JP4195963B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4195963B2
JP4195963B2 JP2001321673A JP2001321673A JP4195963B2 JP 4195963 B2 JP4195963 B2 JP 4195963B2 JP 2001321673 A JP2001321673 A JP 2001321673A JP 2001321673 A JP2001321673 A JP 2001321673A JP 4195963 B2 JP4195963 B2 JP 4195963B2
Authority
JP
Japan
Prior art keywords
current collector
battery
electrode plate
collector plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001321673A
Other languages
Japanese (ja)
Other versions
JP2003123846A (en
Inventor
隆行 白根
太志 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001321673A priority Critical patent/JP4195963B2/en
Priority to CNB028197119A priority patent/CN100364149C/en
Priority to PCT/JP2002/009526 priority patent/WO2003036740A1/en
Publication of JP2003123846A publication Critical patent/JP2003123846A/en
Priority to US10/826,389 priority patent/US7153606B2/en
Application granted granted Critical
Publication of JP4195963B2 publication Critical patent/JP4195963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は非水電解液二次電池に関し、特に集電構造に関するものである。
【0002】
【従来の技術】
近年、AV機器あるいはパソコン等の電子機器のポータブル化、コードレス化が急速に進んでおり、これらの駆動用電源として小型、軽量で高エネルギー密度を有する二次電池への要求が高まっている。この中でリチウムを活物質とするリチウムイオン二次電池はとりわけ高電圧、高エネルギー密度を有する電池として期待が大きい。また新たな要求として電動工具などに用いるために高出力化が望まれる。
この要求に応えるためには電池の内部抵抗の低減が重要である。一般的なリチウムイオン二次電池の集電方式は、正極板及び負極板からそれぞれリードを用いて集電を行う。
一方、高出力型のニッケル水素蓄電池などでは、正負極板の端部を群から突出させ集電を行う。この集電方法はリードを用いる場合よりも低抵抗化が可能であるが、集電板とケースの底部を溶接する必要がある。
【0003】
【発明が解決しようとする課題】
前述のような集電方法では、円筒型電池のように群を貫通する空隙がある場合には集電板とケース底部の溶接は容易であるが、角型電池のように群を貫通する空隙が無い場合には、このような集電方法をとることができない。また集電板とケース底部間においても、両者は溶接部分のみ一体化しているため抵抗成分が発生する。
【0004】
本発明は上記従来の課題に鑑みてなされたものであり、リチウムイオン二次電池においても、特に角型電池であってもニッケル水素蓄電池のような集電構造を用いることが出来るようにするのが目的である。
【0005】
さらに電池内空間にしめる集電板の体積を削除し、かつ正極板または負極板の集電板とケース底部の接合を削除し低抵抗化を図るとともに、電池容量及び電池特性を向上させることができる集電方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明では集電板がケース底部を兼ねているとし、さらに集電板を備えた極板群を無底ケースに挿入し、集電板とケースを溶接することにより、集電板とケース底部を兼ねさせるとしている。
このことにより、リチウムイオン二次電池において、たとえ角型電池であってもニッケル水素電池のような集電構造を用いることが出来る。さらに電池内空間にしめる集電板の体積を削減し、かつ正極板または負極板の集電板とケース底部の接合を削除し、低抵抗化を図るとともに、電池容量及び電池特性を向上させることができる集電方法を提供することができる。
【0007】
【発明の実施の形態】
本発明の非水電解液二次電池は、正極板と負極板がセパレータを介して捲回された極板群で、正極板または負極板の少なくとも一方の極板の端部に未塗工部が設けてあり、前記未塗工部を前記極板群から突出させ集電板と溶接した極板群において、前記集電板がケース底部を兼ねているとしたものである。
この電池では、従来電池内容積のうち集電板が占有していた部分を削減することが可能となり、極板群高を増すことで容量を増大させることができる。
また、リードで集電を行う電池と比較して、電池内部抵抗を大幅に低減することが可能となる。このように電池内部抵抗を低減することにより、充放電時の分極が抑制され、高負荷充放電のような電池特性を改善することができる。さらに、大電流充放電時に発生するジュール熱が低減できるため、充放電時の電池の温度上昇を抑制することができる。
また、前記極板群を無底ケースに挿入し、前記集電板と前記無底ケースの開口部とを溶接することにより、前記集電板がケース底部を兼ねることも好ましい。
この場合、容易に集電板がケース底部を兼ねることができ、さらに、たとえ角型電池であってもニッケル水素蓄電池のような集電構造を用いることが出来る。
この場合、集電板の厚みは、ケース底部の強度と溶接の可能な条件範囲の観点から0.1mm以上であり0.7mm以下であることが好ましい。
以上述べた非水電解液二次電池において、集電板が負極板と接続している場合には、負極の電位で電解液等と反応しない材質であることが必要であり、その中でもニッケルまたはニッケルを鍍金した金属であることが好ましい。
また、集電板が正極板と接続している場合には、正極の電位で電解液等と反応しない材質であることが必要であり、その中でもアルミニウム、ニッケル−クロム鋼またはアルミニウムを主成分とする合金であることが好ましい。
【0008】
【実施例】
以下、本発明の具体例について図面を参照しながら説明する。
【0009】
図1から3は本発明の非水電解液二次電池の製造工程を工程順に示した工程模式図であり、各工程を判りやすく模式的に図示したものである。
【0010】
図1は極板群を構成する正極板、負極板、セパレータの構造を示したものである。負極板1に、負極未塗工部2を形成し、正極板4には、一部を未塗工にして上部リード5を取りつけた。正極板4および負極板1をセパレータ3を介して捲回して極板群6を形成した。その際、負極未塗工部2が極板群6から突出するように捲回した。
【0011】
図2では図1の工程で得た極板群6の未塗工突出部に平面加工を施し、厚さ0.3mmのニッケル製集電板7をレーザー溶接により溶着した。その後、集電板7を溶着した極板群6をニッケル鍍金した鉄からなる無底ケース8に挿入した。
【0012】
図3では図2により得た極板群6が挿入された無底ケース8に集電板7とケース開口部をレーザー溶接により接合した。溶接は底部方向から行う場合と、側面方向から行う場合が考えられるが、底部から行った。もちろん側面方向から行ってもかまわない。
【0013】
次に上記の工程で得た電池中間体に、従来の公知の方法で、封口板かしめ用の溝入れを行った。続いて上部リードに封口板を溶接し、非水電解液を所定量注入し、かしめ封口を施し、後に詳細に述べる実施例1から9の試験電池を作成した。
【0014】
ここではケース底部を兼ねる集電板が負極に接続される例のみを示したが、正極の集電板がケース底部を兼ねる場合には、ケース及び集電板に適当な材質を選択することで行った。
【0015】
なお、極板群の構成は、底部を未塗工部から集電し、上部をリードにより集電する例を示したが、上部を未塗工部から集電する構造にしても同様である。
【0016】
また比較を目的として上部、底部双方ともリードを用いて集電を行うこと以外は、上記電池と同様の構成を持つ比較例電池Aを作成した。さらに底部の集電は未塗工部から行うものの、従来のニッケル水素蓄電池のように集電板とケース底部を溶接したこと以外は上記電池と同様の構成を持つ比較例電池Bも併せて作成した。さらに比較例電池AおよびBと同じ集電構造であるが、角型電池にした比較例電池CおよびDをそれぞれ作成した。
次に、前述の方法で作成した実施例1から9について詳細に説明する。
【0017】
(実施例1) ケース底部を兼ねる集電板が負極に接続され、正極の集電はリードを用いて行う18650サイズの円筒型電池1を上記製造工程により作成した。負極活物質にはグラファイトを用い、正極活物質にはLiCoO2を用いた。電池1の容量は200mAの定電流放電を行ったところ1020mAであった。1kHzの交流法で測定した電池1の内部抵抗は15mΩであり、比較例電池Aで同様にして測定した24mΩよりも低い値を示した。また比較例電池Bは13mΩであったが、これよりも低い抵抗値を示した。
【0018】
さらに放電電流を10Aにして行った高負荷放電特性にも優れる電池が得られた。またこの時の温度上昇は、比較例電池Aと比較して9℃低かった。
なお、以下に説明する各実施例は上記実施例1における一部のみを変更するものであるため、以下の各実施例の説明では、実施例1に対して変更した内容のみを列記することにする。
【0019】
(実施例2) 実施例1に対し、正極の集電もリードではなく、負極と同様の未塗工部に溶接された集電板を用いて行う電池2を作成した。この電池は実施例1の電池1よりも低い内部抵抗である11mΩとなり、さらに優れる高負荷特性を示した。
(実施例3) 実施例1に対し、ケースを鉄からアルミニウムにし、ケース底部を兼ねる集電板が正極に接続され、負極の集電も未塗工部に溶接された集電板を用いて行う電池3を作成した。電池3の内部抵抗は10mΩであり、電池3も比較例電池A及び比較例電池Bよりも優れた高負荷特性を示した。
(実施例4) 実施例1に対し、ケースを鉄からアルミニウムにし、ケース底部を兼ねる集電板が正極に接続され、負極の集電はリードを用いて行う電池4を作成した。電池4は比較例電池Aよりも低い内部抵抗である20mΩを示し、優れた高負荷特性を示した。
(実施例5) 角型電池の群構成を行い、実施例1と構成を同じくする容量480mAの厚さ6mm、幅34mm、高さ50mmの角型電池5を作成した。電池5は比較例電池CおよびDよりも低い内部抵抗である30mΩを示し、これらよりも優れた高負荷放電性能を有した。
(実施例6) 角型電池の群構成を行い、実施例3と構成を同じくする厚さ6mm、幅34mm、高さ50mmの角型電池6を作成した。電池6は比較例電池Cよりも低い内部抵抗である28mΩを示し、優れた高負荷放電性能を有した。
(実施例7) 実施例1に対し、ニッケル製集電板の厚みを0.1mm、0.7mm、1mmとした電池を作成した。0.1mm、0.7mmの集電板を用いた電池の内部抵抗は、どちらも11mΩであった。
0.1mmの集電体においても電池作成は可能であったが、底部強度を考慮すれば、集電体の厚みは0.1mmよりも厚くすることが望ましい。また0.7mmにおいても電池作成は可能であったが、1mmの集電体では未塗工部と集電板の溶接が十分な強度を持たなかった。これらのことから集電体の厚みは0.1mm以上、0.7mm以下にすることが望ましい。
(実施例8) 実施例7対し、負極集電体としてニッケルを鍍金した鉄板で行った。どちらにおいても0.1mmから0.7mmの厚み範囲で電池を作成することが可能であった。また、内部抵抗は、12mΩであった。
(実施例9) 実施例7対し、試験を正極集電体としてアルミニウム板、マグネシウムを3%含むアルミニウム合金とで行った。負極集電はリードにより行った。どちらにおいても0.1mmから0.7mmの厚み範囲で電池を作成することが可能であった。また内部抵抗は、どちらも33mΩであった。
なお、これら各実施例により得られたいずれの電池においても、所用の充放電サイクル寿命を確保でき、かつ良好な保存特性が得られると共に、放電容量が向上したことを確認することができた。
【0020】
【発明の効果】
以上のように、本発明の非水電解液二次電池によれば、電池の内部抵抗の低減ができるので、特に高負荷放電性能を向上させることができ、大電流放電時の電池温度上昇を抑制することができる。また集電板に相当する容積が削減されるため、この容積を有効に活用し容量を向上させることができる。さらに従来角型電池では採用できなかった、未塗工部を用いた集電方法が可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る電池の製造工程内の第一の工程を示す工程模式図
【図2】本発明の一実施例に係る電池の製造工程内の第二の工程を示す工程模式図
【図3】本発明の一実施例に係る電池の製造工程内の第三の工程を示す工程模式図
【符号の説明】
1 負極板
2 負極未塗工部
3 セパレータ
4 正極板
5 上部リード
6 極板群
7 集電板
8 無底ケース
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a current collecting structure.
[0002]
[Prior art]
In recent years, electronic devices such as AV devices and personal computers are rapidly becoming portable and cordless, and there is an increasing demand for secondary batteries having a small size, light weight, and high energy density as power sources for driving these devices. Among them, a lithium ion secondary battery using lithium as an active material is particularly expected as a battery having a high voltage and a high energy density. Also, as a new requirement, high output is desired for use in electric tools and the like.
In order to meet this requirement, it is important to reduce the internal resistance of the battery. In a general lithium ion secondary battery current collecting method, current is collected from each of a positive electrode plate and a negative electrode plate using leads.
On the other hand, in a high-power nickel-metal hydride storage battery or the like, current collection is performed with the ends of the positive and negative electrode plates protruding from the group. Although this current collection method can reduce the resistance compared to the case of using a lead, it is necessary to weld the current collector plate and the bottom of the case.
[0003]
[Problems to be solved by the invention]
In the current collecting method as described above, when there is a gap penetrating the group like a cylindrical battery, it is easy to weld the current collector plate and the bottom of the case, but the gap penetrating the group like a square battery. If there is no power, such a current collecting method cannot be taken. In addition, a resistance component is generated between the current collector plate and the bottom of the case because both are integrated only in the welded portion.
[0004]
The present invention has been made in view of the above-described conventional problems, and enables a current collecting structure such as a nickel-metal hydride storage battery to be used even in a lithium ion secondary battery, particularly a square battery. Is the purpose.
[0005]
Furthermore, the volume of the current collector plate that is used as the space in the battery can be deleted, and the junction between the current collector plate of the positive electrode plate or the negative electrode plate and the bottom of the case can be deleted to reduce the resistance, and the battery capacity and battery characteristics can be improved. The object is to provide a current collection method.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention assumes that the current collector plate also serves as the bottom of the case, and further inserts an electrode plate group having the current collector plate into the bottomless case and welds the current collector plate and the case. Thus, the current collector plate and the case bottom are combined.
Thus, in the lithium ion secondary battery, a current collecting structure like a nickel metal hydride battery can be used even if it is a prismatic battery. Furthermore, it is possible to reduce the volume of the current collector plate that fills the battery internal space and to eliminate the junction between the current collector plate of the positive electrode plate or the negative electrode plate and the bottom of the case, thereby reducing the resistance and improving the battery capacity and battery characteristics. It is possible to provide a method for collecting current.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The non-aqueous electrolyte secondary battery according to the present invention is an electrode plate group in which a positive electrode plate and a negative electrode plate are wound through a separator, and an uncoated portion at an end of at least one of the positive electrode plate and the negative electrode plate In the electrode plate group in which the uncoated portion protrudes from the electrode plate group and is welded to the current collector plate, the current collector plate also serves as a case bottom.
In this battery, it is possible to reduce the portion of the battery internal volume that has been occupied by the current collector plate, and the capacity can be increased by increasing the electrode plate group height.
In addition, the battery internal resistance can be greatly reduced as compared with a battery that collects current using leads. Thus, by reducing battery internal resistance, the polarization at the time of charging / discharging is suppressed and battery characteristics like high load charging / discharging can be improved. Furthermore, since Joule heat generated during large current charge / discharge can be reduced, an increase in battery temperature during charge / discharge can be suppressed.
It is also preferable that the current collector plate also serves as the case bottom by inserting the electrode plate group into the bottomless case and welding the current collector plate and the opening of the bottomless case.
In this case, the current collector plate can easily serve as the bottom of the case, and even a prismatic battery can use a current collecting structure such as a nickel-metal hydride storage battery.
In this case, the thickness of the current collector plate is 0.1 mm or more and preferably 0.7 mm or less from the viewpoint of the strength of the case bottom and the condition range where welding is possible.
In the non-aqueous electrolyte secondary battery described above, when the current collector plate is connected to the negative electrode plate, the current collector plate must be made of a material that does not react with the electrolyte solution at the negative electrode potential. A metal plated with nickel is preferable.
Further, when the current collector plate is connected to the positive electrode plate, it is necessary that the current collector plate is made of a material that does not react with the electrolyte solution or the like at the positive electrode potential. Among them, aluminum, nickel-chromium steel or aluminum is the main component. It is preferable that it is an alloy.
[0008]
【Example】
Hereinafter, specific examples of the present invention will be described with reference to the drawings.
[0009]
FIGS. 1 to 3 are process schematic diagrams showing the manufacturing process of the non-aqueous electrolyte secondary battery of the present invention in the order of processes, and each process is schematically illustrated in an easy-to-understand manner.
[0010]
FIG. 1 shows the structure of a positive electrode plate, a negative electrode plate, and a separator constituting the electrode plate group. The negative electrode uncoated portion 2 was formed on the negative electrode plate 1, and the upper lead 5 was attached to the positive electrode plate 4 with a part uncoated. The positive electrode plate 4 and the negative electrode plate 1 were wound through a separator 3 to form an electrode plate group 6. At that time, the negative electrode uncoated portion 2 was wound so as to protrude from the electrode plate group 6.
[0011]
In FIG. 2, the uncoated protrusions of the electrode plate group 6 obtained in the process of FIG. 1 were flattened, and a nickel current collector plate 7 having a thickness of 0.3 mm was welded by laser welding. Thereafter, the electrode plate group 6 to which the current collector plate 7 was welded was inserted into a bottomless case 8 made of nickel-plated iron.
[0012]
In FIG. 3, the current collector plate 7 and the case opening are joined to the bottomless case 8 in which the electrode plate group 6 obtained in FIG. 2 is inserted by laser welding. Although welding can be performed from the bottom direction and from the side, it was performed from the bottom. Of course, you can go from the side.
[0013]
Next, the battery intermediate obtained in the above step was grooved for caulking the sealing plate by a conventional known method. Subsequently, a sealing plate was welded to the upper lead, a predetermined amount of non-aqueous electrolyte was injected, and caulking was performed, and test batteries of Examples 1 to 9 described in detail later were produced.
[0014]
Here, only the example where the current collector plate also serving as the bottom of the case is connected to the negative electrode is shown, but when the positive current collector plate also serves as the bottom of the case, an appropriate material can be selected for the case and the current collector plate. went.
[0015]
In addition, although the structure of the electrode group has shown an example in which the bottom is collected from an uncoated part and the upper part is collected by a lead, the same applies to a structure in which the upper part is collected from an uncoated part. .
[0016]
For comparison, a comparative battery A having the same configuration as that of the battery described above was prepared except that both the upper part and the bottom part were collected using leads. Furthermore, although the bottom current is collected from the uncoated part, a comparative battery B having the same configuration as the above battery is also prepared except that the current collector plate and the case bottom are welded as in the conventional nickel metal hydride storage battery. did. Furthermore, comparative batteries C and D having the same current collecting structure as comparative batteries A and B but made into square batteries were respectively prepared.
Next, Examples 1 to 9 created by the above-described method will be described in detail.
[0017]
Example 1 A current collector plate that also serves as the bottom of the case was connected to the negative electrode, and the positive electrode current was collected using a lead. Graphite was used as the negative electrode active material, and LiCoO 2 was used as the positive electrode active material. The capacity of the battery 1 was 1020 mA when a constant current discharge of 200 mA was performed. The internal resistance of the battery 1 measured by the 1 kHz alternating current method was 15 mΩ, which was lower than the 24 mΩ measured in the same manner as the comparative battery A. The comparative battery B had a resistance value of 13 mΩ, which was lower than this.
[0018]
Furthermore, a battery excellent in high load discharge characteristics performed at a discharge current of 10 A was obtained. Further, the temperature rise at this time was 9 ° C. lower than that of Comparative Battery A.
In addition, since each Example demonstrated below changes only a part in the said Example 1, in the following description of each Example, only the content changed with respect to Example 1 is listed. To do.
[0019]
(Example 2) In contrast to Example 1, a positive electrode current collector was not a lead, but a battery 2 was produced using a current collector plate welded to an uncoated part similar to the negative electrode. This battery had an internal resistance of 11 mΩ, which is lower than that of the battery 1 of Example 1, and exhibited further excellent high load characteristics.
(Example 3) Compared to Example 1, using a current collector plate in which the case was changed from iron to aluminum, the current collector plate also serving as the bottom of the case was connected to the positive electrode, and the current collector of the negative electrode was also welded to the uncoated part The battery 3 to be produced was created. The internal resistance of the battery 3 was 10 mΩ, and the battery 3 also showed higher load characteristics than the comparative battery A and the comparative battery B.
(Example 4) In contrast to Example 1, a battery 4 was prepared in which the case was changed from iron to aluminum, a current collector plate also serving as the bottom of the case was connected to the positive electrode, and the negative electrode was collected using a lead. The battery 4 showed 20 mΩ which is an internal resistance lower than that of the comparative battery A, and showed excellent high load characteristics.
(Example 5) A group configuration of prismatic batteries was performed, and a prismatic battery 5 having a capacity of 480 mA, a thickness of 6 mm, a width of 34 mm, and a height of 50 mm, which was the same as that of Example 1, was produced. The battery 5 showed 30 mΩ which is an internal resistance lower than those of the comparative batteries C and D, and had a high load discharge performance superior to these.
(Example 6) A square battery group configuration was performed, and a square battery 6 having a thickness of 6 mm, a width of 34 mm, and a height of 50 mm similar to that of Example 3 was produced. The battery 6 had an internal resistance of 28 mΩ lower than that of the comparative battery C, and had excellent high load discharge performance.
Example 7 A battery having a nickel current collector plate thickness of 0.1 mm, 0.7 mm, and 1 mm with respect to Example 1 was prepared. Both the internal resistances of the batteries using the current collector plates of 0.1 mm and 0.7 mm were 11 mΩ.
Although a battery could be produced even with a 0.1 mm current collector, the thickness of the current collector is preferably thicker than 0.1 mm in consideration of the bottom strength. In addition, although the battery could be produced even at 0.7 mm, the welding of the uncoated part and the current collector plate did not have sufficient strength with the current collector of 1 mm. Therefore, the thickness of the current collector is preferably 0.1 mm or more and 0.7 mm or less.
(Example 8) For Example 7, an iron plate plated with nickel was used as a negative electrode current collector. In either case, it was possible to produce a battery in a thickness range of 0.1 mm to 0.7 mm. The internal resistance was 12 mΩ.
(Example 9) For Example 7, a test was performed using an aluminum plate as a positive electrode current collector and an aluminum alloy containing 3% magnesium. Negative electrode current collection was performed by lead. In either case, it was possible to produce a battery in a thickness range of 0.1 mm to 0.7 mm. Both internal resistances were 33 mΩ.
In any of the batteries obtained in each of these Examples, the required charge / discharge cycle life could be ensured, good storage characteristics were obtained, and it was confirmed that the discharge capacity was improved.
[0020]
【The invention's effect】
As described above, according to the nonaqueous electrolyte secondary battery of the present invention, the internal resistance of the battery can be reduced, so that particularly high load discharge performance can be improved, and the battery temperature rise during large current discharge can be improved. Can be suppressed. In addition, since the volume corresponding to the current collector plate is reduced, the volume can be effectively utilized to improve the capacity. Furthermore, a current collecting method using an uncoated portion, which could not be employed in a conventional prismatic battery, is possible.
[Brief description of the drawings]
FIG. 1 is a process schematic diagram showing a first step in a battery manufacturing process according to an embodiment of the present invention. FIG. 2 shows a second step in a battery manufacturing process according to an embodiment of the present invention. FIG. 3 is a process schematic diagram showing the third step in the battery manufacturing process according to one embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Negative electrode plate 2 Negative electrode uncoated part 3 Separator 4 Positive electrode plate 5 Upper lead 6 Electrode plate group 7 Current collecting plate 8 Bottomless case

Claims (4)

正極板と負極板がセパレータを介して捲回された極板群で、正極板または負極板の少なくとも一方の極板の端部に未塗工部が設けてあり、前記未塗工部を前記極板群から突出させ集電板と直接接続した極板群において、
前記集電板がケース底部を兼ねており、前記極板群を無底ケースに挿入し、前記集電板と前記無底ケースの開口部とを溶接することにより、前記集電板がケース底部を兼ねたことを特徴とする非水電解液二次電池。
In the electrode plate group in which the positive electrode plate and the negative electrode plate are wound through a separator, an uncoated portion is provided at an end portion of at least one of the positive electrode plate or the negative electrode plate, and the uncoated portion is In the electrode plate group protruding from the electrode plate group and directly connected to the current collector plate,
The current collector plate also serves as a case bottom , the electrode plate group is inserted into a bottomless case, and the current collector plate is welded to the opening of the bottomless case, whereby the current collector plate is A nonaqueous electrolyte secondary battery characterized by also serving as a battery.
前記集電板の厚みが0.1mm以上であり0.7mm以下であることを特徴とする請求項1記載の非水電解液二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein the current collector plate has a thickness of 0.1 mm or more and 0.7 mm or less. 前記集電板が負極板に接続しており、前記集電板の材質が、ニッケルまたはニッケルを鍍金した金属であることを特徴とする請求項1記載の非水電解液二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein the current collector plate is connected to a negative electrode plate, and the material of the current collector plate is nickel or a metal plated with nickel. 前記集電板が正極板に接続しており、前記集電板の材質が、アルミニウム、ニッケル−クロム鋼またはアルミニウムを主成分とする合金からなることを特徴とする請求項1記載の非水電解液二次電池。  The non-aqueous electrolysis according to claim 1, wherein the current collector plate is connected to a positive electrode plate, and the material of the current collector plate is made of aluminum, nickel-chromium steel, or an alloy mainly composed of aluminum. Liquid secondary battery.
JP2001321673A 2001-10-19 2001-10-19 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4195963B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001321673A JP4195963B2 (en) 2001-10-19 2001-10-19 Non-aqueous electrolyte secondary battery
CNB028197119A CN100364149C (en) 2001-10-19 2002-09-17 Secondary battery
PCT/JP2002/009526 WO2003036740A1 (en) 2001-10-19 2002-09-17 Secondary cell
US10/826,389 US7153606B2 (en) 2001-10-19 2004-04-19 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001321673A JP4195963B2 (en) 2001-10-19 2001-10-19 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003123846A JP2003123846A (en) 2003-04-25
JP4195963B2 true JP4195963B2 (en) 2008-12-17

Family

ID=19138855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001321673A Expired - Fee Related JP4195963B2 (en) 2001-10-19 2001-10-19 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4195963B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706186B2 (en) * 2004-05-12 2011-06-22 パナソニック株式会社 Square battery
US20080026293A1 (en) * 2006-07-26 2008-01-31 Eveready Battery Company, Inc. Lithium-iron disulfide cylindrical cell with modified positive electrode
JP5156273B2 (en) * 2007-06-18 2013-03-06 日立ビークルエナジー株式会社 Lithium ion secondary battery
JP2012049074A (en) 2010-08-30 2012-03-08 Makita Corp Battery pack of electric tool
JP5732557B2 (en) * 2014-02-14 2015-06-10 株式会社マキタ Power tool battery pack
JP2015128080A (en) * 2015-04-10 2015-07-09 株式会社マキタ Power tool system
KR102480958B1 (en) * 2018-10-05 2022-12-23 주식회사 엘지에너지솔루션 Rechargeable battery
KR102466850B1 (en) * 2018-10-05 2022-11-14 주식회사 엘지에너지솔루션 Rechargeable battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963630A (en) * 1995-08-28 1997-03-07 Ngk Insulators Ltd Electricity accumulating element, and electricity accumulator, and manufacture of electricity accumulating element
JP3807528B2 (en) * 1998-01-16 2006-08-09 古河電池株式会社 Cylindrical secondary battery
JP2975345B1 (en) * 1998-07-28 1999-11-10 株式会社エヌ・ティ・ティ ファシリティーズ Cylindrical storage battery
JP2000208132A (en) * 1999-01-19 2000-07-28 Hitachi Ltd Nonaqueous electrolyte secondary battery and battery thermal relay
JP2001015169A (en) * 1999-06-29 2001-01-19 Asahi Glass Co Ltd Nonaqueous electrolyte secondary battery
ATE355599T1 (en) * 1999-09-30 2006-03-15 Asahi Glass Co Ltd CAPACITOR ELEMENT
JP2001176495A (en) * 1999-12-15 2001-06-29 Sanyo Electric Co Ltd Electrical energy accumulating device
JP2001185095A (en) * 1999-12-22 2001-07-06 Sony Corp Secondary battery
JP2002134160A (en) * 2000-10-26 2002-05-10 Japan Storage Battery Co Ltd Battery
JP3083554U (en) * 2001-07-23 2002-02-08 楊 淵洲 Battery structure

Also Published As

Publication number Publication date
JP2003123846A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
KR100973173B1 (en) Assembled battery
JP2002358945A (en) Connection structure of lithium secondary unit cells
KR20060059716A (en) Lithium secondary battery
JP4496582B2 (en) Lithium secondary battery
JP4589550B2 (en) Manufacturing method of nickel metal hydride storage battery
JP4195963B2 (en) Non-aqueous electrolyte secondary battery
US20130309554A1 (en) Lead-acid battery with high specific power and specific energy
JP2001266928A (en) Square battery
JP4062388B2 (en) Alkaline storage battery
KR101709560B1 (en) Secondary Battery with Electrode Tab Having Low Resistance
CN217655970U (en) Battery cover plate assembly and power battery
JP2000182573A (en) Secondary battery
JP4904609B2 (en) Secondary battery
KR100601553B1 (en) Lithium Ion Secondary battery
JP2004234994A (en) Lithium secondary battery, battery pack of same, and electrode of same
JP3902330B2 (en) Cylindrical battery
KR200234200Y1 (en) Ni-MH BATTERY FOR ELECTRIC VEHICLES
KR100627296B1 (en) Secondary battery and terminal assembly using the same
KR101699861B1 (en) Secondary Battery with Electrode Tab Having Low Resistance
CN218005175U (en) Battery and battery module
KR100599733B1 (en) Electrode and secondary battery thereof
JP3339327B2 (en) Storage battery
JP2001023605A (en) Manufacture of battery
JP2000306570A (en) Battery
JP7174326B2 (en) assembled battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees