inserted therein. A gap between the pipe 54 and the rotary shaft 48 forms a passage 60, and the passage 60 is connected to an oil passage 55 on the second shaft 11 side. The body 57 is provided with an inlet 61 and an outlet 62, the inlet 61 communicates with the passage 60 through the hole 63 of the rotating shaft 48, and the outlet 62 communicates with the pipe 54.
[0026]
The body 57 is prevented from rotating by pipes 36 and 40 (see FIG. 2) connected to the inlet 61 and the outlet 62. The second rotary joint 37 includes a seal ring 64 that seals the gap between the body 57 and the rotary shaft 48, a spring 65 that presses the flange portion 48 a of the rotary shaft 48 against the seal ring 64, and a packing 66 that seals the lower end of the passage 60. Between the end surfaces of the second shaft 11 and the rotating shaft 48, a gasket 67 (see FIG. 5) for preventing oil leakage from the passages 55 and 60 is interposed. The first rotary joint 35 is configured in the same manner as the second rotary joint 37.
[0027]
In order to rotationally mold a molded product using the rotary molding machine having the above-described configuration, first, the oil heated by the oil heater 27 is supplied from the oil supply device 26 to the temperature control pipe 76, and the mold body 74 is quickly moved. And heat uniformly. At this time, the mold 70 may be stationary, but is preferably rotated as follows.
[0028]
The revolving body 4 is rotated around the first axis 5 by the motor 6 and the mold mounting member 10 is rotated around the second axis 11 by the motor 12, so that the mold 70 is moved between the two axes 5, 11 having different directions. The powder-like or gel-like thermoplastic resin material 80 charged in the mold body 74 is melted and adhered to the molding surface 75 and rotated.
[0029]
Thereafter, the valves 30 and 31 are switched, and the oil cooled by the oil cooler 28 is supplied from the oil supply device 26 to the temperature control pipe 76 to cool the mold body 74 rapidly and uniformly, and the rotationally molded spherical shell shape After the molded product is solidified, the rotation is stopped and the molded product is demolded.
[0030]
As one specific example, when a powdery transparent polycarbonate resin material is used and oil having a heating temperature of 300 ° C. is supplied to the temperature control tube 76, the heating temperature of the mold body 74 becomes 280 ° C. The time was rapid, about 12 minutes. In addition, the control of the heating temperature was highly accurate, and the heating temperature was accurate no matter how many times it was performed. Thereafter, a polycarbonate resin material was added, and rotation and heating were further continued for about 8 minutes for rotation molding. Therefore, the total heating time is about 20 minutes. Then, when oil with a cooling temperature of 30 ° C. was supplied to the temperature control tube 76, the cooling temperature of the mold body 74 became 50 ° C., and the cooling time until reaching the cooling temperature was about 8 minutes. Accordingly, the time required for one rotation molding is less than 30 minutes, the molding efficiency is very high, and the discoloration and physical property deterioration of the resin material can be prevented.
[0031]
The temperature control tube 76 and the back surface of the mold body 74 are surface-coupled via the wire mesh 77 and the electroformed coating portion 78, so that the thermal conductivity is high and the temperature of the temperature control tube 76 is wide in the mold body 74. Since it was transmitted to the area, temperature variation due to the portion of the mold body 74 could be prevented, and the mold body 74 could be heated uniformly. For this reason, the inner surface of the spherical shell-shaped transparent molded product is smooth without undulation, it does not appear to be distorted when viewed from the outside, and no voids are generated. Could get. Of course, various hollow shapes other than the spherical shell shape (for example, an elliptical spherical shell shape, a regular polyhedral shell shape, etc.) can be similarly rotationally molded. Such a high-quality hollow transparent molded product cannot be rotationally molded by our technology so far, and can be used as, for example, a streetlight shade, etc. You can also.
[0032]
In addition, this invention is not limited to the said embodiment, For example, as follows, it can also change suitably in the range which does not deviate from the meaning of invention, and can also be embodied.
(1) The rotating body is rotated around the vertical first axis, and the mold mounting member and the mold are rotated around the horizontal second axis.
(2) The first axis and the second axis are arranged on two straight lines that are orthogonal to each other at a position deviated from the center of the mold, or are arranged on two straight lines that intersect obliquely at a position deviated from the approximate center or center of the mold To do.
(3) Using a mold body having a large number of ventilation holes, reducing the pressure on the back surface of the mold body, and performing rotational molding while sucking the molding material onto the surface of the mold body.
(4) An electric heater is directly coupled to the back surface of the mold body, and the mold body is changed so as to be heated rapidly and uniformly by supplying power to the electric heater. Cooling is performed by the temperature control tube.
[0033]
【The invention's effect】
As described above in detail, according to the rotational molding method and the rotational molding machine of the present invention, the accuracy of temperature control of the mold and the uniformity of the temperature distribution are improved, and a smooth hollow resin molded product on the inner surface can be formed in a short time. It has an excellent effect that it can be efficiently rotationally molded.
[Brief description of the drawings]
FIG. 1 is a perspective view of a rotary molding machine according to an embodiment of the present invention.
FIG. 2 is a front view of the rotational molding machine.
FIG. 3 is a plan view of the rotational molding machine.
FIG. 4 is a side view of the rotational molding machine.
FIG. 5 is a cross-sectional view showing a support structure of a die attachment member in the same rotary molding machine.
FIG. 6 is a cross-sectional view showing the internal structure of a rotary joint in the same rotary molding machine.
FIG. 7 is a sectional view showing an internal structure of a mold in the rotary molding machine.
FIG. 8 is a schematic view showing a conventional rotary molding machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Machine frame 4 Revolving body 5 1st axis | shaft 6 Motor 10 type | mold mounting member 11 2nd axis | shaft 12 Motor 26 Oil supply apparatus 27 Oil heater 28 Oil cooler 33 Piping mechanism 35 1st rotation joint 37 2nd rotation joint 70 Type 74 Mold body 75 Molding surface 76 Temperature control tube 77 Wire mesh 78 Electroformed coating part

Claims (2)

第一軸(5)と、第一軸(5)により端部が支持されたコ字形の旋回体(4)と、旋回体(4)の中央部に回転可能に支持された第二軸(11)と、第二軸(11)に取り付けられた型(70)とからなる回転成形機であって、第一軸(5)と旋回体(4)とが一体に旋回回転し、第二軸(11)が第一軸(5)及び旋回体(4)とは無関係に旋回回転するように構成され、型(70)は、表面に成形面を有する殻体状の型本体(74)と、型本体(74)の裏面に面結合された温度調節管(76)とを含み、第二軸(11)は中空状に形成され、第二軸(11)の内側にはパイプ(54)が挿入され、パイプ(54)の外周面と第二軸(11)の内周面との隙間によって温度調節管(76)へオイルを送るオイル通路(55)が形成され、温度調節管(76)を経たオイルはパイプ(54)の内部を通るように構成されたことを特徴とする回転成形機。A first shaft (5), a U-shaped swivel body (4) whose end is supported by the first shaft (5), and a second shaft (16) rotatably supported at the center of the swivel body (4). 11) and a mold (70) attached to the second shaft (11), wherein the first shaft (5) and the swivel body (4) rotate together to rotate, The shaft (11) is configured to rotate and rotate independently of the first shaft (5) and the swivel body (4), and the mold (70) is a shell-shaped mold body (74) having a molding surface on the surface. And a temperature control pipe (76) surface-coupled to the back surface of the mold body (74), the second shaft (11) is formed in a hollow shape, and a pipe (54) is formed inside the second shaft (11). ) Is inserted, and an oil passage (55) for sending oil to the temperature control pipe (76) is formed by a gap between the outer peripheral surface of the pipe (54) and the inner peripheral surface of the second shaft (11), Oil that has undergone degrees control pipe (76) is rotational molding machine, characterized in that it is configured to pass through the inside of the pipe (54). 請求項1記載の回転成形機を使用し、温度調節管(76)に加熱したオイルを供給して型本体(74)を急速且つ均一に加熱し、第一軸(5)と旋回体(4)とを一体に旋回回転させるとともに、第二軸(11)を第一軸(5)及び旋回体(4)とは無関係に旋回回転させ、パウダー状又はゲル状の熱可塑性樹脂材料を前記加熱した型の成形面に溶融付着させて中空状の樹脂成形品を回転成形した後、温度調節管(76)に冷却したオイルを供給して型本体(74)を急速且つ均一に冷却し、前記回転成形された樹脂成形品を凝固させることを特徴とする回転成形方法。Using the rotary molding machine according to claim 1, heated oil is supplied to the temperature control pipe (76) to heat the mold body (74) rapidly and uniformly, and the first shaft (5) and the swivel body (4) ) And the second shaft (11) are swirled and rotated independently of the first shaft (5) and the swivel body (4) to heat the powder-like or gel-like thermoplastic resin material. After rotating and molding a hollow resin molded product by melting and adhering to the molding surface of the mold, a cooled oil is supplied to the temperature control pipe (76) to cool the mold body (74) rapidly and uniformly, A rotational molding method comprising solidifying a rotationally molded resin molded product.
JP7669699A 1999-03-19 1999-03-19 Rotational molding method and rotational molding machine Expired - Lifetime JP4093672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7669699A JP4093672B2 (en) 1999-03-19 1999-03-19 Rotational molding method and rotational molding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7669699A JP4093672B2 (en) 1999-03-19 1999-03-19 Rotational molding method and rotational molding machine

Publications (2)

Publication Number Publication Date
JP2000263569A JP2000263569A (en) 2000-09-26
JP4093672B2 true JP4093672B2 (en) 2008-06-04

Family

ID=13612664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7669699A Expired - Lifetime JP4093672B2 (en) 1999-03-19 1999-03-19 Rotational molding method and rotational molding machine

Country Status (1)

Country Link
JP (1) JP4093672B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101676626B (en) * 2008-09-19 2011-04-13 建准电机工业股份有限公司 Lamp
CN103673533A (en) * 2013-12-04 2014-03-26 大连葆光节能空调设备厂 Resin material even drying device
SG10202004764YA (en) * 2020-05-21 2021-05-28 Eastern Petroleum Services B V Cavity mold and cavity mold system
CN111703000A (en) * 2020-06-23 2020-09-25 浙江本凡机械有限公司 Rotational molding die with built-in temperature control device
KR102279345B1 (en) * 2020-08-11 2021-07-22 주식회사 케이엔디 Mannequin manufacturing device using centrifugal molding method
CN117799097B (en) * 2024-02-23 2024-05-14 山东天海重工有限公司 Product cooling system of rotational molding machine
CN118544503B (en) * 2024-07-30 2024-10-18 广州宏大塑料制品有限公司 Production device and technology of plastic water tank

Also Published As

Publication number Publication date
JP2000263569A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
JP4093672B2 (en) Rotational molding method and rotational molding machine
US3316339A (en) Method and apparatus for molding hollow articles from resins
JP2008508122A (en) Encapsulated mold assembly and replaceable cartridge
US7550103B2 (en) Plastic skin forming process
JP4113610B2 (en) Injection molding apparatus having cooling core
CN117535638A (en) Binding method for rotary target
CN102107480A (en) Rotational molding mould device and method for manufacturing rotational molding mould
CN1048212C (en) Two-piece injection molding nozzle seal
JPH0276709A (en) Mold and manufacture thereof
JP3986166B2 (en) Surface heater heating mold
GB2048151A (en) Rotary moulding of hollow articles
JPS61262452A (en) Roll device for producing thin metallic sheet by continuous casting
US5077019A (en) Polymer forming device
CN212422308U (en) Mold cooling device
CN213412686U (en) L arm mechanism of rotational molding equipment
JPH0436252Y2 (en)
JP2003062884A (en) Injection molding device
CN208760022U (en) A kind of desktop grade 3D printer that material spray is stable
JPS62253417A (en) Method of slush molding skin material and its molding equipment
CN216423106U (en) Beautiful first raw materials heating feed cylinder
CN101518403B (en) Frozen and refrigerated display case structure
JPH01275108A (en) Manufacture and production unit for plastic molded sheet
JP3775847B2 (en) Laser ablation equipment
CN220053232U (en) Leather knurling preliminary treatment cooling device
CN219356701U (en) Roller type hot melt adhesive coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term