JP4092352B2 - 復号装置、復号方法、及び受信装置 - Google Patents

復号装置、復号方法、及び受信装置 Download PDF

Info

Publication number
JP4092352B2
JP4092352B2 JP2005331185A JP2005331185A JP4092352B2 JP 4092352 B2 JP4092352 B2 JP 4092352B2 JP 2005331185 A JP2005331185 A JP 2005331185A JP 2005331185 A JP2005331185 A JP 2005331185A JP 4092352 B2 JP4092352 B2 JP 4092352B2
Authority
JP
Japan
Prior art keywords
decoding
unit
stop
determination
result
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005331185A
Other languages
English (en)
Other versions
JP2007142622A (ja
Inventor
正雄 織尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2005331185A priority Critical patent/JP4092352B2/ja
Priority to GB0621600A priority patent/GB2432495B/en
Priority to US11/590,823 priority patent/US7992073B2/en
Priority to KR1020060113442A priority patent/KR100860733B1/ko
Priority to CNA2006101493783A priority patent/CN1968071A/zh
Publication of JP2007142622A publication Critical patent/JP2007142622A/ja
Application granted granted Critical
Publication of JP4092352B2 publication Critical patent/JP4092352B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • H03M13/2975Judging correct decoding, e.g. iteration stopping criteria
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/3746Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 with iterative decoding
    • H03M13/3753Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35 with iterative decoding using iteration stopping criteria
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/005Iterative decoding, including iteration between signal detection and decoding operation
    • H04L1/0051Stopping criteria

Description

本発明は、受信データを尤度情報に基づき復号する復号装置、復号方法及び受信装置に関し、特に、復号処理の高効率化を図った復号装置、復号方法及び受信装置に関する。
ディジタル通信システムでは、伝送路において生じる誤りを訂正する誤り訂正符号が用いられている。特に移動通信システムでは、フェージングの影響により電波強度が激しく変動して誤りが生じ易いため、誤り訂正符号には高い訂正能力が要求される。誤り訂正符号の一例であるターボ符号は、シャノン限界に近い誤り訂正能力を有する符号として注目されており、例えば、第3世代の移動通信方式であるW−CDMA(Wideband Code Division Multiple Access)やCDMA−2000で使用されている。
図12のブロック図は、ターボ符号を生成するための一般的な符号化装置の構成を示している。この符号化装置101は、例えば、通信システムの送信側に設けられ、符号化前データである情報ビット(Systematic Bits:組織部)Uを、並列連接畳込み符号(PCCCs:Parallel Concatenated Convolutional Codes)のターボ符号に符号化し、伝送路等の外部へ出力する。なお、ターボ符号は、並列連接符号に限らず、直列連接畳み込み符号など、ターボ復号が可能であればよい。
符号化装置101は、図に示すように、組織的畳み込み符号化器(Systematic Convolutional Coder)である第1の符号化器102及び第2の符号化器103と、データをインタリーブする(並び替える)インタリーバ(Interleaving)104とを備えている。
第1の符号化器102は、入力された組織部Uを符号化して冗長ビット(パリティビット:Parity Bits)1Pを生成し、この冗長ビット1Pを外部へ出力する。インタリーバ104は、入力された組織部Uの各ビットを所定のインタリーブパターンに並べ替えて組織部Uintを生成し、この組織部Uintを第2の符号化器102へ出力する。第2の符号化器102は、組織部Uintを符号化して冗長ビット2Pを生成し、この冗長ビット2Pを外部へ出力する。
符号化装置101では、組織部U、冗長ビット1P、組織部Uint、冗長ビット2Pが生成される。組織部Uと冗長ビット1Pの組(U,P)を第1の要素符号(Elemental Code)Eといい、組織部Uintと冗長ビット2Pの組(Uint,2P)を第2の要素符号Eintという。
このように符号化されたターボ符号を復号することをターボ復号という。ターボ復号では、第1の要素符号Eを復号する1番目の復号器と第2の要素符号Eintを復号する2番目の復号器との間で外部情報を交換しながら繰り返し復号が行われる。なお、復号器は、2つに限らず、ターボ符号の要素符号数に従って2以上の複数段の復号器を用いてもよい。
具体的には、1番目の復号器である第1の復号器に、パリティビット1P、組織部Uの通信路値Y1p、Yと、事前値(外部情報)Le2を入力して、外部情報Le1を得る。外部情報Le2の初期値は0とする。外部情報Le1は、データの順番を合わせるため、インタリーバで順番を並び替え、2番目の復号器である第2の復号器に入力する外部情報Lint e1とする。
さらに、通信路値Yをインタリーバで並び替え、Yint を生成し、パリティビット2Pの通信路値Y2p及びインタリーブされたYint を第2の復号器に入力し、外部情報Lint e2を得る。これを第1の復号器のデータと順番を合わせるため、デインタリーバ(De-interleaving)で並び替え、第1の復号器の外部情報Le2とする。以下、これを複数回繰り返す。
つまり、第1の復号器の信頼度情報(外部情報Le1)を使用して第2の復号器の信頼度情報を高め、さらに、第2の復号器の信頼度情報(外部情報Le2)を使って第1の復号器の信頼度情報を高めるというように、互いに信頼度情報をやりとりして繰り返すことにより、情報を復号する。この繰り返し動作を、自動車のターボエンジンに見立てて「ターボ復号」と呼ぶ。
このような繰り返し復号方式においては、復号性能を保持しつつ、いつの時点で繰り返し復号を停止させるかが重要となる。復号器の電力消費量の削減、及び復号処理時間の短縮化を図るためである。そこで、従来、繰り返し復号を様々な停止条件を使用して停止させる技術が開示されている(特許文献1乃至3参照)。
次に、その繰り返し復号の停止方法の一例として、HDA(Hard-Decision Aided)を用いたターボ復号の停止方法について説明する。HDAとは、ターボ復号の各繰返し処理におけるHD(硬判定)について、前回繰返しから"0"/"1"が反転したものの割合を用いた繰り返し処理の停止方法である。反転ビットの割合が少ないほど復号処理が収束、つまり終了に近づいているということを示している。本来のHDAは、誤りがないことを検出することにより、ターボ復号の繰返し処理を終了させる目的で使用される。例えば、HDAがある閾値よりも小さくなったらターボ復号処理を完了させるといった用途で利用されている。
これに対し、HDAを復号処理の収束のみならず、非収束の検出にも利用してターボ復号の繰り返し回数の最適化を図った復号装置が非特許文献1に開示されている。図13は、非特許文献1の復号装置を示すブロック図である。復号装置201は、第1の復号器202及び第2の復号器203と、インタリーバ204、205と、デインタリーバ206、207と、硬判定部208と、HDA判定部209とを有する。
復号装置201は、伝送路を介して送られるターボ符号を受信データとして受け取る。受信データには、第1の要素符号E及び第2の要素符号Eintが含まれる。要素符号E、Eintは、上述したようにパリティビット1P、2Pと情報ビットU、Uintからなるが、第1の要素符号Eの情報ビットUをインタリーブすると第2の要素符号Eintの情報ビットUintが得られるため、実際に送られるデータは、第1の要素符号の情報ビットU及びパリティビット1Pと、第2の要素符号Eintのパリティビット2Pである。
第1の復号器202、第2の復号器203は、受信データについて、軟入力軟出力復号法により繰り返し復号を行なう。軟入力軟出力復号法には、SOVA(Soft-Output Viterbi Algorithm)やMAP(Maximum A Posteriori)が知られている。
第1の復号部202は、受信した第1の要素符号E(第1のパリティY1p、情報ビットY)と、外部情報Le2とが供給され、復号処理を行なって第1の外部情報Le1を出力する。インタリーバ(int)204は、第1の外部情報Le1にインタリーブを施し、インタリーブされた第1の外部情報Lint e1を生成する。同時に、情報ビットYはインタリーバ205にてインタリーブされ、インタリーブされた情報ビットYint とされ第2の復号器203へ供給される。
第2の復号器203は、インタリーブされた第1の外部情報Lint e1と、受信した第2のパリティY2p及びインタリーブされた情報ビットYint とが供給され、復号処理を行って第2の外部情報Lint e2を出力する。この第2の外部情報Lint e2は、インタリーバ206にてデインタリーブされ、第1の復号器202に供給される。第1の復号器202は、これを復号処理する。以上の処理を繰り返す。第1の復号器202及び第2の復号器203の復号処理により、1回の繰り返し復号が終了する。
第2の復号器202は、また、対数尤度比Lint を算出し、これをデインタリーバ207へ出力する。デインタリーバ207は、この対数尤度比Lint をデインタリーブして対数尤度比Lとし、硬判定部208にて硬判定結果を求める。更にこの従来の復号装置においては、硬判定結果が供給されるHDA判定部209を有し、ターボ復号の繰り返し処理を停止するか否かを判断する。
このHDA判定部209においては、HDAで算出されるBERと、情報長の比を閾値比較して、ターボ復号の収束/非収束を判別し、ターボ復号の繰返し回数の最適化を図る。
図14は、この従来の復号装置の復号方法を示すフローチャートである。図14に示すように、先ず、第1の復号器202及び第2の復号器203で行なわれる繰り返し復号の繰り返し回数=1、繰り返し回数の上限値を8回にセットする(ステップS101)。そして、第1の復号器202にて復号処理し、第1の外部情報Le1を生成する(ステップSS102)。これをインタリーバ204にてインタリーブし、第2の復号器203に入力する。このとき同時に、情報ビットYについてもインタリーバ205にてインタリーブを施し、第2の復号器203へ入力する。第1の復号器202は、対数尤度比(LLR値)としてLも生成するがここでは使用しない。なお、第1の復号器202への入力であるLe2の初期値は0である。
第2の復号器203は、インタリーブされた第2の外部情報Lint e2を出力すると共にインタリーブされた対数尤度比Lint を出力する。インタリーブされた第2の外部情報Lint e2は、デインタリーバ206にてデインタリーブされ、第1の復号器202の入力である第2の外部情報Le2とされる。また、インタリーブされた対数尤度比Lint は、デインタリーバ207にてデインタリーブされ、対数尤度比Lとされ、硬判定部208にて硬判定結果を生成する。
次に、繰り返し回数が1より大きいか否かを判断し(ステップS104)、繰り返し回数が2以上であれば下記式(1)に示す判定値Δを計算する(ステップS105)。
Figure 0004092352
すなわち、判定値Δは、各ビットについて今回の対数尤度比Lの硬判定結果と前回の対数尤度比Lの硬判定結果との差を求め、それらの割合を求めた値である。この判定値Δが0に近いほど前回と今回の復号結果が等しいことを示し、判定値Δが1に近ければ前回と今回の復号結果が大きく異なることを示す。
この判定値Δが収束判定用閾値ηvonvより大きい場合及び非収束判定用閾値ηnon−convより小さい場合(ステップS106:No)には、繰り返し回数がMAX=8まで繰り返し復号を実施する。つまり、繰り返し回数がMAX=8であるか否かを判定し(ステップS107)、8回未満であれば、繰り返し回数をインクリメントし(ステップS108)、ステップS102からの処理を繰り返す。
上記ステップS6の判定値Δの判定のため、繰り返し回数2以上において、先ず、硬判定結果u^を使用し、上記式(1)から判定値Δを算出する。そして、収束判定用閾値ηconv、非収束判定用閾値ηnon−convから停止基準(Stopping criteria)の判定を行う。判定の結果、収束/非収束の何れかの条件を満たしたら繰返し復号を停止する。
次に、このような収束判定に非収束判定を加えて繰り返し回数の停止を制御する従来の復号装置の効果について説明する。図15は縦軸にブロックエラーレート(BLER)及びビットエラーレート(BER)をとり、横軸に信号対雑音電力密度比E/N(dB)をとって、ノイズとエラーレートの関係を示すグラフ図である。また、図16は、信号対雑音電力密度比に対する繰り返し回数の関係を示す図である。
なお、図15、図16において、横軸の信号対雑音電力密度比E/N(dB)は、値が大きいほどノイズが少ないことを示す。また、縦軸のBLERは、ブロック内に1以上のビットエラーが存在する場合、そのブロックをエラーとして計算したものであり、BERは、エラービット数を954ビット(符号ブロックサイズ)で除した値(%)を示している。
また、(OFF,OFF)は、収束・非収束判定を行なわない場合、(2%,OFF)は、収束判定用閾値ηconv=2%とし、収束判定のみによる繰り返し停止制御を行なった場合を示す。また、(OFF,20%)は、非収束判定用閾値ηnon−conv=20%とし、非収束判定のみによる繰返し停止制御を行った場合、(2%,20%)は、収束判定用閾値ηconv=2%、非収束判定用閾値ηnon−conv=20%として、収束/非収束判定による繰返し停止制御を行った場合を示す。
シミュレーション条件は、送信側条件がRate 1/3(15,13) PCCC Turbo encoder、2stage Rate-matching、Parallel bit level channel interleaverであり、変調方式が16QAM、constellation and conventional Gray mappingであり、Code Block Size:954ビット固定(938ビット:情報ビット、16ビット:CRC)である。
また、パリティビットは1/2パンクチャされる。つまり、エア上には1920ビットが、2ms間隔で送信される。フェージング条件は50km/hとし、Single path条件としている。また、受信側条件は、Single pathのためRAKE合成はなしとし、軟出力方式はMax−Log−MAP、最大繰返し回数は8回、Hybrid−ARQは無効としている。
以上の条件においては、図15に示すように、ノイズが少ない方がBLER及びBERが減少する。また、図16に示すように、ノイズが少ない方が繰り返し回数は減ることがわかる。BLER=10%(E/N=16dB)において、平均繰返し回数は約2.25回となっている。これは、繰返し8回固定と比べて7割超の処理削減となることを示す。また、閾値2%の収束判定のみでは平均繰返し回数が約2.8回となる。したがって、収束判定のみの停止制御より収束/非収束判定による停止制御を行なうことで約2割の処理削減になることがわかる。
以上は、従来の復号装置の一例について説明したが、従来の繰返し制御方法としては、種々のものが提案されている(例えば特許文献1乃至3、非特許文献1参照)。これらをまとめた結果を図17に示す。図17は、従来の繰り返し制御方法及び繰り返し回数を示す図である。なお、上述の従来の復号装置の繰り返し制御方法は従来例Dに対応する。この上記従来の繰り返し制御方法は下記従来例Cの繰り返し制御方法を改良したものとなっている。ここで、図17は、下記に対応する。
従来例A:繰り返し回数固定(例えば8回固定)
・A1:8回繰り返しても誤りを訂正できない場合には8回まで復号を繰り返す
・A2:8回までに誤りを訂正できても、固定回数上限(8回)まで復号を繰り返す
従来例B:最大繰返し回数、例えば8回までに、誤り検出符号による誤りの有無の判定を行い、誤りがない場合に繰返しを停止する。
・B1:誤り検出符号がない場合、8回繰り返しても誤りを訂正できない場合には8回まで復号を繰り返す(=A1)
・B2:誤り検出符号がない場合、8回までに誤りを訂正できても、8回まで復号を繰り・返す
・B3:誤り検出符号がある場合、8回繰り返しても誤りを訂正できない場合は、8回まで復号を繰り返す
・B4:誤り検出符号がある場合、8回までに誤りが訂正できれば、繰り返しを停止する
従来例C:最大繰返し回数、例えば8回までに、誤り訂正の収束判定を行い、誤り訂正が収束すると判断できる場合には繰返し復号を停止する
・C1:8回繰り返しても誤り訂正の収束が検出されない場合、8回まで復号を繰り返す。
・C2:8回までに誤り訂正の収束を検出した場合、繰り返しを停止する
従来例D:Cに誤り訂正の非収束判定を追加し、最大繰返し回数まで繰返しても誤り訂正が収束しないと判断できる場合には繰り返し復号を停止する。
・D1:8回繰り返しても誤り訂正の収束/非収束が検出されない場合、8回まで繰り返す
・D2:8回までに誤り訂正の非収束が検出されば場合、繰り返しを停止する
・D3:8回までに誤り訂正の収束を検出した場合、繰り返しを停止する
以上に述べた通り、非特許文献1記載の従来の復号装置である従来例Dは、従来例Cの課題、すなわち、従来例Cの8回繰り返しても誤り訂正が収束されない場合においても8回繰り返し復号してしまう(上記C1)という課題を解決するものである。すなわち、収束判定に加えて、非収束判定を行なうことで、従来例DのD2に示すように、最大繰り返し回数の8回以前に非収束であると判定できた場合には繰り返しを停止することで、無駄な繰り返しを行なうことを防止することができる。こうして、収束及び非収束判定により、ターボ復号の繰返し制御を行い、繰返し回数を最適化することができる。
特開2004−194326号公報 特開2002−344330号公報 特開2002−100995号公報 A. Taffin, "Generalized stopping criterion for iterative decoders", IEEE Electronics Letters, 26th, June, 2003, Vol. 39, No.13
ところで、上述のW−CDMAなどは、3GPP(3rd Generation Partnership Project)で標準化されている通信方式である。3GPPでは、第3世代の移動体通信システムの標準化が行われている。
高速パケット伝送技術の1つであるHSDPA(High Speed Downlink Packet Access)もこの3GPPで定義されている。HSDPAは、適応変調方式が採用され、変動する電波伝搬路の状態、すなわち空中の電波の伝わりやすさの変化を総合的に判断し、最良の変調方式を自動的に選択する。具体的には、電波の受信状態が悪いときは低速なQPSK(Quadrature Phase Shift Keying)が用いられ、受信状態が良い時は高速な16QAM(16 Quadrature Amplitude Modulation)という変調方式が用いられる。いずれも速度の速さと相反した雑音への強さとなっており、QPSKではオーバーヘッドが大きいため低速になり、16QAMでは、高速伝送が可能となる。
このHSDPAにおいては、転送ブロック(Transport Block:TrBK)数が1個と規定されている。そして、誤り検出符号として、24ビットのCRCが転送ブロックTrBKの最後に付加されている。また、符号ブロック(Code Block:CdBK)のブロックサイズが、最大で5114ビットと決められている。符号ブロックCdBKはターボ符号(Turbo Code)を施す単位ブロックである。
このため、TrBK+CRC>5114となる場合、TrBK+CRCは複数CdBKに分割される。HSDPAでは、転送レートに応じたカテゴリ(Category)が用意されており、カテゴリによって最大のTrBKサイズが決められている。例えば、カテゴリ5、6では最大2符号ブロックCdBK、カテゴリ7、8では最大3符号ブロックCdBK、カテゴリ10では最大6符号ブロックCdBKになる。この場合、誤り訂正符号であるCRCは、必然的に最終CdBKの最後に付加される形となり、途中の符号ブロックCdBKには、誤り検出符号が付加されない状態になる。
このような転送ブロックTrBKをターボ復号する場合について、上記従来例A〜従来例Dを当てはめてみる。繰返し回数最適化の観点から、最大繰り返し回数まで常に繰り返し復号を行なう従来例Aは適当ではない。また、誤り検出符号が最終符号ブロックCdBKにしか付加されないため、従来例Bを適用することができない。また、従来例Cは、上述したように、非収束の判定を行なわないため、非収束の場合であっても最大繰り返し回数まで復号してしまうという課題が残る。そこで、従来例Dのように、収束判定に加え、非収束判定を実施する場合について考える。
図18は、従来例D(非特許文献1)におけるHSDPAの復号方法を説明する模式図である。また、図19は、従来例Dの復号方法を示すフローチャートである。ここでは、説明容易化のため、符号ブロックCdBK数が3、すなわち、転送ブロックTrBKが、1st符号ブロックCdBK、2nd符号ブロックCdBK、LastCdBKの3つの符号ブロックから構成されるものとする。転送ブロックTrBKの末尾、すなわちLast符号ブロックCdBKには誤り検出符号CRCが付加されている。
また、本例においては、復号装置(Turbo Decoder)は1つとし、各符号ブロックCdBKでは、繰返し4回目で誤り訂正の非収束を検出するものとする。転送ブロックTrBKは、最終的には最終CdBKに付加されているCRCにより誤り検出を行う必要があるため、各符号ブロックCdBKは受信される順番に処理を行う必要がある。よって、以上の条件下において、従来例Dの方法では非収束を判定するため、各符号ブロックCdBKにおいて繰返し4回にて誤り訂正の非収束を検出し、繰返しを停止することができる。
すなわち、上記従来例Cの方法では同一条件下では、各符号ブロックCrBKの全てで繰り返し復号最大回数の8回、計24回の繰り返し復号処理を行なう必要があるが、従来例Dの方法であれば、非収束の検出を導入することで、上記条件の場合には合計12回分の繰り返し復号処理とすることができる。
しかしながら、図18に示す例の場合、本来は最初の1st符号ブロックCdBKにて非収束が検出された時点で、この転送ブロックTrBKにおけるCRC判定結果が誤りを検出することは自明である。この場合、以降の符号ブロックCdBKでは本来は復号処理をする必要がない。つまり、2nd符号ブロックCdBK、Last符号ブロックCdBKにおける合計8回分の繰り返し復号処理は、本来は必要のない無駄な処理ということになる。
すなわち、従来例Dの転送ブロックの処理方法では、図19に示すように、ステップS201にて、符号ブロックNo=1、符号ブロック数=3に初期化し、最初の符号ブロックCdBKについてターボ復号する(ステップS202)。このターボ復号は、上述の図14に示すターボ復号処理を示す。すなわち、符号ブロックCdBKにおいて、Δを求め、収束又は非収束判定された場合、又は繰り返し最大回数(=8)まで復号処理を続ける。上記例においては、4回で非収束を判定して符号ブロックCdBKの繰り返し復号を終了する。そして、ステップS203に進み、ステップS202において非収束の判定がされた場合であっても、最終符号ブロックLastCdBKまでステップS202、S203を繰り返してしまう。
図20は、従来例Dの問題点を説明するための図である。図20(a)に示すように、従来例Dの復号方法においては、復号ブロックCdBK数=Maxの3になるまで、符号ブロックCdBKの処理を途中で停止しないため、以降の2nd符号ブロックCdBK、Last符号ブロックCdBKにおいても繰り返し復号を行なってしまう。更に、図20(b)に示すように、いずれの符号ブロックCdBKにおいても、収束・非収束が検出されない場合は、全てのCdBKが最大の繰返し回数まで処理を行う可能性があり、無駄な繰り返し復号を行なってしまう可能性があるという問題点がある。
本発明にかかる復号装置は、受信データを尤度情報に基づき復号する復号装置であって、前記受信データを複数に分割した分割ブロック毎に繰り返し復号を行なう復号処理部と、前記復号処理部からの出力結果に基づき前記繰り返し復号を停止するか否かを判断する停止・終了判定部とを有し、前記停止・終了判定部は、前記各分割ブロックにおける前記繰り返し復号を停止するか否かの停止判定を行い、その停止判定結果に基づき前記受信データの復号処理を終了するか否かの終了判定を行うものである。
本発明にかかる復号方法は、受信データを尤度情報に基づき復号する復号方法であって、前記受信データを複数に分割した分割ブロックのうち一の分割ブロックを復号処理して復号結果を出力し、前記復号結果に基づき、前記一の分割ブロックの復号の繰り返しを停止するか否かの停止判定を行い、前記一の分割ブロックの復号処理を停止しない場合は復号処理を繰り返し、前記一の分割ブロックの復号処理を停止する場合は当該停止判定結果に基づき前記受信データの復号処理を終了するか否かの終了判定を行うものである。
本発明においては、受信データを複数に分割した分割ブロック毎に繰り返し復号を停止するか否かの停止判定を行い、停止判定結果に基づき受信データの復号処理終了の判定を行なうので、受信データの処理途中で当該受信データの復号処理の終了判定を行なうことができ、不要な処理を削減することができる。
本発明によれば、不要な繰り返し復号処理を削減し、効率よく復号処理をすることが可能な復号装置、復号方法及び受信装置を提供することができる。
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。この実施の形態は、本発明を、HSDPAの仕様に準じたパケットを受信してターボ復号する復号装置及びこれを具備する受信装置に適用したものであって、転送ブロックを構成する符号ブロックの1つに繰り返し復号を施しても誤り訂正が収束しないと判定されるものが含まれている場合には、転送ブロックの復号を終了することで、従来に比して無駄な繰り返し復号処理を行なわないようにしたものである。なお、本実施の形態においては、HSDPAの仕様に準じたパケットを受信してターボ復号する復号装置を例にとって説明するが、後述するように、受信データを複数のブロックに分割して繰り返し復号処理する復号装置であれば、同様に適用することができる。
実施の形態1.
図1は、本実施の形態にかかる復号装置1を示す図である。復号装置1は、復号処理部としての第1の復号器2及び第2の復号器3と、インタリーバ4、5と、デインタリーバ6、7と、硬判定部8と、停止・終了判定部9とを有する。
復号装置1は、伝送路を介して送られるターボ符号を受信データとして受け取る。受信データには、例えば上述の図12に示す符号化装置にて生成された第1の要素符号E及び第2の要素符号Eintが含まれる。要素符号E、Eintは、上述したようにパリティビット1P、2Pと情報ビットU、Uintからなるが、第1の要素符号Eの情報ビットUをインタリーブすると第2の要素符号Eintの情報ビットUintが得られるため、実際に送られるデータは、第1の要素符号の情報ビットU及びパリティビット1Pと、第2の要素符号Eintのパリティビット2Pである。なお、本復号装置1にて復号可能なターボ符号であれば、上述の並列連接符号に限らず、例えば直列連接畳込み符号等であってもよい。
第1の復号器2、第2の復号器3は、受信データについて、軟入力軟出力復号法により繰り返し復号を行なう軟出力復号部である。軟入力軟出力復号法には、SOVAやMAPが知られている。
ここではMAPを例に説明する。第1の復号部2は、受信した第1の要素符号E(第1のパリティY1p、情報ビットY)と、外部情報Le2とが供給される。そして、これらの入力値に基づき、トレリス上でのフォワード処理及びバックワード処理にて算出された値を使用して軟出力を生成する公知の軟入力軟出力復号法により復号処理を行なって第1の外部情報Le1を出力する。インタリーバ4は、第1の外部情報Le1にインタリーブを施し、インタリーブされた第1の外部情報Lint e1を生成する。同時に、情報ビットYはインタリーバ5にてインタリーブされ、インタリーブされた情報ビットYint とされ第2の復号器3へ供給される。
第2の復号器3は、インタリーブされた第1の外部情報Lint e1と、受信した第2のパリティY2p及びインタリーブされた情報ビットYint とが供給され、公知の軟入力軟出力復号法により復号処理を行って第2の外部情報Lint e2を出力する。この第2の外部情報Lint e2は、デインタリーバ6にてデインタリーブされ、第1の復号器2に供給される。こうして、第1の復号器2は、デインタリーバ6からの第2の外部情報Le2と通信路値(第1のパリティY1p、情報ビットY)とを用いて復号処理し、第2の復号器3は、インタリーブされた第1の外部情報Lint e1と通信路値(第2のパリティY2p)とを用いて復号処理するという処理を繰り返す。第1の復号器2及び第2の復号器3の復号処理により、1回の繰り返し復号が終了する。
また、第2の復号器2は、復号過程にて生成される対数尤度比Lint をデインタリーバ7へ出力する。デインタリーバ7は、この対数尤度比Lint をデインタリーブして対数尤度比Lとし、硬判定部8にて硬判定結果u^を求める。更に、本実施の形態にかかる復号装置1においては、硬判定結果u^が供給される停止・終了判定部9を有し、ターボ復号の繰り返し処理を停止するか否かを判断する。
この停止・終了判定部9においては、後述するように、HDAで算出されるBERと、情報長の比を閾値比較して、ターボ復号の誤り訂正が収束しているか否かを判別し、ターボ復号の繰返し回数の最適化を図る。
ところで、本実施の形態にかかる復号装置1においては、受信データとして転送ブロック(Transport Block)を受け取る。図2(a)は転送ブロックを説明するための模式図である。HSDPAにおいては、上述したように、通信路の伝送レートに応じたカテゴリによって、転送ブロックTrBKに1又は複数の符号ブロックBdCKが含まれる。以下の説明においては、転送ブロックTrBKに3つの符号ブロックBdCKが含まれる例について説明する。図2(a)に示すように、転送ブロックTrBKには誤り検出符号CRCが付加されている。
転送ブロックTrBKは、復号装置1において3つの符号ブロックCdBKに分割され復号処理される。HSDPAにおいては、1回の復号処理で処理可能な符号長が制限されているため、送信側において予め復号単位となる符号ブロックに分離可能な転送ブロックTrBKを生成し、これを送信しているためである。符号ブロックCdBKはその復号単位ブロックである。復号装置1は、各符号ブロックCdBKについて順次復号処理を行なう。硬判定部8は、一の符号ブロックCdBKにおいて2回目以降の繰り返し復号処理後に硬判定結果u^を出力し、停止・終了判定部9は、この硬判定結果に基づき、後述する収束したか否かの停止判定を行なう。
ここで、本実施の形態における停止・終了判定部9は、各符号ブロックCdBKについて停止判定を行ない、この判定結果に基づき各符号ブロックCdBKの繰り返し復号処理終了毎に転送ブロックTrBKの復号処理を続けるか否かの終了判定を行なう。この転送ブロックTrBKの終了判定においては、図2(b)に示すように一の符号ブロックCdBKについて非収束を検出した場合、及び図2(c)に示すように一の符号ブロックCdBKについて最大繰り返し復号回数まで復号を行なっても収束が検出できなかった場合には、以降の符号ブロックの復号処理を停止させ、現在処理中の転送ブロックTrBK自体の復号処理を中止させる。
本実施の形態においては、停止・終了判定部9は、各符号ブロックCdBKの停止判定及び転送ブロックTrBKの終了判定に、上述のHDAを使用する。そして、停止判定では、収束・非収束を検出して繰り返し復号を停止する。また、終了判定では、符号ブロックCdBKが収束して繰り返し復号を終了した場合を除き、転送ブロックTrBKの処理を終了させる。例えば各CdBKを直列に、すなわち、先頭の符号ブロックCdBKからターボ復号処理する場合、1st符号ブロックCdBKにおいて、例えば4回目の繰り返し復号で非収束と判定された場合(図2(b))や、最大の繰返し回数までターボ復号処理を完了した時点でCRCがエラーとなる確率が十分高いと判断できる場合(図2(c))は、残りの符号ブロックCdBKのターボ復号処理は行わず、そのパケットデータ(転送ブロック)を破棄する。
特に、HSDPAの場合、CRCが最終符号ブロックCdBKにしか付加されていないため、CRCがエラーであることを確認して処理を終了する従来の方法では、最終符号ブロックまでの復号処理が必要となってしまう。これに対し、本実施の形態においては、符号ブロックCdBKの繰り返し復号が収束したか否かによって転送ブロックTrBKの復号処理の終了判定を行なうため、最終符号ブロックCdBKの処理を待たずに復号処理終了を決定することができ、無駄な繰り返し復号処理を省け、結果、消費電流を削減することができる。
なお、本実施の形態においては、HSDPAの転送ブロックを例にとって説明するが、復号段階において、1つ受信データをターボ復号が可能な複数の単位に分離して停止判定することができるものであればよい。分離した単位符号の停止判定をすることで、全体の復号処理を待たずに繰り返し復号処理を終了させ、例えば再度パケットを送信してもらう等のエラー処理を行なうことができる。また、本実施の形態においては、転送ブロックの最後にCRCの付加されるHSDPAを例にとって説明するが、誤り検出符号が付加されていない場合であっても適用することができる。すなわち、本実施の形態においては、全ての符号ブロックCdBKが、停止・終了判定部9にて収束と判定された場合に、CRCによって誤り判定がされ、最終的な確認がなされるが、誤り検出符号が付加されていない場合には、各符号ブロックの停止・終了判定部9の判定結果が収束、すなわち誤りなしであれば、全体として誤りなしと判定することができる。更に、本実施の形態においては、HDAを停止判定に用いているが、その他の判定方法、例えば、SISO復号器出力の確率的密接度が非常に大きいと判断されると復号を停止させる方法(Approximated Cross Entropy Stopping Criterion方式)、任意のSISO復号器の出力LLR情報のうち最小絶対値を測定値として設定し、以前の反復復号過程で設定した測定値を現在の臨界値として利用する方法(Minimum Absolute LLR Stopping Criterion方式)、1つのSISO復号器の現在フレームに対する入力事前情報と出力付加情報の符号(sign)の全てを比較して相違なる符号の回数に応じて復号を停止する方法(Sign Difference Ratio Stopping Criterion方式)(特許文献1参照)などを使用してもよい。
次に、本実施の形態にかかる復号方法について詳細に説明する。図3は、復号装置1の符号ブロックCdBKの復号方法を示すフローチャートである。なお、ここでは繰り返し復号回数の最大値は8回とする。図3に示す符号ブロックCdBKの復号方法は、上述した従来の復号方法と同様である。
すなわち、図3に示すように、先ず、第1の復号器2及び第2の復号器3で行なわれる繰り返し復号の繰り返し回数=1、繰り返し回数の上限値を8回にセットする(ステップS1)。そして、第1の復号器2にて復号処理し、第1の外部情報Le1を生成する(ステップS2)。これをインタリーバ4にてインタリーブし、第2の復号器3に入力する。このとき同時に、情報ビットYについてもインタリーバ5にてインタリーブを施し、第2の復号器3へ入力する。第1の復号器2は、対数尤度比(LLR値)としてLも生成するがここでは使用しない。なお、第1の復号器2への入力であるLe2の初期値は0である。
第2の復号器3は、インタリーブされた第2の外部情報Lint e2を出力すると共にインタリーブされた対数尤度比Lint を出力する。インタリーブされた第2の外部情報Lint e2は、デインタリーバ6にてデインタリーブされ、第1の復号器2の入力である第2の外部情報Le2とされる。また、インタリーブされた対数尤度比Lint は、デインタリーバ7にてデインタリーブされ、対数尤度比Lとされ、硬判定部8にて硬判定結果を生成する。
次に、繰り返し回数が1より大きいか否かを判断し(ステップS4)、繰り返し回数が2以上であれば下記数1に示す判定値Δを計算する(ステップS5)。
Figure 0004092352
すなわち、上記式(1)に示す判定値Δは、各ビットについて今回の対数尤度比Lと前回の対数尤度比Lとの差を求め、それらの平均を求めた値である。この判定値Δが0に近いほど前回と今回の復号結果が等しいことを示し、判定値Δが1に近ければ前回と今回の復号結果が大きく異なることを示す。
この判定値Δが収束判定用閾値ηvonvより大きい場合及び非収束判定用閾値ηnon−convより小さい場合(ステップS6:No)には、繰り返し回数がMAX=8まで繰り返し復号を実施する。つまり、繰り返し回数がMAX=8であるか否かを判定し(ステップS7)、8回未満であれば、繰り返し回数をインクリメントし(ステップS8)、ステップS2からの処理を繰り返す。
上記ステップS6の判定値Δの判定のため、繰り返し回数2以上において、先ず、硬判定結果u^を使用し、上記式2から判定値Δを算出する。そして、収束判定用閾値ηconv、非収束判定用ηnon−convから停止判定を行う。判定の結果、収束/非収束の何れかの条件を満たしたら符号ブロックCdBKの繰返し復号を停止する。
本実施の形態においては、上述したように、受信データである転送ブロックTrBKには複数の符号ブロックが含まれている。図4は、転送ブロックの復号方法を示すフローチャートである。本例では、上述のとおり、一の転送ブロックに含まれる符号ブロックCdBKは3つである。そして、これら3つの各符号ブロックCdBKの繰り返し復号処理終了後に再度、判定値Δにより、当該符号ブロックCdBKの繰り返し復号が収束したか否かの終了判定を行なって転送ブロックTrBKの復号処理を続けるか否かを判断する。
すなわち、先ず、転送ブロックNo=1、転送ブロック数=3にセットし(ステップS11)する。そして、上述の図3に示したターボ復号を実行する(ステップS13)。そして、1つの符号ブロックCdBKの復号処理が終了したら、判定値Δが収束判定用閾値ηconvより大きいか否かを判定する(ステップS13)。すなわち、ステップS12において復号処理した符号ブロックCdBKが最終的に収束と判定されて繰り返し復号を停止されたか否か(最高8回も含む)を判定する。
ここで、判定値Δが収束判定用閾値ηconvより大きいと判断された場合、すなわち収束していないと判断された場合には、この転送ブロックTrBKの処理を終了する。この場合、復号装置1は、例えば当該転送ブロックTrBKのパケットの再送要求をすることとなる。
一方、符号ブロックCdBKは繰り返し復号が誤り訂正できるもの(収束する)として繰り返し復号が停止された場合には、符号ブロックNo=3(最大値)となるまでインクリメントし(ステップS14、15)、ステップS12からの処理を繰り返す。そして、最後の符号ブロックLastCdBKまで、全ての符号ブロックについて収束判定がされたときは、すなわち上記終了判定において終了と判定されなかったときのみ、符号ブロックCdBKを再度転送ブロックTrBKとし、硬判定部8の後段又は硬判定部8内に設けられたCRC判定部にて、転送ブロックのCRC判定を行なう。なお、通常、全ての符号ブロックについて収束判定された場合にはCRC判定でエラーとなる確率は極めて小さい。なお、ηconv、ηnon−convの値は、伝送路の状況、伝送レートなどの通信環境、求められるBER、繰り返し復号回数、復号器の構成等に応じて適宜シミュレーション等によって予め求められる値である。
次に、本実施の形態の効果について説明する。図5は、本実施の形態にかかる復号装置の効果を説明する図である。図5の上図及び下図は、それぞれ上述の従来例D及び本実施の形態にかかる復号装置をHSDPAに適用した場合の復号の繰り返し回数を模式的に示す図である。従来例D及び本実施の形態において、各符号ブロック1stCdBK〜LastCdBKは、それぞれ4回目の繰り返し復号で非収束検出がされる場合と、最大繰り返し回数(=8回)まで繰り返し復号を行なっても収束・非収束の判定ができなかった場合とを示している。
従来例Dの方法であると、符号ブロック1stCdBKにおいて4回目の繰り返し復号終了時に非収束を検出し、次の符号ブロック2ndCdBKの復号処理に進む。同様に4回目の繰り返し復号終了時に非収束を検出し、最後の符号ブロックLastCdBKの処理に進む。そして、繰り返し復号4回目で非収束を検出し、これらを統合し、最終符号ブロックLastCdBKに付加されているCRCにより、エラーを確認する。非収束検出を導入することで、各符号ブロックの繰り返し復号を4回で停止させることができるが、CRCによりエラーを検出し、この転送ブロックを破棄するまでには、結果的に12回の復号処理を必要とする。
更に、収束・非収束のいずれの判定もできない場合には、各符号ブロックCdBKは、最大繰り返し復号回数の8回の復号処理を必要とする。よって、CRCチェックによりエラーとされる確率が高いにも拘わらず、24回の繰り返し復号処理を必要とする。
これに対し、本実施の形態においては、各符号ブロックCdBKのターボ復号終了の後にもステップS13に示したように、Δによる転送ブロックTrBK処理終了判定を設ける。このことにより、本実施の形態においては、最初の符号ブロック1stCdBKのターボ復号終了後にΔ値による判定を実行することで、本転送ブロックTrBKの誤りが訂正できない確率が高い、つまりCRCエラーの確率が高いことを検出し、以降の処理を停止することができる。
図5に示す例においては、最初の符号ブロックCdBKの4回の繰り返し復号で非収束を検出した場合には、従来例Dに比べて8回の繰り返し復号処理を省略することができる。また、最初の符号ブロック1stCdBKで収束が検出できずに8回まで繰り返し復号した場合であっても、従来例Dに比べて16回の繰り返し復号処理を省略することができる。
本実施の形態においては、このように、受信データを複数のターボ復号可能な単位(符号ブロック)に分離して処理し、各符号ブロックの繰り返し復号をその硬判定結果の異なる割合を示す判定値Δにより停止判定すると共に、符号ブロックのターボ復号後においても再度Δにより終了判定を行なうことで、当該符号ブロックにより構成される転送ブロックの復号を終了するか否かを決定する。このことにより、誤りが訂正できない蓋然性が高い受信データは、早い時点で破棄することができ、処理時間の短縮化、消費電力化等を図ることができ、また迅速に再送要求するなど次の処理を実行することができる。
実施の形態2.
次に、本発明の実施の形態2について説明する。本実施の形態は、実施の形態1において行なっている符号ブロックの停止判定処理を更に高効率化し、繰り返し復号回数を更に低減させるものである。図6は、本実施の形態にかかる復号装置を示す図である。なお、図6に示す本実施の形態及び後述する図8に示す本実施の形態にかかる変形例において、図1に示す実施の形態1と同一構成要素には同一の符号を付してその詳細な説明は省略する。
図6に示すように、本実施の形態においては、第1の復号器12の出力が硬判定部8へ供給される点が上述の実施の形態1と異なる。すなわち、本実施の形態においては、第1の復号器12は、復号過程にて生成される対数尤度比Lを硬判定部8へ供給する。第2の復号器3は、実施の形態1と同様に、復号過程にて生成される対数尤度比Lint をデインタリーバ7へ出力する。そして、デインタリーバ7は、この対数尤度比Lint をデインタリーブして対数尤度比Lとし、硬判定部8に供給する。硬判定部8は、第1の復号器2からの対数尤度比Lを使用した硬判定結果(以下、u^(L)という。)と、第2の復号器3からの対数尤度比Lint をデインタリーブした対数尤度比Lを使用した硬判定結果(以下、u^(L)という。)を求める。そして、本実施の形態にかかる復号装置1においては、硬判定結果u^(L)、u^(L)が供給される停止・終了判定部9を有し、符号ブロックCrBKの繰り返し復号を停止するか否かの停止判定及び転送ブロックTrBKの復号処理を終了するか否かの終了判定を実行する。
ここで、本実施の形態にかかる停止・終了判定部9においては、実施の形態1と同様に、HDAで算出されるBERと、情報長の比を閾値比較して、ターボ復号の誤り訂正が収束しているか否かを判別し、ターボ復号の繰返し回数の最適化を図るが、そのタイミングが実施の形態1と異なる。
すなわち、実施の形態1と同様に、停止判定を行なうための判定値を求め、これを収束判定用閾値ηconv及び非収束判定用閾値ηnon−convと比較することで、繰り返し復号を停止するか否かを決定するが、その判定値の算出タイミングが各復号器の復号処理終了タイミングである点が実施の形態1と異なる。本実施の形態においては、対数尤度比L、Lを使用して、繰り返し復号の収束・非収束を検出するため、下記式(2)、(3)に示す2つの判定値Δ0.5、Δを使用する。
Figure 0004092352
Figure 0004092352
上記式(2)に示す判定値Δ0.5は、第1の復号器2によって得られる今回の対数尤度比Lと、第2の復号器3によって得られる前回の対数尤度比Lとの各ビット毎の硬判定結果の差を求め、それらの平均を求めた値である。また、式(3)に示す判定値Δは、第1の復号器2によって得られる今回の対数尤度比Lと、第2の復号器3によって得られる今回の対数尤度比Lとの各ビット毎の硬判定結果の差を求め、それらの平均を求めた値である。この判定値Δ0.5、Δが0に近いほど第1の復号器2の復号結果と第2の復号器3の復号結果とが等しいことを示し、判定値Δ0.5、Δが1に近ければ各復号器の復号結果が大きく異なることを示す、すなわち、復号がまだ収束していないことを示す点は実施の形態1と同様である。
繰り返し復号は、第1の復号器2及び第2の復号器3にて復号処理されて、1回が終了する。ここで、式(2)からもわかるように、判定値Δ0.5の算出タイミングは、通常の繰り返し復号終了ではなく、第1の復号器2の復号処理が終了したタイミングである。すなわち、本実施の形態においては、繰り返し復号処理の途中のタイミングにおいて判定値Δ0.5を算出する。式(3)に示す判定値Δは、通常の第2の復号器3の復号処理終了タイミングで算出される値である。このように、本実施の形態においては、繰り返し復号毎に停止判定のための判定値を算出するのではなく、各復号器2、3の復号処理終了タイミングにて判定値Δ0.5、Δを算出することで、復号器を2つ使用する本実施の形態の場合は、通常の2倍の割合で停止判定を実施する。もちろん、復号器を2段以上の構成とする場合には、更に細かいタイミングで停止判定が可能となる。
次に、本実施の形態にかかる復号方法について説明する。本実施の形態における受信データの復号方法は、図4に示す実施の形態1の受信データの復号方法におけるステップS12、すなわち各符号ブロックCdBKにおける復号方法が異なる。具体的には、各符号ブロックにおける繰り返し復号の停止判定タイミングが異なる。その他の点は同様である。
図7は、本実施の形態にかかる各符号ブロックの復号方法を示すフローチャートである。本例においては、各復号器12、3における繰り返し復号の最大値を8回とする。図7に示すように、先ず、繰り返し回数i=1、Max繰り返し回数=8回とし(ステップS1)、第1の復号器2にて復号処理を行なう。第1の復号器12は、図1に示す第1の復号器2と同様の復号処理を実行する。すなわち、第1の復号器2における復号処理においては、第2の外部情報Le2、並びに信号路値Yip及びYから、第1の外部情報Le1及び対数尤度比Lを算出する。第1の外部情報Le1は、インタリーバ4に供給され、インタリーブされ、第2の復号器3に入力される。このとき同時に、情報ビットYについてもインタリーバ5にてインタリーブを施し、第2の復号器3へ入力する。なお、第1の復号器2への入力であるLe2の初期値は0である。そして、本実施の形態においては、対数尤度比Lを、硬判定部8へ供給する。
硬判定部8は、対数尤度比Lを使用して硬判定結果u^(L)を求める(ステップS22)。そして、現在の繰り返し回数iが1回未満である場合(ステップS23:N)には、第2の復号器3にて実施の形態1における第2の復号器3と同様の復号処理をする(ステップS24)。すなわち、第2の復号器3には、インタリーブされた第1の外部情報Lint e1、並びに信号路値Y2p及びインタリーブされた信号路値Yが供給され、インタリーブされた第2の外部情報Lint e2を出力すると共にインタリーブされた対数尤度比Lint を出力する。インタリーブされた第2の外部情報Lint e2は、デインタリーバ6にてデインタリーブされ、第1の復号器2の入力である第2の外部情報Le2とされる。また、インタリーブされた対数尤度比Lint は、デインタリーバ7にてデインタリーブされ、対数尤度比Lとされ、硬判定部8に供給される。硬判定部8は、対数尤度比Lを使用して硬判定結果u^(L)を算出する。この硬判定結果u^(L)は、硬判定部8内若しくは停止・終了判定部9内、又は別途設けられた図示せぬメモリに保持される。
そして、繰り返し回数iが1回未満である場合(ステップS25:N)には、繰り返し回数が最大数=8か否かを判断し(ステップS26)、繰り返し回数iをインクリメントし(ステップS27)、ステップS2からの処理を繰り返す。
次に、このようにして現在の繰り返し回数=2となった場合、ステップS22にて上述同様に復号処理がなされ、硬判定結果u^(L )が算出される。この硬判定結果u^(L )は、硬判定部8の上記メモリに保持される。
そして、ステップS23において繰り返し回数が1より大きいと判断され(ステップ2S3:Y)、停止・終了判定部9において判定値Δ0.5の計算を行なう。ここでは、ステップS22において算出、保持されている硬判定結果u^(L )と、前回の繰り返し復号におけるステップS25において算出され、メモリに保持されている硬判定結果u^(L )とに基づき、上記式(2)から判定値Δ0.5を算出する。そして、この判定値Δ0.5が収束判定用閾値ηconvより小さいか、すなわち収束か、又は非収束判定用閾値ηnon−convより大きいか、すなわち非収束かを判断し、収束又は非収束の場合は処理を終了する。
また、収束又は非収束ではないと判定された場合(ステップS29:N)、ステップS24にて上述と同様に復号処理をし、硬判定結果u^(L )を算出し、これを上記メモリに保持する。そして、ステップS25を経て判定値Δを算出する(ステップS30)。ここでは、ステップS22において算出され、保持されている今回(現在)の繰り返し復号における硬判定結果u^(L )と、ステップS4にて算出され、保持されている同じく現在の繰り返し復号における硬判定結果u^(L )とに基づき上記式(3)から判定値Δを算出する。そして、この判定値Δが収束判定用閾値ηconvより小さいか、すなわち収束か、又は非収束判定用閾値ηnon−convより大きいか、すなわち非収束かを判断し(ステップS31)、収束又は非収束の場合は処理を終了する。こうして判定値Δ0.5又はΔが収束・非収束と判定されるまで、又は繰り返し最大回数=8に達するまでステップS2からの処理を繰り返す。
このようにして、本実施の形態においては、各符号ブロックCbBKにおいて、繰り返し回数=実質0.5回に1回の割合で停止判定を行なう。つまり、第1の復号器12の復号処理が終了した時点で一旦判定値Δ0.5により収束・非収束の判定を行ない、更に第2の復号器3の復号処理が終了した時点、すなわち通常の繰り返し復号が1回終了した時点で判定値Δにより収束・非収束の判定を行なうことにより、通常の2倍の回数の停止判定を実行する。このことにより、理論的には、平均して0.5/2回分、繰り返し処理を低減することができる。符号ブロックのターボ復号を高効率化することで、結果、転送ブロックの復号処理の効率化を図ることができる。
実施の形態2の変形例.
次に、本発明の実施の形態2の変形例について説明する。本実施の形態においては、上述の実施の形態2における第1の復号器12及び第2の復号器3を1つの復号器にて構成したものである。
図8は、本変形例にかかる復号装置を示すブロック図である。復号装置21は、復号器22、並びに通信路値Y、Y1p、Y2P及び外部情報Lを保持するそれぞれメモリ23〜26を有する。更にインタリーバ27、28、デインタリーバ29、30、選択器31〜35、硬判定部36、停止・終了判定部37及びデコーダコントローラ38を有する。
復号器22は、図6に示す第1の復号器12及び第2の復号器3の機能を有する。このため、選択器31、32によりYメモリ23の出力又はこれのインタリーバ27を介した出力を選択器31により切り替え、復号器22に入力する。また、Y1pメモリ24の出力又はY2pメモリの出力を選択器32により切り替え、復号器22へ出力する。
また、復号器22は、第1の外部情報Le1又はインタリーブされた第2の外部情報Lint e2を出力する。第1の外部情報Le1はそのまま選択器33へ出力され、一方インタリーブされた第2の外部情報Lint e2はデインタリーバ29にてデインタリーブされた後、選択器33へ出力される。選択器33は、いずれかを選択し、この選択値をLメモリ25に保持する。また復号器22は同時に対数尤度比L、Lint も出力する。対数尤度比Lは選択器34へそのまま出力され、一方インタリーブされた対数尤度比Lint はデインタリーバ30にてデインタリーブされた後、選択器34へ出力される。選択器34はいずれかを選択し、この選択値を硬判定部36へ出力する。停止・終了判定部37は硬判定部36の硬判定結果に基づき、上述同様にΔ0.5、Δを算出する。
また、Lメモリ26の出力Le1、Le2のうち、Le1はインタリーバ28にてインタリーブされ選択器35へ出力され、選択器35は第2の外部情報Le2又はインタリーブされた第1の外部情報Lint e1を選択して復号器12へ出力する。
本復号装置21の復号方法は、図7に示す実施の形態2と同様である。デコーダコントローラ38の制御により各セレクタ31〜35が適宜切り替わることで、復号器22が、第1の復号器12として動作したり、第2の復号器3として動作する。
先ず、復号器22が第1の復号器として機能する。デコーダコントローラ38の制御のものと、Yメモリ23及びY1pメモリからの通信路値(情報ビットY、パリティビットY1p)が選択器31、32を介して復号器12へ供給される。またLメモリ及び選択器35を介して第2の外部情報Le2が供給される。なお、繰り返し復号1回目の場合は、外部情報Le2=0とされる。これらの値に基づき復号器12は、外部情報Le1及び対数尤度比Lを出力する。
第1の外部情報Le1は、選択器33、Lメモリ26を経て、インタリーバ28にてインタリーブされ、選択器35を介して復号器22へ供給される。このとき同時に、Yメモリ23からのYがインタリーバ27にてインタリーブされ、Yint とされ、選択器31を介して供給される。またY2pメモリからY2pが選択器32を介して復号器22へ供給される。これらが供給され、復号器22は第2の復号器として動作する。そして、第2の外部情報Lint 2e、対数尤度比Lint を出力する。Lint e2は、デインタリーバ29にてデインタリーブされ、選択器33を介してLメモリ26に保持され、適当なタイミングで選択器35を介して復号器22へ供給される。こうして復号器は第1の復号器としての復号処理と第2の復号器としての復号処理を順次行なっていく。
一方、第1の復号器としての復号処理において算出された対数尤度比Lは、選択器34を介して硬判定部36へ供給される。硬判定部36は、Lを使用して硬判定結果を求める。次に、復号器22が第2の復号器としての復号処理を行ない、対数尤度比Lint を算出すると、これがデインタリーバ30にてデインタリーブされ、選択器34を介して硬判定部36へ供給される。硬判定部36は、Lを使用して硬判定結果を求める。
停止・終了判定部37には、Lから求めた硬判定結果とLから求めた硬判定結果が、繰り返し回数が0.5の間隔で順次供給される。停止・終了判定部37は、これらの値を利用して、繰り返し回数が0.5及び1のタイミングで上記式(2)及び(3)からそれぞれ判定値Δ0.5、及びΔを算出し、これを収束閾値ηvonv又は非収束判定用閾値ηnon−convと比較して、停止判定を行なう。これらの処理は、実施の形態2と同様である。
本変形例においても上述と同様、各符号ブロックについて、繰り返し復号毎に停止判定するのではなく、復号器の復号処理毎に停止判定処理することで、停止判定のタイミングを速く収束・非収束を復号繰り返し回数で理論上は最大0.5回速く検出することができる。更に、本変形例における復号装置21は、第1の及び第2の復号器を1つの復号器22として共有化することで、回路規模を小さくすることができる。
次に、本発明の実施の形態2を適用した実施例と従来の停止方法を適用した比較例とのシミュレーション結果に基づき、本実施の形態2の効果について説明する。図9は、信号対雑音電力密度比(Eb/N0)に対するビット誤り率(Bit Error Rate:BER)、ブロック誤り率(Block Error Rate:BLER)、フレーム誤り率(Frame Error Rate:FER)を示すグラフ図である。また、図10は、同じく信号対雑音電力密度比(Eb/N0)に対する平均繰り返し回数を示すグラフ図である。
図9において、縦軸のBERは、総ビット数に対する誤りビット数(誤りビット数/総ビット数)を示す。また、BLERは、転送ブロックにおける誤り率を示す。本例においては、1フレームのブロック数が1で、1ブロックあたり、656ビットとしている。また、FERは、総フレームに対する誤りフレーム(誤りフレーム/総フレーム数)を示す。本例においては、1フレームが1転送ブロックに対応するため、FERは、BLERと同義となる。なお、1フレームに複数の転送ブロックが含まれる場合には、FERは、BLERと異なる値となる。また、横軸の信号対雑音電力密度比Eb/N0は、ノイズの電力(N0)に対する1ビット当りの電力(Eb)を示し、ノイズの量が多いほど、信号対雑音電力密度比の数値は小さくなる。
更に、図9、図10において、BER1、BLER1、FER1、ava1は、本実施の形態を適用した実施例を示し、BER0、BLER0、FER0、ava0は、従来例を示す。図9に示すように、FER1、FER0、BLER1、BLER0は、略重なっており、BER1、BER0略重なっている。すなわち、本実施の形態における復号方法を適用し、繰り返し回数実質0.5回に1回の割合で停止判定を行なって収束か否かを検出し、繰り返し復号回数の最適化を行なった場合と、通常通り、繰り返し復号1回毎に停止判定を行なって収束・非収束を検出して繰り返し復号回数の最適化を行なった場合とでは、誤り訂正能力には差はない。
一方で、図10に示すように、実施例(ava1)は、従来例(ava0)よりも平均繰り返し回数が少なくなっている。本シミュレーションにおいては、BLER=0.01(Eb/N0=1.0dB)の条件において約0.25回程度、繰り返し回数を削減することができている。また、Eb/N0=1.2dBの条件においては、約0.26回程度、繰り返し回数を削減することができている。すなわち、本実施の形態にかかる復号方法を適用することで、誤り訂正能力を保持しつつ、各符号ブロックにおける繰り返し復号回数を削減することができる。
実施の形態3.
次に、本発明の実施の形態3について説明する。本実施の形態にかかる受信装置は、上
述の実施の形態1、2にかかる復号装置を備える。図11は、上述の復号装置1、11又は21を備える受信装置を示す図である。図11に示すように、受信装置40は、復号装置1の他、アンテナ41、増幅部42、RF部43、復調部44、デパンクチャ処理部45及びこれらを制御する制御部46などを備える。
受信装置40は、アンテナ41にて受信した受信データは、増幅部42に供給される。この増幅部42にて受信データを増幅した後、受信RF部43に供給する。RF部43では、周波数変換などの高周波処理を行って得られた受信データを復調部44に供給し復調する。復調された受信データは、デパンクチャ処理部45に供給される。ここでは、送信時に施されたインタリーブ処理・逆のデインタリーブ処理を行って、元のデータ配置とすると共に、送信時に間引かれたデータ位置に0ビットを挿入して、元のデータ長に復元するデパンクチャ処理を行う。そして、デパンクチャ処理で元のデータ長とされたデータを、復号装置1に供給して、ターボ復号を行って硬判定復号結果を得る。制御部46は、例えば復号装置1の停止判定結果等に基づき復号装置1へデータを供給するタイミング等を制御する。
本実施の形態においては、上述の復号装置1を備えることで、複数の符号ブロックを有する転送ブロックにおいて、一の符号ブロックにおいて誤り訂正が収束する蓋然性が低いことを検出した時点で当該符号ブロックを含む転送ブロックの復号処理を停止する。よって、転送ブロックの復号処理を高速化して少電力化を図った受信装置を提供することができる。また、上述の復号装置11又は21を備えれば、各符号ブロックにおける収束判定をより少ない繰り返し復号回数で判定することができ、更に復号処理が高効率化する。
なお、本発明は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。例えば、上述の実施の形態2においては、式(2)、(3)を使用して判定値を求めるものとして説明したが、これに限定されるものではない。例えば上記(3)の式は、1回の繰り返し復号が終了したタイミングで算出できる値であればよく、上述した実施の形態1における下記式(1)を使用することも可能である。
Figure 0004092352
また、式(2)に示すΔ0.5は、第1の復号器の復号処理終了のタイミングで算出することができればよく、対数尤度比L、Lではなく、外部情報Le1、Le2を使用してもよい。更に、上記式(1)は、第2の復号器の結果を使用するものであるが、第2の復号器から復号を開始し、繰り返し復号終了を第1の復号器とした場合には、第1の復号器からの出力Lを使用して判定値を求めることも可能である。また、上述の式(1)〜(3)においては、左辺に1/Nを乗算しているが、これを行なわず、閾値ηをN倍してもよいことは勿論である。更に、判定値Δ、Δ0.5、Δだけでなく、最小/最大のL又はLを閾値比較してもよい。または、硬判定結果やSCRで符号ビットが異なる位置、同一の位置における最小/最大のL又はL、Le1、Le2を使用することも可能である。
更に、上述の実施の形態2においては、2つの復号器又は2段の復号処理の復号結果によりターボ復号する復号装置について説明したが、例えば復号器を3以上又は3段以上の復号処理機能を有するような復号装置であってもよい。その場合、例えば、復号器の数=Mとしたとき、上記式(2)を使用すれば、判定値Δは、第1、第2の復号器の結果、第2、第3の復号器の結果、・・、第(M−1)、第Mの復号器の結果の一部又は全部を用いてΔ値を求めることができる。よって、繰り返し復号単位ではなく、より細かい単位で停止判定を行なうことができ、繰り返し回数を最短で停止させることができる。
また、上述の本実施の形態においては、2つの閾値を用いて収束・非収束を判定するものとして説明するが、例えば収束のみを判定するようにしてもよい。更に、閾値ηconv又はηnon−convは、定数を用いてもよいが、繰り返し回数に応じて変化する値としてもよい。その場合は、関数により適宜演算したり、ルックアップテーブル等に値を保持したりすればよい。
更に、実施の形態2においては、細かい間隔で収束又は非収束判定を行なうことができるため、停止判定した後、CRC判定を行ない、CRCエラーの場合には、再度繰り返し復号を行なうようにすることも可能である。
更にまた、上述の実施の形態1乃至3においては、ハードウェアの構成として説明したが、これに限定されるものではなく、任意の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。この場合、コンピュータプログラムは、記録媒体に記録して提供することも可能であり、また、インターネットその他の伝送媒体を介して伝送することにより提供することも可能である。
本発明の実施の形態1にかかる復号装置を示す図である。 (a)は本発明の実施の形態1における受信データである転送ブロックを説明するための模式図、(b)は、当該受信データにおいて非収束を検出した場合を示す模式図、及び図(c)は、当該受信データにおいて最大繰り返し復号回数まで復号を行なっても収束が検出できなかった場合を示す模式図である。 本発明の実施の形態1にかかる符号ブロックCdBKの復号方法を示すフローチャートである。 本発明の実施の形態1にかかる受信データの復号方法を示すフローチャートである。 本発明の実施の形態1にかかる復号装置の効果を説明する図である。 本発明の実施の形態2にかかる復号装置を示す図である。 本発明の実施の形態2にかかる復号方法を示すフローチャートである。 本発明の実施の形態2の変形例にかかる復号装置を示すブロック図である。 本発明の実施の形態2の効果を説明する図であって、信号対雑音電力密度比(Eb/N0)に対するビット誤り率(BER)、ブロック誤り率(BLER)、フレーム誤り率(FER)を示すグラフ図である。 本発明の実施の形態2の効果を示す図であって、信号対雑音電力密度比(Eb/N0)に対する平均繰り返し回数を示すグラフ図である。 本発明の実施の形態3にかかる受信装置を示す図である。 ターボ符号を生成するための一般的な符号化装置の構成を示す図である。 従来の復号装置を示すブロック図である。 従来の復号装置の復号方法を示すフローチャートである。 縦軸にブロックエラーレート(BLER)及びビットエラーレート(BER)をとり、横軸にノイズの割合をとって、従来の復号装置におけるノイズとエラーレートの関係を示すグラフ図である。 従来の復号装置におけるノイズに対する繰り返し回数の関係を示す図である。 従来の繰り返し制御方法及び繰り返し回数を示す図である。 従来例D(非特許文献1)におけるHSDPAの復号方法を説明する模式図である。 従来例Dの復号方法を示すフローチャートである。 従来例Dの問題点を説明するための図である
符号の説明
2,202 第1の復号器
3,203 第2の復号器
4,5,27,28,104,204,205 インタリーバ
6,7,29,30,206,207 デインタリーバ
8,36,208 硬判定部
9,37 停止・終了判定部
12 第1の復号器
22 復号器
23,24,25,26 メモリ
21,22,23,24,25 選択器
38 デコーダコントローラ
40 受信装置
41 アンテナ
42 増幅部
43 RF部
44 復調部
45 デパンクチャ処理部
46 制御部
101 符号化装置
102 第1の符号化器
103 第2の符号化器
209 HDA判定部

Claims (19)

  1. 受信データを尤度情報に基づき復号する復号装置であって、
    前記受信データを複数に分割した分割ブロック毎に繰り返し復号を行なう復号処理部と、
    前記復号処理部からの出力結果に基づき前記繰り返し復号を停止するか否かを判断する停止・終了判定部とを有し、
    前記停止・終了判定部は、前記各分割ブロックにおける前記繰り返し復号を停止するか否かの停止判定を行い、その停止判定結果に基づき前記受信データの復号処理を終了するか否かの終了判定を行う復号装置。
  2. 前記停止・終了判定部は、前記分割ブロックにおける前記繰り返し復号の誤り訂正が収束したか否かの判定結果に基づき前記終了判定を行う
    ことを特徴とする請求項1記載の復号装置。
  3. 前記停止・終了判定部は、前記各分割ブロックの繰り返し復号終了毎に前記終了判定を行うものであって、前記停止判定において一の分割ブロックにおいて前記繰り返し復号の誤り訂正が収束しないと判定した場合に当該受信データの復号処理を終了する
    ことを特徴とする請求項1又は2記載の復号装置。
  4. 前記分割ブロックは、復号単位となる符号ブロックであって、
    前記受信データは、複数の前記符号ブロックを有する転送ブロックである
    ことを特徴とする請求項1記載の復号装置。
  5. 前記受信データにおける最終ブロックには誤り判定符号が付加されている
    ことを特徴とする請求項1記載の復号装置。
  6. 前記復号処理部は、複数段の復号部として機能し、初段乃至最終段の復号処理を行なうことで1回の繰り返し復号を行なうものであって、
    前記停止・終了判定部は、前記最終段以前の復号処理の終了タイミングで前記停止判定を行う
    ことを特徴とする請求項1記載の復号装置。
  7. 前記復号処理部の出力結果に基づき硬判定復号結果を出力する硬判定部を有し、
    前記停止・終了判定部は、前記硬判定部の結果に基づき前記停止判定を行なう
    ことを特徴とする請求項1記載の復号装置。
  8. 前記停止・終了判定部は、前記複数段の復号処理において各復号処理の終了タイミングで前記停止判定を行なう
    ことを特徴とする請求項6記載の復号装置。
  9. 前記復号処理部は、複数段の復号部を有し、
    前記停止・終了判定部は、前記複数段の復号部のうち前後の復号部の復号結果に基づき前記停止判定を行なう
    ことを特徴とする請求項6記載の復号装置。
  10. 前記復号処理部は、第1の復号部及び第2の復号部を有し、
    前記停止・終了判定部は、今回の繰り返し復号における前記第1の復号部からの出力と、前回の繰り返し復号における前記第2の復号部からの出力とに基づき前記停止判定を行なう
    ことを特徴とする請求項6記載の復号装置。
  11. 前記復号処理部を制御する制御部を有し、
    前記復号処理部は、第1の復号部及び第2の復号部として機能する一の復号部を備え、
    前記制御部は、前記一の復号部への入力を切り替え、前記第1又は第2の復号部として機能させる
    こと特徴とする請求項6記載の復号装置。
  12. 前記停止・終了判定部は、今回の繰り返し復号における前記第1の復号部及び第2の復号部の出力に基づき前記停止判定を行なう
    ことを特徴とする請求項10記載の復号装置。
  13. 前記停止・終了判定部は、今回の繰り返し復号及び前回の繰り返し復号における前記第1又は第2の復号部の出力に基づき前記停止判定を行なう
    ことを特徴とする請求項10記載の復号装置。
  14. 前記復号処理部の出力結果に基づき硬判定復号結果を出力する硬判定部を有し、
    前記停止・終了判定部は、前記硬判定部の結果に基づき前記停止判定を行なうものであって、今回の繰り返し復号における前記第1の復号部からの出力と、前回の繰り返し復号における前記第2の復号部からの出力とに基づき、硬判定結果の異なる数を判定値として算出し、当該判定値から収束及び/又は非収束を検出することで前記停止判定を行ない、この判定結果に基づき前記終了判定を行なう
    ことを特徴とする請求項10記載の復号装置。
  15. 受信データを尤度情報に基づき復号する復号方法であって、
    前記受信データを複数に分割した分割ブロックのうち一の分割ブロックを復号処理して復号結果を出力し、
    前記復号結果に基づき、前記一の分割ブロックの復号の繰り返しを停止するか否かの停止判定を行い、
    前記一の分割ブロックの復号処理を停止しない場合は復号処理を繰り返し、前記一の分割ブロックの復号処理を停止する場合は当該停止判定結果に基づき前記受信データの復号処理を終了するか否かの終了判定を行う復号方法。
  16. 前記終了判定では、前記一の分割ブロックにおける前記繰り返し復号の誤り訂正が収束したか否かの停止判定結果に基づき、前記受信データの復号処理を停止するか否かを判定する
    ことを特徴とする請求項15記載の復号方法。
  17. 前記復号結果の出力では、複数段の復号部として機能し、初段乃至最終段の復号処理を行なうことで1回の繰り返し復号を行なう復号処理部により復号結果を出力し、
    前記停止判定では、現在の繰り返し復号を実行中の前記復号処理部における前記最終段以前の復号結果に基づき前記分割ブロックの繰り返し復号を停止するか否かを判定する
    ことを特徴とする請求項15記載の復号方法。
  18. 前記復号結果に基づき硬判定復号結果を出力し、
    前記停止判定では、前記硬判定結果に基づき前記繰り返し復号の誤り訂正が収束したか否かの判定を行なう
    ことを特徴とする請求項17記載の復号方法。
  19. 連接符号化された符号を受信し、この受信データを尤度情報に基づき繰り返し復号する受信装置であって、
    前記受信データを受信する受信部と、
    前記受信データの前記繰り返し復号をする復号部と、
    前記復号部における繰り返し回数を最適化する制御部とを有し、
    前記復号部は、
    前記受信データを複数に分割した分割ブロック毎に繰り返し復号を行なう復号処理部と、
    前記復号処理部からの出力結果に基づき前記分割ブロックの前記繰り返し復号を停止するか否かを判断する停止判定部とを有し、
    前記制御部は、一の分割ブロックの繰り返し復号終了毎にその停止判定結果に基づき前記受信データの復号処理を終了するか否かの終了判定を行う受信装置。
JP2005331185A 2005-11-16 2005-11-16 復号装置、復号方法、及び受信装置 Expired - Fee Related JP4092352B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005331185A JP4092352B2 (ja) 2005-11-16 2005-11-16 復号装置、復号方法、及び受信装置
GB0621600A GB2432495B (en) 2005-11-16 2006-10-30 Decoding device, decoding method, and receiving apparatus
US11/590,823 US7992073B2 (en) 2005-11-16 2006-11-01 Decoding device, decoding method, and receiving apparatus
KR1020060113442A KR100860733B1 (ko) 2005-11-16 2006-11-16 디코딩 디바이스, 디코딩 방법, 및 수신 장치
CNA2006101493783A CN1968071A (zh) 2005-11-16 2006-11-16 解码装置、解码方法、和接收设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331185A JP4092352B2 (ja) 2005-11-16 2005-11-16 復号装置、復号方法、及び受信装置

Publications (2)

Publication Number Publication Date
JP2007142622A JP2007142622A (ja) 2007-06-07
JP4092352B2 true JP4092352B2 (ja) 2008-05-28

Family

ID=37546239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331185A Expired - Fee Related JP4092352B2 (ja) 2005-11-16 2005-11-16 復号装置、復号方法、及び受信装置

Country Status (5)

Country Link
US (1) US7992073B2 (ja)
JP (1) JP4092352B2 (ja)
KR (1) KR100860733B1 (ja)
CN (1) CN1968071A (ja)
GB (1) GB2432495B (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070086550A1 (en) * 2005-10-18 2007-04-19 Matsushita Electric Industrial Co., Ltd. Receiving apparatus, mobile communication terminal, and communication system
JP2008011460A (ja) * 2006-06-30 2008-01-17 Fujitsu Ltd ターボ復号器
US8024644B2 (en) * 2006-11-14 2011-09-20 Via Telecom Co., Ltd. Communication signal decoding
US8379738B2 (en) * 2007-03-16 2013-02-19 Samsung Electronics Co., Ltd. Methods and apparatus to improve performance and enable fast decoding of transmissions with multiple code blocks
US20080267100A1 (en) * 2007-04-27 2008-10-30 Broadcom Corporation, A California Corporation Data block cluster processing in a wireless device
US8261170B2 (en) * 2007-06-19 2012-09-04 Mitsubishi Electric Research Laboratories, Inc. Multi-stage decoder for error-correcting codes
CN103188050A (zh) * 2007-07-04 2013-07-03 日本电气株式会社 多载波移动体通信系统
US8386878B2 (en) 2007-07-12 2013-02-26 Samsung Electronics Co., Ltd. Methods and apparatus to compute CRC for multiple code blocks
WO2009053825A2 (en) * 2007-10-26 2009-04-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for providing adaptive cyclic redundancy check computation
KR20090083758A (ko) * 2008-01-30 2009-08-04 삼성전자주식회사 연접 부호 복호화 방법 및 장치
US8787384B2 (en) 2008-05-05 2014-07-22 Qualcomm Incorporated Pre-emptive acknowledgement for data transmission in a communication system
US8321744B2 (en) * 2008-09-16 2012-11-27 Analog Devices, Inc. Channel adaptive iterative turbo decoder system and method
JP5186324B2 (ja) * 2008-09-29 2013-04-17 京セラ株式会社 通信装置及び通信方法
US8301979B2 (en) * 2008-10-07 2012-10-30 Sandisk Il Ltd. Low density parity code (LDPC) decoding for memory with multiple log likelihood ratio (LLR) decoders
WO2010049988A1 (ja) * 2008-10-27 2010-05-06 富士通株式会社 復号装置、受信装置、通信システム、復号方法および受信方法
JP5145208B2 (ja) * 2008-12-25 2013-02-13 京セラ株式会社 無線通信端末、復号方法及び復号器
EP2506481A1 (en) * 2009-11-24 2012-10-03 Fujitsu Limited Receiver, reception method, and reception control program
US8756477B2 (en) * 2009-12-21 2014-06-17 Qualcomm Incorporated System, method and apparatus for early termination based on transport block fail for acknowledgment bundling in time division duplex
KR101678053B1 (ko) 2010-04-02 2016-11-22 삼성전자 주식회사 반도체 장치 및 이의 복호 방법
US8756473B1 (en) * 2010-12-23 2014-06-17 Sk Hynix Memory Solutions Inc. Solid state device coding architecture for chipkill and endurance improvement
DE112011102578T5 (de) * 2011-01-05 2013-05-08 Zte Wistron Telecom Ab Verfahren zur Beendigung der Iteration bei einem iterativen Turbo-Dekodierer und iterativer Turbo-Dekodierer
JP5699737B2 (ja) 2011-03-28 2015-04-15 富士通株式会社 誤り訂正装置及び誤り訂正方法
EP2579468B1 (en) 2011-10-05 2020-05-06 Telefonaktiebolaget LM Ericsson (publ) Method and device for decoding a transport block of a communication signal
US8918705B1 (en) 2012-01-11 2014-12-23 Sk Hynix Memory Solutions Inc. Error recovery by modifying soft information
US8839079B2 (en) * 2012-08-20 2014-09-16 Qualcomm Incorporated Methods and apparatuses for saving power during transport block decoding in UMTS systems
US8885276B2 (en) * 2013-02-14 2014-11-11 Lsi Corporation Systems and methods for shared layer data decoding
US9183095B1 (en) 2013-06-28 2015-11-10 Sk Hynix Memory Solutions Inc. Recovering from a program failure by combining write data
US20150033094A1 (en) * 2013-07-23 2015-01-29 Yuan Ze University Window-stopped method for applying to turbo decoding
US10567008B2 (en) * 2015-07-02 2020-02-18 Apple Inc. Stopping criteria for turbo decoder
CN108736900B (zh) * 2017-04-21 2021-08-24 展讯通信(上海)有限公司 Turbo码译码的控制方法及装置、计算机可读介质、终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292918B1 (en) 1998-11-05 2001-09-18 Qualcomm Incorporated Efficient iterative decoding
US6518892B2 (en) 2000-11-06 2003-02-11 Broadcom Corporation Stopping criteria for iterative decoding
KR100713331B1 (ko) * 2000-12-23 2007-05-04 삼성전자주식회사 부호분할다중접속 이동통신시스템의 반복복호 중지 장치 및 방법
US7093180B2 (en) * 2002-06-28 2006-08-15 Interdigital Technology Corporation Fast H-ARQ acknowledgement generation method using a stopping rule for turbo decoding
FR2850810B1 (fr) * 2003-02-03 2005-05-13 Nortel Networks Ltd Procede de controle du nombre d'iterations d'un processus de decodage iteratif et dispositif pour la mise en oeuvre du procede
KR100530339B1 (ko) 2003-05-09 2005-11-22 김환용 터보 복호기의 복호 지연시간 감소장치 및 그 방법
GB2403106B (en) * 2003-06-18 2007-08-15 Motorola Inc Arrangement and method for iterative decoding
US7849377B2 (en) * 2003-12-22 2010-12-07 Koninklijke Philips Electronics N.V. SISO decoder with sub-block processing and sub-block based stopping criterion
US7260762B2 (en) * 2004-07-26 2007-08-21 Motorola, Inc. Decoder performance for block product codes
US7565594B2 (en) * 2004-08-26 2009-07-21 Alcatel-Lucent Usa Inc. Method and apparatus for detecting a packet error in a wireless communications system with minimum overhead using embedded error detection capability of turbo code
CN101194428A (zh) * 2005-06-27 2008-06-04 汤姆森许可贸易公司 迭代解码器中的停止准则

Also Published As

Publication number Publication date
US20070124657A1 (en) 2007-05-31
US7992073B2 (en) 2011-08-02
GB2432495A (en) 2007-05-23
GB2432495B (en) 2008-03-05
JP2007142622A (ja) 2007-06-07
KR20070052228A (ko) 2007-05-21
GB0621600D0 (en) 2006-12-06
KR100860733B1 (ko) 2008-09-29
CN1968071A (zh) 2007-05-23

Similar Documents

Publication Publication Date Title
JP4092352B2 (ja) 復号装置、復号方法、及び受信装置
US8443265B2 (en) Method and apparatus for map decoding and turbo decoder using the same
KR100761306B1 (ko) 디코딩 방법 및 장치
US6813742B2 (en) High speed turbo codes decoder for 3G using pipelined SISO log-map decoders architecture
KR100662519B1 (ko) 결정 피드백 등화를 갖는 터보 디코더
JP4709119B2 (ja) 復号装置及び復号方法
EP1480347A1 (en) Digital transmission method of the error-correcting coding type
JP4229948B2 (ja) 復号装置、復号方法、及び受信装置
JP2002111512A (ja) 復号装置及び方法、並びにデータ受信装置及び方法
US6799295B2 (en) High speed turbo codes decoder for 3G using pipelined SISO log-map decoders architecture
US8112698B2 (en) High speed turbo codes decoder for 3G using pipelined SISO Log-MAP decoders architecture
US7027521B2 (en) Digital transmission method of the error correcting coding type
US7584407B2 (en) Decoder and method for performing decoding operation using map algorithm in mobile communication system
US7333419B2 (en) Method to improve performance and reduce complexity of turbo decoder
Fowdur et al. Performance of Turbo coded 64-QAM with joint source channel decoding, adaptive scaling and prioritised constellation mapping
Xu et al. Turbo Codes
Shim et al. An efficient iteration decoding stopping criterion for turbo codes
Chen et al. Constrained decoding for turbo-CRC code with high spectral efficient modulation
Zhen-Chuan et al. Performance research and simulations on improvement adaptive iterative decoder algorithms of Turbo codes
Bahel et al. Performance Analysis of Turbo Codes Over AWGN Channel
Kumar et al. An improved design for latency improvement of SCCC system in wireless communication
Benvenuto et al. Turbo detection and variable rate coding in systems using linear block codes and block interleavers
Ariyoshi et al. An iterative decoding method of updating redundant likelihood information
JP2006314055A (ja) ターボ復号方法及び装置
Beheshti PERFORMANCE ANALYSIS OF SOFTWARE IMPLEMENTATION OF A 3GPP COMPLIANT TURBO DECODER

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Ref document number: 4092352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees