JP4091159B2 - Pressure contact type semiconductor device - Google Patents

Pressure contact type semiconductor device Download PDF

Info

Publication number
JP4091159B2
JP4091159B2 JP05818398A JP5818398A JP4091159B2 JP 4091159 B2 JP4091159 B2 JP 4091159B2 JP 05818398 A JP05818398 A JP 05818398A JP 5818398 A JP5818398 A JP 5818398A JP 4091159 B2 JP4091159 B2 JP 4091159B2
Authority
JP
Japan
Prior art keywords
semiconductor element
electrode
semiconductor device
contact type
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05818398A
Other languages
Japanese (ja)
Other versions
JPH11260979A (en
Inventor
貴彦 吉田
方浩 塩澤
平井  康義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP05818398A priority Critical patent/JP4091159B2/en
Publication of JPH11260979A publication Critical patent/JPH11260979A/en
Application granted granted Critical
Publication of JP4091159B2 publication Critical patent/JP4091159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Die Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大電力を制御する半導体素子を圧接した状態で使用する圧接型半導体装置に関するものである。
【0002】
【従来の技術】
この種の圧接型半導体装置は、一般に、半導体素子を、この半導体素子と導通する上下主電極にて電極ブロックで圧接することで挟持した構成としている。
この圧接型半導体装置において、半導体素子と電極ブロックの熱歪みによる荷重集中や、熱膨張差による接触面、特に半導体素子表面の摩耗など半導体素子への物理的ダメージを小さくするために、熱緩衝板(熱緩衝部材)としてMo(モリブデン)やW(タングステン)を用いることが知られており、例えば、特開平8−330338号公報等においても、実際にMoが用いられている。
【0003】
【発明が解決しようとする課題】
今日、この種の半導体素子においても大容量化が進んでおり、それに伴って素子の大型化や発熱量も増大し、半導体素子と熱緩衝板との熱膨張差や熱歪みの更なる低減が必要とされる。
例えば、現在、圧接型半導体装置の熱緩衝板として多用されているMoやWは、化学便覧等の文献によれば、半導体素子の主材料であるシリコン(Si)にたいする線熱膨張率がMoで約23%、Wで約8%ある。
【0004】
そのため、半導体素子として用いられるパワー素子(IGBTやサイリスタ等)等の冷熱サイクルが頻繁に繰り替えされる部分では、熱膨張量の差による半導体素子と熱緩衝板との摺動(位置ずれ)によって接触面、特に半導体素子表面が摩耗され、最悪の場合には素子が破壊されることが考えられる。しかも、今後、半導体素子の大容量化が進むと、さらに前述の懸念が大きくなる。
【0005】
本発明は、上記問題点に鑑みてなされたものであり、圧接型半導体装置において、半導体素子と熱緩衝板との熱膨張量の差による摺動を極力小さくし、安定した接触状態を保つことを目的とする。
【0006】
【課題を解決するための手段】
本発明は、半導体素子の主材料がSiであることに着目して、上記課題の達成を図るものである。すなわち、請求項1の発明においては、熱緩衝部材を半導体素子の主材料と同材質であるSiからなるものとしたことを特徴としている。
【0007】
請求項1記載の圧接型半導体装置は、半導体素子(1a)とこの半導体素子(1a)と導通する電極部(1b、1c)とを有する素子部(1)を備え、素子部(1)の電極部(1b、1c)に電極ブロック(3、4)を圧接してなり、更に、電極部(1b)と電極ブロック(3)との間に、シリコン(Si)シリコン(Si)の電気抵抗率を下げるための物質が添加された熱緩衝部材(2)が介在されていることを特徴としている。
【0008】
ここで、半導体素子は1つでも複数でも構わない。また電極部とは、半導体素子が1つの場合には、半導体素子の電極形成部位を意味し、半導体素子が複数の場合には、複数の半導体素子の電極によって回路が形成されている部位(回路形成部)を意味する。
さらに、電極ブロックによって圧接される電極部は、1つでも複数でも構わない。
【0009】
本発明においては、熱緩衝部材(2)が半導体素子(1a)の主材料と同じSiであるため、両者の線熱膨張量の差はMoやWより小さく、ほとんど0と考えることができる。よって、冷熱サイクル等による素子部(1)と熱緩衝部材(2)との摺動を極力小さくし、安定した接触状態を保つことができ、半導体素子(1a)の摩耗や破壊を防止できる。
【0010】
また、Siのバルク材の電気抵抗率は、純度に依存するが、その値は化学便覧(II−p494)によれば4×10-6Ωcmであり、Moの5.2×10-6ΩcmやWの5.7×10-6Ωcmと比べて小さく、電気伝導の面からもすぐれているため、半導体素子(1a)と電極ブロック(3)との導電性を確保しやすい。ところで、Si材料を熱緩衝板に用いることはサイリスタ等のパワー素子開発当時(1970年代)にも検討されたと考えられるが、当時はSiバルク材の電気抵抗率を下げるに必要なドーパント装置(能力)が十分でなく、コスト的にも問題があったと考えられる。しかし、近年の半導体製造用装置の能力向上により、上記の問題点も解決されたと考えられ、Siバルク材の半導体素子以外(付加価値の低い物)への適用もコスト的に可能になってきている。
【0011】
請求項1記載の発明は、このような背景に鑑みてなされたものであり、上記熱緩衝部材(2)を、シリコン(Si)シリコン(Si)の電気抵抗率を下げるための物質が添加されたものとしたことを特徴としている。ここで電気抵抗率を下げるための物質としては、具体的にはボロン(B)或いはリン(P)等があり、これらをSiにドープすることで、電気抵抗率を下げることができる。
【0012】
よって、本発明によれば、冷熱サイクル等による素子部(1)と熱緩衝部材(2)との摺動を極力小さくし、安定した接触状態を保つことができ、半導体素子(1a)の摩耗や破壊を防止できる。また、熱緩衝部材(2)を介して、半導体素子(1a)と電極ブロック(3)との間の導電性をより確実に確保することができる。なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示すものである。
【0013】
【発明の実施の形態】
以下、本発明を図に示す実施形態について説明する。図1は本発明の一実施形態を示すもので、圧接型半導体装置10の断面構成を示す説明図である。
素子部1は1つの半導体素子1aから構成されたものとしている。本実施形態では半導体素子1aはIGBTやサイリスタ等のパワー半導体素子からなるものとしている。そして、この半導体素子1aの表裏面1b、1cは、例えばAl(アルミニウム)やAu(金)等からなる電極(図示せず)が形成された電極部として構成されている。
【0014】
なお、通常、半導体素子において、表面とは素子を構成する膜が形成される側の面(素子形成面)であり、裏面とは素子を構成する膜が形成されない側の面(非素子形成面)である。このことは、本実施形態においても同様であり、表面1bが素子形成面、裏面1cが非素子形成面をなす。また、上記パワー半導体素子においては、表面1bが半導体素子1aのエミッタ側電極部、裏面1cが半導体素子1aのコレクタ側電極部に該当する。
【0015】
そして、図1に示す様に、素子部1の表面1b側にSiのバルク材からなる熱緩衝板(熱緩衝部材)2を配置し、例えばCu(銅)からなる電極板(電極ブロック)3、4によって素子部1を挟持している。ここで、表面1bは上記のように素子形成面であり、特に、摩耗等を防止する必要があるため、本実施形態では熱緩衝板2を表面1b側に挿入している。
【0016】
熱緩衝板2は、電気抵抗率を下げるための物質であるボロン(B)或いはリン(P)等が添加されており、素子部1と電極板3との導通を確保している。
ここで、電極板3、4はその外側より図示しない荷重発生装置(例えばスタックボルト等)によって荷重が印加され、設定する接触電気抵抗・熱抵抗が得られる様に荷重を保持している。なお、上記パワー半導体素子においては、電極板3がエミッタ側圧接電極板、電極板4がコレクタ側圧接電極板に該当する。
【0017】
ところで、このような構成を有する圧接型半導体装置10においては、熱緩衝板2が半導体素子1aの主材料と同じSiであるため、両者の線熱膨張量の差はMoやWより小さく、ほとんど0と考えることができる。よって、冷熱サイクル等による素子部1と熱緩衝板2との摺動を極力小さくし、安定した接触状態を保つことができ、半導体素子の摩耗や破壊を防止できる。
【0018】
例えば、電極板3としてCu(銅)板を用いると、もし熱緩衝板2が介在しない構成とした場合には、Siに対するCuの線熱膨張率は約200%あるため熱膨張差による摺動(位置ずれ)は大きく、半導体素子1表面が多量に摩耗されることが予測される。
しかし、Si板を熱緩衝板2として挿入しているため半導体素子1と熱緩衝板2との間には摺動(位置ずれ)が発生しないため、摩耗されるのは熱緩衝板2であり、半導体素子1a表面が摩耗せず、素子がダメージを受けることがない。
【0019】
また、本実施形態では、電極板3と素子部1との間に熱緩衝板2を介在させるだけの構成で、十分本発明の目的を達成することができ、構成を非常にシンプルにすることができる。
(他の実施形態)
なお、素子部1、熱緩衝板2及び電極板3は直接当接していなくともよく、素子部1と熱緩衝板2との間、又は熱緩衝板2と電極板3との間に、導電性の軟らかい材料(例えば、軟金属、金属粉末等)を介在させてもよい。
【0020】
また、上記実施形態では、半導体素子1aの裏面1c側(非素子形成面側)のにも熱緩衝板2を、表面1b同様に介在させてもよい。それによって、半導体素子1aにおいて非素子形成面側からもダメージ低減できる。
また、半導体素子の裏面側が半田接続されて、表面側のみが圧接されている場合、例えば、図1において電極板4に半導体素子1aの裏面1cが半田接続された圧接型半導体装置においても、素子部と電極板との間に、シリコン(Si)からなる熱緩衝板が介在されていれば、上記と同様の効果を奏する圧接型半導体装置が得られる。
【0021】
なお、上記素子部1において半導体素子1aは複数でもよい。この場合、例えば、素子部は、基板上に複数個の半導体素子1aによって回路が形成された構成とでき、この基板の回路形成面に熱緩衝板を介して電極板を圧接して、圧接型半導体装置を構成できる。ここにおいて、熱緩衝板により上記と同様の効果が得られるのは勿論である。
【0022】
以上説明した様に、本発明によれば圧接型半導体装置において半導体素子と素子圧接体である電極ブロックとの熱歪み、熱膨張による半導体素子へのダメージを極めて小さくすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る圧接型半導体装置の断面構成を示す説明図である。
【符号の説明】
1…素子部、1a…半導体素子、1b…半導体素子の表面、1c…半導体素子の裏面、2…熱緩衝板、3、4…電極板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure contact type semiconductor device that uses a semiconductor element that controls high power in a pressure contact state.
[0002]
[Prior art]
In general, this type of press-contact type semiconductor device has a configuration in which a semiconductor element is sandwiched by being pressed by an electrode block with upper and lower main electrodes that are electrically connected to the semiconductor element.
In this press-contact type semiconductor device, in order to reduce physical damage to the semiconductor element such as load concentration due to thermal strain between the semiconductor element and the electrode block and wear of the contact surface due to thermal expansion difference, particularly the surface of the semiconductor element, It is known to use Mo (molybdenum) or W (tungsten) as the (heat buffering member). For example, in Japanese Patent Application Laid-Open No. 8-330338, Mo is actually used.
[0003]
[Problems to be solved by the invention]
Today, even in this type of semiconductor device, the capacity has been increased, and accordingly, the size of the device and the amount of heat generation have increased, further reducing the difference in thermal expansion and thermal distortion between the semiconductor device and the thermal buffer plate. Needed.
For example, Mo and W, which are currently widely used as thermal buffer plates for pressure-contact type semiconductor devices, have a coefficient of linear thermal expansion with respect to silicon (Si), which is the main material of semiconductor elements, according to literature such as chemical handbooks. About 23%, W is about 8%.
[0004]
Therefore, in a part where the thermal cycle such as a power element (IGBT, thyristor, etc.) used as a semiconductor element is frequently repeated, contact is caused by sliding (positional deviation) between the semiconductor element and the thermal buffer plate due to a difference in thermal expansion amount. It is conceivable that the surface, particularly the surface of the semiconductor element, is worn and the element is destroyed in the worst case. In addition, as the capacity of semiconductor devices increases in the future, the above-mentioned concerns are further increased.
[0005]
The present invention has been made in view of the above problems, and in a pressure-contact type semiconductor device, the sliding due to the difference in thermal expansion between the semiconductor element and the thermal buffer plate is minimized to maintain a stable contact state. With the goal.
[0006]
[Means for Solving the Problems]
The present invention aims to achieve the above object by paying attention to the fact that the main material of the semiconductor element is Si. That is, the invention according to claim 1 is characterized in that the heat buffer member is made of Si which is the same material as the main material of the semiconductor element.
[0007]
The pressure contact type semiconductor device according to claim 1 includes an element portion (1) having a semiconductor element (1a) and an electrode portion (1b, 1c) electrically connected to the semiconductor element (1a). The electrode block (3, 4) is press-contacted to the electrode portion (1b, 1c), and further, between the electrode portion (1b) and the electrode block (3) , silicon (Si) is electrically connected to silicon (Si). A heat buffer member (2) to which a substance for lowering the resistivity is added is interposed.
[0008]
Here, one or a plurality of semiconductor elements may be used. In addition, the electrode portion means an electrode formation portion of a semiconductor element when there is one semiconductor element, and when there are a plurality of semiconductor elements, a portion where a circuit is formed by the electrodes of the plurality of semiconductor elements (circuit Forming part).
Furthermore, the electrode part press-contacted by an electrode block may be one or more.
[0009]
In the present invention, since the thermal buffer member (2) is made of the same Si as the main material of the semiconductor element (1a), the difference in the amount of linear thermal expansion between them is smaller than that of Mo and W, and can be considered to be almost zero. Therefore, sliding between the element part (1) and the thermal buffer member (2) due to a cooling / heating cycle or the like can be minimized, and a stable contact state can be maintained, and wear and destruction of the semiconductor element (1a) can be prevented.
[0010]
Moreover, although the electrical resistivity of the bulk material of Si depends on purity, the value is 4 × 10 −6 Ωcm according to the chemical handbook (II-p494), and 5.2 × 10 −6 Ωcm of Mo. Since it is small compared to 5.7 × 10 −6 Ωcm of W and W and excellent in terms of electrical conduction, it is easy to ensure conductivity between the semiconductor element (1a) and the electrode block (3). By the way, it is considered that the use of Si material for the heat buffer plate was considered at the time of power element development such as thyristor (1970s), but at that time, a dopant device (capacity required for lowering electric resistivity of Si bulk material) ) Is not sufficient, and there seems to be a problem in terms of cost. However, it is considered that the above-mentioned problems have been solved by improving the capability of semiconductor manufacturing apparatuses in recent years, and it has become possible to apply the Si bulk material to other than semiconductor elements (things with low added value) in terms of cost. Yes.
[0011]
The invention according to claim 1 has been made in view of such a background, and a substance for lowering the electrical resistivity of silicon (Si) is added to silicon (Si) as the thermal buffer member (2). It is characterized by having been made. Here, specific examples of the substance for reducing the electrical resistivity include boron (B) and phosphorus (P). By doping these into Si, the electrical resistivity can be lowered.
[0012]
Therefore, according to the present invention, the sliding between the element portion (1) and the thermal buffer member (2) due to the cooling / heating cycle or the like can be minimized, and a stable contact state can be maintained, and the semiconductor element (1a) is worn. And can prevent destruction. Moreover, the electrical conductivity between the semiconductor element (1a) and the electrode block (3) can be more reliably ensured via the thermal buffer member (2). In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means of embodiment description later mentioned.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments shown in the drawings will be described below. FIG. 1 shows an embodiment of the present invention and is an explanatory view showing a cross-sectional configuration of a pressure contact type semiconductor device 10.
The element unit 1 is assumed to be composed of one semiconductor element 1a. In the present embodiment, the semiconductor element 1a is made of a power semiconductor element such as an IGBT or a thyristor. The front and back surfaces 1b and 1c of the semiconductor element 1a are configured as electrode portions on which electrodes (not shown) made of, for example, Al (aluminum) or Au (gold) are formed.
[0014]
In general, in a semiconductor element, the front surface is a surface on which a film constituting the element is formed (element forming surface), and the back surface is a surface on which the film constituting the element is not formed (non-element forming surface). ). This also applies to this embodiment, where the front surface 1b forms an element forming surface and the back surface 1c forms a non-element forming surface. In the power semiconductor element, the front surface 1b corresponds to the emitter side electrode portion of the semiconductor element 1a, and the back surface 1c corresponds to the collector side electrode portion of the semiconductor element 1a.
[0015]
As shown in FIG. 1, a heat buffer plate (heat buffer member) 2 made of a bulk material of Si is disposed on the surface 1b side of the element portion 1, and an electrode plate (electrode block) 3 made of Cu (copper), for example. 4, the element portion 1 is sandwiched. Here, the surface 1b is an element formation surface as described above, and in particular, since it is necessary to prevent wear or the like, the heat buffer plate 2 is inserted on the surface 1b side in this embodiment.
[0016]
The thermal buffer plate 2 is added with boron (B), phosphorus (P) or the like, which is a substance for lowering the electrical resistivity, and ensures electrical connection between the element portion 1 and the electrode plate 3.
Here, the electrode plates 3 and 4 are applied with a load from the outside by a load generator (not shown) (for example, a stack bolt) and hold the load so that the set contact electric resistance and thermal resistance can be obtained. In the power semiconductor element, the electrode plate 3 corresponds to the emitter-side pressure contact electrode plate, and the electrode plate 4 corresponds to the collector-side pressure contact electrode plate.
[0017]
By the way, in the press-contact type semiconductor device 10 having such a configuration, since the thermal buffer plate 2 is made of the same Si as the main material of the semiconductor element 1a, the difference in linear thermal expansion between the two is smaller than that of Mo and W. 0 can be considered. Therefore, sliding between the element portion 1 and the thermal buffer plate 2 due to a cooling / heating cycle or the like can be minimized, a stable contact state can be maintained, and wear and destruction of the semiconductor element can be prevented.
[0018]
For example, if a Cu (copper) plate is used as the electrode plate 3, if the thermal buffer plate 2 is not interposed, the linear thermal expansion coefficient of Cu with respect to Si is about 200%, so sliding due to the thermal expansion difference (Position shift) is large, and it is predicted that the surface of the semiconductor element 1 will be worn out in a large amount.
However, since the Si plate is inserted as the heat buffer plate 2, no sliding (displacement) occurs between the semiconductor element 1 and the heat buffer plate 2. The surface of the semiconductor element 1a is not worn and the element is not damaged.
[0019]
Further, in the present embodiment, the object of the present invention can be sufficiently achieved with a configuration in which the thermal buffer plate 2 is interposed between the electrode plate 3 and the element portion 1, and the configuration is extremely simplified. Can do.
(Other embodiments)
Note that the element unit 1, the heat buffer plate 2, and the electrode plate 3 do not have to be in direct contact with each other, and are electrically conductive between the element unit 1 and the heat buffer plate 2 or between the heat buffer plate 2 and the electrode plate 3. Soft materials (for example, soft metals, metal powders, etc.) may be interposed.
[0020]
Moreover, in the said embodiment, you may interpose the thermal buffer board 2 similarly to the surface 1b also at the back surface 1c side (non-element formation surface side) of the semiconductor element 1a. Thereby, damage can be reduced also from the non-element forming surface side in the semiconductor element 1a.
Further, when the back surface side of the semiconductor element is solder-connected and only the front surface side is press-contacted, for example, in the press-contact type semiconductor device in which the back surface 1c of the semiconductor element 1a is solder-connected to the electrode plate 4 in FIG. If a thermal buffer plate made of silicon (Si) is interposed between the portion and the electrode plate, a pressure-contact type semiconductor device having the same effects as described above can be obtained.
[0021]
In the element unit 1, a plurality of semiconductor elements 1a may be provided. In this case, for example, the element portion can be configured such that a circuit is formed by a plurality of semiconductor elements 1a on a substrate, and an electrode plate is pressed against the circuit forming surface of the substrate via a thermal buffer plate, thereby pressing A semiconductor device can be configured. Here, of course, the same effect as described above can be obtained by the heat buffer plate.
[0022]
As described above, according to the present invention, damage to a semiconductor element due to thermal strain and thermal expansion between a semiconductor element and an electrode block that is an element press-contact body can be extremely reduced in a pressure-contact type semiconductor device.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a cross-sectional configuration of a pressure-contact type semiconductor device according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Element part, 1a ... Semiconductor element, 1b ... The surface of a semiconductor element, 1c ... The back surface of a semiconductor element, 2 ... Thermal buffer board, 3, 4 ... Electrode board.

Claims (1)

半導体素子(1a)と、この半導体素子(1a)と導通する電極部(1b、1c)とを有する素子部(1)を備え、
前記素子部(1)の前記電極部(1b、1c)に電極ブロック(3、4)を圧接してなる圧接型半導体装置において、
前記電極部(1b)と前記電極ブロック(3)との間に、シリコン(Si)前記シリコン(Si)の電気抵抗率を下げるための物質が添加された熱緩衝部材(2)が介在されていることを特徴とする圧接型半導体装置。
An element part (1) having a semiconductor element (1a) and electrode parts (1b, 1c) electrically connected to the semiconductor element (1a);
In the press contact type semiconductor device formed by press-contacting the electrode block (3, 4) to the electrode portion (1b, 1c) of the element portion (1),
Between the electrode portion (1b) and the electrode block (3), a silicon thermal buffer substance is added to the (Si) lowering the electrical resistivity of the silicon (Si) (2) is interposed A pressure contact type semiconductor device characterized by comprising:
JP05818398A 1998-03-10 1998-03-10 Pressure contact type semiconductor device Expired - Fee Related JP4091159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05818398A JP4091159B2 (en) 1998-03-10 1998-03-10 Pressure contact type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05818398A JP4091159B2 (en) 1998-03-10 1998-03-10 Pressure contact type semiconductor device

Publications (2)

Publication Number Publication Date
JPH11260979A JPH11260979A (en) 1999-09-24
JP4091159B2 true JP4091159B2 (en) 2008-05-28

Family

ID=13076908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05818398A Expired - Fee Related JP4091159B2 (en) 1998-03-10 1998-03-10 Pressure contact type semiconductor device

Country Status (1)

Country Link
JP (1) JP4091159B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6693350B2 (en) 1999-11-24 2004-02-17 Denso Corporation Semiconductor device having radiation structure and method for manufacturing semiconductor device having radiation structure
US6703707B1 (en) 1999-11-24 2004-03-09 Denso Corporation Semiconductor device having radiation structure
JP4479121B2 (en) 2001-04-25 2010-06-09 株式会社デンソー Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH11260979A (en) 1999-09-24

Similar Documents

Publication Publication Date Title
JP4967447B2 (en) Power semiconductor module
US7898080B2 (en) Power semiconductor device comprising a semiconductor chip stack and method for producing the same
US4352120A (en) Semiconductor device using SiC as supporter of a semiconductor element
US9711432B2 (en) Electronic power device with improved cooling
US11171571B2 (en) Alternating current solid-state switch
JP2004047883A (en) Electric power semiconductor device
JP2012119651A (en) Semiconductor module and electrode member
JP4091159B2 (en) Pressure contact type semiconductor device
EP1376690B1 (en) Pressure-contact type semiconductor device
JP2007116172A (en) Power semiconductor module
TW536729B (en) Semiconductor apparatus
KR102323978B1 (en) Thermoelectric module
JP5724415B2 (en) Semiconductor module
US20130043579A1 (en) Power semiconductor arrangement, power semiconductor module with multiple power semiconductor arrangements, and module assembly comprising multiple power semiconductor modules
CN110164838B (en) Power semiconductor device
JP2021097113A (en) Semiconductor device
EP1367643A2 (en) Electronic module
JP2004128264A (en) Semiconductor module and flat lead
JP4329187B2 (en) Semiconductor element
CN211788982U (en) Graphene enhanced heat conduction lead frame and power semiconductor element
JP2012054513A (en) Semiconductor package
JP2667027B2 (en) Pressure contact type semiconductor device
JP4781560B2 (en) Gate drive device
EP3872848A1 (en) Metal tab for chip assembly
GB2051474A (en) Mounting arrangements for electrical components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees