JP4092745B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP4092745B2
JP4092745B2 JP17544097A JP17544097A JP4092745B2 JP 4092745 B2 JP4092745 B2 JP 4092745B2 JP 17544097 A JP17544097 A JP 17544097A JP 17544097 A JP17544097 A JP 17544097A JP 4092745 B2 JP4092745 B2 JP 4092745B2
Authority
JP
Japan
Prior art keywords
battery
battery case
power generation
groove
generation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17544097A
Other languages
Japanese (ja)
Other versions
JPH1125931A (en
Inventor
一朗 松久
豪 皆藤
倫吉 米原
雅哉 菅藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17544097A priority Critical patent/JP4092745B2/en
Publication of JPH1125931A publication Critical patent/JPH1125931A/en
Application granted granted Critical
Publication of JP4092745B2 publication Critical patent/JP4092745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池用ケースの改良に関する。
【0002】
【従来の技術】
電池は一般的に、正極,負極,セパレータからなる発電要素構成群を電池ケース内に挿入し、電解液を注入後、電池ケースの開口部を封口蓋等を用いて封口して作製するのが普通である。そして、電池より外部に電圧を取り出すため、金属リボン等の集電体を用い、正極あるいは負極と電池ケースとを接続し、電池ケースと接続していない他方の極と封口蓋を接続する構成としている。この種の電池に振動や衝撃が加わった場合は、電池ケースに内蔵された正極もしくは負極の一部が、他極と接続された封口蓋もしくは電池ケースと接触し、内部短絡を起こす危険性がある。そこで、発電要素構成群の上部か下部のいずれか一方またはその両方に絶縁板を配設して前記の内部短絡を防止している。絶縁板はその外周形状が電池ケースの内周形状に沿う形状とすることが一般的である。例えば、円筒形電池の場合の形状は、図5に示すようなリング状に形成した絶縁板Rが提案されている。このような構造であれば、前記内部短絡を防止するには充分である。
【0003】
【発明が解決しようとする課題】
しかしながら、前記構成の電池ケースと絶縁板Rでは、電池を製造する時に、注液工程において、電解液の含浸経路が絶縁板Rにより遮断されるため、電池内部、特に発電要素構成群に対する電解液の含浸性が悪い。このため、電解液の含浸速度が遅く、電解液の注液工程に長時間を必要とするため電池の生産性が低下する要因となっていた。また、発電要素構成群内に充分電解液が含浸されていないことにより電池反応が充分に起こらず、電池性能が悪いという問題が発生することもあった。
【0004】
本発明はこのような前記する課題に対応すべく、内部短絡を防止しつつ、電解液の注液工程での電解液の含浸性を良好に確保できる電池ケースを提供することにより、電池の生産性の向上および電池性能を安定化することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明は前記課題を解決するために、電池ケースの開口部に外側面から窪んでいる溝部を設け、前記電池ケース内に収納された発電要素構成群の上部に前記溝部の内面と接する円環状絶縁板を配設し、前記円環状絶縁板と対向する前記溝部の内面に設けた凹部あるいは凸部によって電解液を誘導する間隙を備える構成としたものである。本発明の構造を用いることで、発電要素構成群の端部からの電解液の含浸経路が確保でき、発電要素構成群の端部の空気と電解液の置換が容易となり、発電要素構成群に対する電解液の含浸性が良くなる。特に、発電要素構成群と電池ケースとの界面における電解液の含浸性を飛躍的に向上させることができる。このことにより電解液の含浸速度が速くなり、電解液注液工程に必要な時間が短縮でき、生産性が向上できる。また、含浸不充分による電池性能の低下も防止することができる。
【0006】
【発明の実施の形態】
本発明は、各請求項に示す形態によって実施できるものであり、請求項1記載のように、電池ケースの開口部に外側面から窪んでいる溝部を設け、前記電池ケース内に収納された発電要素構成群の上部に前記溝部の内面と接する円環状絶縁板を配設し、前記円環状絶縁板と対向する前記溝部の内面に設けた凹部あるいは凸部によって電解液を誘導する間隙を備える構成とすることにより、電池製造時の電解液注液工程において、電解液は前記電池ケースと円環状絶縁板との間隙を通って電池ケース内に注液されることになる。従って、円環状絶縁板と電池ケース内面とが密着していて電解液が電池ケース内に含浸され難い従来技術による電池の問題点を解消することができる。
【0007】
そして、凹部あるいは凸部によって形成される電解液誘導する間隙は、請求項2記載のように、電池ケースの高さ方向に形成される複数の線条によって簡単に設けることができる。
【0008】
特に、請求項3記載のように、電池ケースの内面にスプライン加工を施すことによって効率良く実施できる。
【0009】
また、請求項4記載のように、凸部によって形成される電解液誘導する間隙は電池ケースの外面から円環状絶縁板に対向する部分に打痕により容易に設けることができる
【0010】
【実施例】
以下、本発明の実施例について従来例と比較しながら詳細に説明する。
【0011】
図1に正極活物質としてLiCoO2、負極活物質としてカーボンを使用した一般に知られている円筒形リチウムイオン二次電池の縦断面図を示す。図1において、1はニッケルめっき鋼板を加工した電池ケース、2は封口蓋、3は発電要素構成群である。発電要素構成群3は正極板および負極板がセパレータを介して複数回渦巻状に巻回されたものである。そして、前記正極板から正極リード4が引き出されて封口蓋2に接続され、負極板からは負極リード5が引き出されて電池ケース1の内底部に接続されている。6は発電要素構成群3の上部の円環状絶縁板で、7は発電要素構成群3の下部の絶縁板である。また、電池ケース1の開口部付近に電池ケース1の外側面から窪んでいる溝部1aを設け、この溝部1aに封口蓋2をのせ、電池ケース1の開口部をかしめることにより電池を封口している。なお、電池ケース1の径は16.4mm、溝部1aの内径は13.4mm、電池ケース1の開口時、溝部1aから電池開口端部までは5.0mm、電池ケース底部から電池開口端部までは50.0mm、そして、発電要素構成群3は外径15.5mm,長さ45.0mmとする。
【0012】
ここで、前記円筒形リチウムイオン二次電池の電池ケースとして、開口部付近に溝部1aを設けたものを用い図1に示す電池を作製し、従来例電池とした。そして、電池ケース1の内面にスプライン加工をして電池ケース1の内面に図2,図3に示すように、電池の高さ方向に線条をなす複数の凸部8によって電解液誘導する隙を形成した電池ケース1を用いた以外は従来例電池と全く同じ構成で電池を作製し、実施例電池Aとした。さらに、従来例電池と全く同じ構成で図1に示すように、電池ケース1の開口部に溝部1aを設けた後に図4に示すように、電池ケース1において上部の円環状絶縁板6と対向する溝部1aの内面に2箇所打痕を入れて、溝部1aの内面に凸部92箇所に形成した以外は従来例電池と全く同じ構成で電池を作製し、実施例電池Bとした。
【0013】
これら従来例電池,実施例電池A,実施例電池Bにそれぞれ非水電解液を3.0cc注入し、これを260mmHgまで4秒間減圧した後、大気に開放する。このようにして注液を行った各電池について、電解液の含浸性の比較をするため、大気開放直後の電池から発電要素構成群を取り出し分解し、電解液が含浸されている極板の面積を確認すること、大気開放直後の開口部付近の発電要素構成群上に残っている電解液の残液量を測定すること、そして、大気開放から電池開口部の電解液の残液がなくなるまでの時間を測定すること、以上3つの確認および測定を行った。一方、これらの従来例電池,実施例電池A,実施例電池Bの性能を比較するため、注液直後の各電池を封口し、その内部抵抗を測定するとともに、以下の充放電を行い電池容量を確認した。充電は最大電流0.5A,4.1V定電流定電圧充電を2時間行い、放電は720mA定電流で3.0Vまで行った。
【0014】
まず、大気開放直後の発電要素構成群内の電解液が含浸されている極板の面積は、実施例電池Bが最も大きく、全極板面積の約2/3に及び、実施例電池Bについて電解液が含浸されている極板の面積が大きいのは実施例電池Aで全極板面積の約3/5であり、最も電解液が含浸されていなかったのは、従来例電池で全極板面積の約1/10であった。
【0015】
次に、大気開放直後の電池開口部付近の発電要素構成群上に残っている電解液の残液量は、従来例電池が最も多くて約2.2cc、次に実施例電池Aで約0.3cc、最も残液量が少なかったのは実施例電池Bで約0.2ccであった。
【0016】
次に、大気開放から電池開口部の電解液の残液がなくなるまでの時間は、従来例電池が最も長くて約20分、次に実施例電池Aで約7分、最も短かったのは実施例電池Bで約5分であった。
【0017】
一方、電池の内部抵抗は従来例電池が最も高くて700mΩ、次に実施例電池Aで120mΩ、最も低かったのは実施例電池Bで110mΩであった。また電池容量は、実施例電池Bが最も大きくて700mAh、次に実施例電池Aで690mAh、最も少なかったのは従来例電池で250mAhであった。これは各電池により、発電要素構成群に対する電解液の含浸性が異なるため、発電要素構成群内の極板の反応面積が増減するためである。すなわち、電解液の含浸性の良い実施例電池Aと実施例電池Bとでは従来例電池に比べて極板の反応面積が広くなるため、内部抵抗が低く、電池容量が大きくなったものである。
【0018】
以上の結果を表1にまとめる。
【0019】
【表1】

Figure 0004092745
【0020】
表1に示す結果より、従来例電池に対して実施例電池Aと実施例電池Bとでは電解液の含浸性が明らかに向上していることがわかる。
【0021】
上記の検討を、電解液の粘度が0.1〜500cPと異なるものについて実施したところ、電池ケース1の溝部1aの内面に凹部あるいは凸部によって電解液誘導する隙を備えることで電解液の含浸性を向上させることが可能であることがわかった。また、その効果は電解液の粘度が高いものほど顕著であった。
【0022】
【発明の効果】
以上の説明から明らかなように、本発明によれば、発電要素構成群に対する電解液の含浸性が向上でき、電解液の含浸速度が速くなることにより、電解液の注液工程に必要な時間が短縮して、生産性を向上させることができる。また、電解液の含浸が不充分なことによる電池性能の低下も防止でき、安定した信頼性の高い電池を供給することができる。
【図面の簡単な説明】
【図1】 円筒形リチウムイオン二次電池の縦断面図
【図2】 本発明の実施例におけるスプライン加工を施した電池ケースの縦断面図
【図3】 同スプライン加工を施した電池ケースの横断面図
【図4】 本発明の他の実施例において電解液誘導する間隙溝部の内面に打痕により形成した円筒形リチウムイオン二次電池の横断面図
【図5】 従来例における絶縁板の平面図
【符号の説明】
1 電池ケース
1a 溝部
2 封口蓋
3 発電要素構成群
4 正極リード
5 負極リード
6 上部の円環状絶縁板
7 下部の絶縁板
凸部
凸部 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a battery case.
[0002]
[Prior art]
Generally, a battery is manufactured by inserting a power generation element component group consisting of a positive electrode, a negative electrode, and a separator into a battery case, injecting an electrolyte, and sealing the opening of the battery case with a sealing lid or the like. It is normal. In order to extract the voltage from the battery, a current collector such as a metal ribbon is used, the positive electrode or the negative electrode is connected to the battery case, and the other electrode not connected to the battery case is connected to the sealing lid. Yes. When this type of battery is subjected to vibration or impact, there is a risk that a part of the positive or negative electrode built into the battery case will come into contact with the sealing lid or battery case connected to the other electrode, causing an internal short circuit. is there. Therefore, the internal short circuit is prevented by disposing an insulating plate on one or both of the upper part and the lower part of the power generation element configuration group. In general, the outer peripheral shape of the insulating plate is a shape along the inner peripheral shape of the battery case. For example, as a shape of a cylindrical battery, an insulating plate R formed in a ring shape as shown in FIG. 5 has been proposed. Such a structure is sufficient to prevent the internal short circuit.
[0003]
[Problems to be solved by the invention]
However, in the battery case and the insulating plate R configured as described above, the electrolyte solution impregnation path is blocked by the insulating plate R in the pouring step when the battery is manufactured. The impregnation property is poor. For this reason, the impregnation rate of the electrolytic solution is slow, and a long time is required for the step of injecting the electrolytic solution. In addition, since the power generation element component group is not sufficiently impregnated with the electrolyte solution, the battery reaction does not sufficiently occur, and the battery performance may be deteriorated.
[0004]
In order to cope with such a problem as described above, the present invention provides a battery case capable of ensuring good impregnation of the electrolytic solution in the electrolytic solution pouring process while preventing an internal short circuit. It is intended to improve the battery performance and stabilize the battery performance.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides an annular shape in which an opening of the battery case is provided with a groove that is recessed from the outer surface, and is in contact with the inner surface of the groove on the upper part of the power generation element configuration group housed in the battery case disposed insulating plates, Ru der those configured to include a gap to induce electrolyte by the annular insulating plate opposed to the concave portion or convex portion provided on the inner surface of the groove. By using the structure of the present invention, the electrolyte impregnation path from the end of the power generation element configuration group can be secured, and the air and the electrolyte at the end of the power generation element configuration group can be easily replaced. Kunar is good impregnation of the electrolytic solution. In particular, it is possible to dramatically improve the impregnation property of the electrolytic solution at the interface between the power generation element constituent group and the battery case. As a result, the impregnation rate of the electrolytic solution is increased, the time required for the electrolytic solution pouring step can be shortened, and the productivity can be improved. In addition, it is possible to prevent a decrease in battery performance due to insufficient impregnation.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
This onset Ming, which can be implemented by embodiments shown in the claims, as claimed in claim 1, provided with a groove that is recessed from the outer surface to the opening of the battery case, which is housed in the battery case An annular insulating plate that is in contact with the inner surface of the groove is disposed on the upper part of the power generation element constituent group, and a gap for guiding the electrolyte is provided by a recess or a protrusion provided on the inner surface of the groove facing the annular insulating plate. with the structure, the electrolyte pour process during cell manufacturing, the electrolyte will be injected into the battery case through the gap between the front Symbol batteries case an annular insulating plate. Accordingly, it is possible to solve the problems of the battery according to the prior art in which the annular insulating plate and the battery case inner surface are in close contact and the electrolyte solution is not easily impregnated in the battery case.
[0007]
The gap for inducing the electrolytic solution formed by the concave portion or the convex portion can be easily provided by a plurality of filaments formed in the height direction of the battery case.
[0008]
In particular, as described in claim 3, it can be efficiently carried out by subjecting the inner surface of the battery case to spline processing.
[0009]
According to the fourth aspect of the present invention, the gap for inducing the electrolyte formed by the convex portion can be easily provided by a dent in a portion facing the annular insulating plate from the outer surface of the battery case.
[0010]
【Example】
Hereinafter, examples of the present invention will be described in detail in comparison with conventional examples.
[0011]
FIG. 1 shows a longitudinal sectional view of a generally known cylindrical lithium ion secondary battery using LiCoO 2 as a positive electrode active material and carbon as a negative electrode active material. In FIG. 1, 1 is a battery case obtained by processing a nickel-plated steel plate, 2 is a sealing lid, and 3 is a power generation element component group. In the power generation element configuration group 3, a positive electrode plate and a negative electrode plate are wound in a spiral shape a plurality of times through a separator. A positive electrode lead 4 is drawn from the positive electrode plate and connected to the sealing lid 2, and a negative electrode lead 5 is drawn from the negative electrode plate and connected to the inner bottom of the battery case 1. Reference numeral 6 denotes an annular insulating plate on the upper part of the power generation element configuration group 3, and 7 denotes an insulating plate on the lower side of the power generation element configuration group 3. Furthermore, it provided a groove 1a and Nde outer surface or et recess of the battery case 1 in the vicinity of the opening portion of the battery case 1, carrying the sealing lid 2 in the groove portion 1a, sealing the battery by caulking the opening portion of the battery case 1 is doing. The diameter of the battery case 1 is 16.4 mm, the inner diameter of the groove 1a is 13.4 mm, and when the battery case 1 is opened, the distance from the groove 1a to the battery opening end is 5.0 mm, and from the battery case bottom to the battery opening end. Is 50.0 mm, and the power generation element group 3 has an outer diameter of 15.5 mm and a length of 45.0 mm.
[0012]
Here, as the battery case of the cylindrical lithium ion secondary battery, the battery shown in FIG. 1 was prepared using the one provided with the groove 1a in the vicinity of the opening, and a conventional battery was obtained. Then, 2 to the inner surface of the battery case 1 and the splined to the inner surface of the battery case 1, as shown in FIG. 3, to induce an electrolytic solution by a plurality of protrusions 8 forming the filament in the height direction of the battery except for using the battery case 1 formed between gap will produce a battery in exactly the same structure as the conventional example batteries was as example battery a. Further, as shown in FIG. 1 with the same configuration as the conventional battery, as shown in FIG. 4 after providing the groove 1a in the opening of the battery case 1, the battery case 1 is opposed to the upper annular insulating plate 6 as shown in FIG. put two places dent to the inner surface of the groove 1a which, except formed in two places protrusions 9 on the inner surface of the groove 1a to produce a battery in exactly the same structure as the conventional example batteries was as example battery B.
[0013]
3.0 cc of non-aqueous electrolyte was injected into each of these conventional batteries, battery A and battery B, and this was decompressed to 260 mmHg for 4 seconds and then released to the atmosphere. In order to compare the impregnation of the electrolyte solution for each of the batteries thus injected, the power generation element component group was taken out from the battery immediately after being opened to the atmosphere and decomposed, and the area of the electrode plate impregnated with the electrolyte solution , Measure the amount of electrolyte remaining on the power generation element component group near the opening immediately after opening to the atmosphere, and until there is no remaining electrolyte in the battery opening from opening to the atmosphere The above three confirmations and measurements were performed. On the other hand, in order to compare the performance of the conventional battery, the battery A, and the battery B, each battery immediately after injection was sealed, its internal resistance was measured, and the following charge / discharge was performed to determine the battery capacity. It was confirmed. Charging was performed at a maximum current of 0.5 A and 4.1 V constant current constant voltage charging for 2 hours, and discharging was performed at a constant current of 720 mA up to 3.0 V.
[0014]
First, the area of the electrode plate impregnated with the electrolytic solution in the power generation element configuration group immediately after being released to the atmosphere is the largest in the example battery B, which is about 2/3 of the total electrode plate area. The area of the electrode plate impregnated with the electrolyte solution is about 3/5 of the total electrode plate area in Example Battery A, and the most electrode solution impregnated with the electrolyte solution is all electrodes in the conventional battery. It was about 1/10 of the board area.
[0015]
Next, the remaining amount of the electrolyte remaining on the power generation element configuration group in the vicinity of the battery opening immediately after opening to the atmosphere is about 2.2 cc for the conventional battery, and about 0 for the battery A of Example. It was about 0.2 cc in Example Battery B with the smallest remaining liquid amount of .3 cc.
[0016]
Next, the time from the release to the atmosphere until the remaining electrolyte remained in the battery opening is about 20 minutes at the longest for the conventional battery, then about 7 minutes for the battery A of the example, and the shortest is the time for the implementation. Example Battery B took about 5 minutes.
[0017]
On the other hand, the internal resistance of the battery was 700 mΩ, which was the highest for the conventional battery, 120 mΩ for Example battery A, and 110 mΩ for Example battery B, the lowest. The battery capacity of Example Battery B was 700 mAh, which was the largest for Example Battery B, then 690 mAh for Example Battery A, and the lowest was 250 mAh for the conventional battery. This is because the reaction area of the electrode plate in the power generation element configuration group increases or decreases because each battery has different electrolyte impregnation properties for the power generation element configuration group. That is, in Example Battery A and Example Battery B, which have good electrolyte impregnation properties, the reaction area of the electrode plate is larger than that of the conventional battery, so that the internal resistance is low and the battery capacity is increased. .
[0018]
The results are summarized in Table 1.
[0019]
[Table 1]
Figure 0004092745
[0020]
From the results shown in Table 1, it can be seen that in Example Battery A and Example Battery B, the impregnation performance of the electrolyte is clearly improved as compared with the conventional battery.
[0021]
Additional studies, where the viscosity of the electrolytic solution was carried out for those different from the 0.1~500CP, Ru provided between gap to induce electrolyte I by the concave or convex portion on the inner surface of the groove 1a of the battery case 1 Thus, it was found that the impregnation property of the electrolytic solution can be improved. The effect was more remarkable as the viscosity of the electrolytic solution was higher.
[0022]
【The invention's effect】
As is clear from the above description, according to the present invention, the time required for the step of injecting the electrolytic solution can be improved by improving the impregnation property of the electrolytic solution into the power generation element component group and increasing the impregnation rate of the electrolytic solution. Can be shortened and productivity can be improved. In addition, it is possible to prevent the battery performance from being deteriorated due to insufficient impregnation of the electrolytic solution, and to supply a stable and highly reliable battery.
[Brief description of the drawings]
1 is a longitudinal sectional view of a cylindrical lithium ion secondary battery. FIG. 2 is a longitudinal sectional view of a battery case subjected to spline processing in an embodiment of the present invention. FIG. 3 is a cross-sectional view of the battery case subjected to the spline processing. FIG. 4 is a cross-sectional view of a cylindrical lithium ion secondary battery in which a gap for inducing an electrolytic solution is formed on the inner surface of the groove portion by a dent in another embodiment of the present invention. FIG. Plan view [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery case 1a Groove part 2 Sealing lid 3 Power generation element group 4 Positive electrode lead 5 Negative electrode lead 6 Upper annular insulating plate 7 Lower insulating plate 8 Convex part 9 Convex part

Claims (4)

電池ケースの開口部に外側面から窪んでいる溝部を設け、前記電池ケース内に収納された発電要素構成群の上部に前記溝部の内面と接する円環状絶縁板配設、前記円環状絶縁板と対向する前記溝部の内面に設けた凹部あるいは凸部によって電解液誘導する間隙を備えたことを特徴とする電池。 A groove portion that is recessed from the outer surface is provided in the opening of the battery case, and an annular insulating plate that is in contact with the inner surface of the groove portion is disposed on the upper part of the power generation element component group housed in the battery case, and the annular insulation cell characterized by having a gap that induces the plate opposite to said conductive by the concave or convex portion provided on the inner surface of the groove solution liquid. 凹部あるいは凸部が、電池ケースの高さ方向に形成される複数の線条であることを特徴とする請求項1記載の電池。 The battery according to claim 1, wherein the concave portion or the convex portion is a plurality of filaments formed in a height direction of the battery case. 凹部あるいは凸部を、スプライン加工によって形成したことを特徴とする請求項1または2記載の電池。The battery according to claim 1 , wherein the concave portion or the convex portion is formed by spline processing. 凸部を、電池ケースの外面からの打痕により形成したことを特徴とする請求項1記載の電池。Cell according to claim 1, characterized in that the convex portion was formed by denting from the outer surface of the batteries case.
JP17544097A 1997-07-01 1997-07-01 battery Expired - Fee Related JP4092745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17544097A JP4092745B2 (en) 1997-07-01 1997-07-01 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17544097A JP4092745B2 (en) 1997-07-01 1997-07-01 battery

Publications (2)

Publication Number Publication Date
JPH1125931A JPH1125931A (en) 1999-01-29
JP4092745B2 true JP4092745B2 (en) 2008-05-28

Family

ID=15996133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17544097A Expired - Fee Related JP4092745B2 (en) 1997-07-01 1997-07-01 battery

Country Status (1)

Country Link
JP (1) JP4092745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113594535A (en) * 2021-08-16 2021-11-02 傲普(上海)新能源有限公司 Lithium ion battery and method for improving electrolyte infiltration and prolonging service life of lithium ion battery

Also Published As

Publication number Publication date
JPH1125931A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
JP4493110B2 (en) Secondary battery with compensated capacity ratio of anode and cathode
US7427454B2 (en) Secondary battery
JP4411690B2 (en) Lithium ion secondary battery
EP2418711A2 (en) Secondary battery
JP4603108B2 (en) Secondary battery electrode roll
CN110660956B (en) Secondary battery and electrode member thereof
JP2000021453A (en) Nonaqueous electrolyte secondary battery
KR100599792B1 (en) Secondary battery, electrodes assembly and plate using the same
CN220122037U (en) Cylindrical lithium ion battery
KR20000009697A (en) Cylindrical battery of a heat dissipation device
JP4092745B2 (en) battery
JPH09283111A (en) Battery
JP4195963B2 (en) Non-aqueous electrolyte secondary battery
JPH09293529A (en) Cylindrical sealed storage battery and manufacture thereof
JP2000182573A (en) Secondary battery
JP3685626B2 (en) Non-aqueous electrolyte secondary battery
KR100601559B1 (en) Jelly-roll type electrode assembly and Li Secondary battery with the same
JP3619706B2 (en) Storage battery
KR100670441B1 (en) Secondary battery
KR100325861B1 (en) Sealed battery
KR100824899B1 (en) Secondary battery
KR100669670B1 (en) Prismatic type sealed battery
KR100573102B1 (en) Case used in sealed battery
JPH09213361A (en) Manufacture of spiral plate group
KR100354250B1 (en) Electrode of sealed battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040701

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040805

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees