JP4090620B2 - Automatic welding equipment - Google Patents

Automatic welding equipment Download PDF

Info

Publication number
JP4090620B2
JP4090620B2 JP11376599A JP11376599A JP4090620B2 JP 4090620 B2 JP4090620 B2 JP 4090620B2 JP 11376599 A JP11376599 A JP 11376599A JP 11376599 A JP11376599 A JP 11376599A JP 4090620 B2 JP4090620 B2 JP 4090620B2
Authority
JP
Japan
Prior art keywords
welding
wire
molten pool
electrode
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11376599A
Other languages
Japanese (ja)
Other versions
JP2000301340A (en
JP2000301340A5 (en
Inventor
剛史 小川
徹郎 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11376599A priority Critical patent/JP4090620B2/en
Publication of JP2000301340A publication Critical patent/JP2000301340A/en
Publication of JP2000301340A5 publication Critical patent/JP2000301340A5/ja
Application granted granted Critical
Publication of JP4090620B2 publication Critical patent/JP4090620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はTIG溶接等に適用される自動溶接装置に係り、特に監視カメラにより溶接部の位置情報を入力して制御要素とする視覚センサ式の自動溶接装置に関する。
【0002】
【従来の技術】
従来、例えばTIG溶接に適用される自動溶接装置として、溶接中の溶融池を監視カメラで撮影し、その映像に基づいて電極先端位置、溶接ワイヤ挿入位置、開先両肩位置、溶融池先端位置等を認識して溶接条件の修正等を行うものが知られている。このうような視覚センサ式の自動溶接装置では、例えば電極先端位置と開先両肩位置との情報に基づいて左右の電極狙い位置の制御を行い、また電極先端位置と溶接ワイヤ挿入位置との情報に基づいて左右溶接ワイヤ挿入位置の制御を行い、さらに溶融池先端位置と電極先端位置との距離情報に基づいて溶接異常を認識し、溶接条件の修正または溶接の中止等を行っている
【0003】
ところで、TIG溶接における溶融池の撮影では、アーク光の発光強度が周囲に比べて非常に高い。このため、電極先端や溶接ワイヤ先端が位置するアーク光近傍と、アーク光から離間している開先両肩や溶融池輪郭とでは、明るさが全く異なり、電極先端位置、溶接ワイヤ挿入位置、開先両肩位置、溶融池先端位置等を同時に認識することが極めて困難であった。
【0004】
そこで従来では、例えば溶接電流をパルス電流にしてアーク光の強弱をつけることにより、アーク光の強いピーク電流時に開先両肩位置、溶融池先端位置を認識し、アーク光の弱いベース電流時に電極先端位置、溶接ワイヤ溶融位置を認識する等の対策が行われる。
【0005】
【発明が解決しようとする課題】
しかしながら、上述の自動溶接方法においては、溶接池や電極の画面上での相対的な輝度が低く、電極先端位置や溶融池形状の認識精度の向上が十分に図れなかった。
【0006】
特に、溶接条件の修正、中止を行う場合、下地形状の不良など溶融池の先行距離の変化がない溶接異常の認識を行うこと等は困難で、溶接部の品質が必ずしも十分確保されているとは言えない。
【0007】
また、電極狙い位置を制御する場合、自動溶接ヘッドの設置の傾き等で撮影された開先の映像が傾いていると、開先両肩位置から算出する電極狙い位置と真の電極狙い位置である開先底面の中央とがズレてしまい、正しい電極狙い位置制御が行えない。溶接ワイヤ狙い位置を制御する場合、ホットワイヤTIG溶接法では溶接ワイヤ挿入位置がアークに近すぎたり溶接ワイヤの加熱量が多すぎたりすると溶接ワイヤの溶融が早まり、溶け落ちが発生してしまう。
【0008】
また、ホットワイヤTIG溶接法で溶接ワイヤ供給量を増加する際、溶接ワイヤの加熱量が少なすぎると、溶接ワイヤ挿入位置によらず溶融池底部に溶接欠陥が発生しやすくなる。
【0009】
さらに、すべての制御に必要な映像を確保するためにパルス電流のピーク値とベース値に大きな差を設けなければならず、ホットワイヤTIG溶接などによる高能率溶接方法で溶接ワイヤの送給量を増加して施工する場合には、溶接ワイヤを溶融するのに十分な入熱量をベース電流時に得ることができず、高品質を確保することが困難であった。
【0010】
本発明はこのような事情に鑑みてなされたもので、その目的は、電極先端位置や溶融池形状の視覚的な認識精度を向上することができるとともに、同一画像から必要な情報を同時に認識することができ、これによりパルス電流のピーク値とベース値とが共に高い電流値のもとで溶接を行うことを可能とし、溶接ワイヤの供給量を増加した高能率での溶接が行える自動溶接装置を提供することにある。
【0011】
また、本発明の他の目的は、開先の傾きによる電極狙い位置の誤認識が防止でき、また溶接ワイヤの溶け落ちの防止が図れ、さらに溶接欠陥発生の低減にも有効な自動溶接装置を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成するために、本発明では、監視カメラの前方に、部分的に異なった透過率分布を持つ波長依存性のない減光フィルタと、透過波長が赤外域でかつアーク光のピーク波長から離れた帯域であるフィルタとを設置して、溶融池の撮影を行えるようにする。そして、撮影された映像から例えば電極先端位置と開先底面の両端とを検出して左右の電極狙い位置を制御し、その映像から電極先端位置と溶接ワイヤ先端位置とを検出する。また、上下左右の溶接ワイヤ狙い位置を制御し、撮影された映像から溶融池前縁の形状変化とアーク直下から溶融池先端迄の距離の変化とを検出して溶接異常を認識し、溶接条件の修正または溶接の中止を行う。さらにホットワイヤTIG溶接法等において、撮影された映像から溶融池前縁の形状変化を検出し、これに溶接ワイヤ加熱電流の出力変化を加味して上下の溶接ワイヤ狙い位置と溶接ワイヤ加熱電流の制御を行うことを特徴とするものである。
【0013】
即ち、請求項1の発明では、溶接ヘッドに監視カメラを備え、この監視カメラで捉えた電極先端位置、ワイヤ先端位置、開先位置、溶融池等の情報を制御装置に入力し、この制御装置から出力される制御信号に基づいて溶接条件の修正を行う自動溶接装置であって、前記監視カメラの前方に設置され、この監視カメラによる撮影範囲の中央部のみ減光できるように部分的に異なる透過率分布をもつ波長依存性のない減光フィルタと、この減光フィルタの前方に設置され、透過波長を赤外領域で、かつ溶接光のピーク波長から離れた帯域に設定した狭帯域フィルタとからなり、監視カメラで撮影された映像を基にトーチ狙い位置制御を行う際に、開先底面の両端と電極先端位置とから、電極狙い位置ズレを判断し、左右の電極狙い位置の制御を行うとともに、電極先端位置と溶接ワイヤ溶融位置とから溶接ワイヤ挿入位置ズレを判断し、前後左右の溶接ワイヤ挿入位置の制御を行うようにした自動溶接装置において、溶接条件の修正と溶接の中止を行う際に、電極先端から溶融池先端迄の距離の変化と溶融池前縁の形状変化とから溶接異常を判断し、前記溶融池前縁の形状が正常であると判断された場合には、前記電極先端から溶融池先端迄の距離を計測し、この距離が適正でないと判断された場合には溶接条件の修正を行い、前記溶融池前縁の形状が異常であると判断された場合には、溶接条件の修正で修復可能か否か判断し、修復可能と判断された場合には溶接条件の修正を行い、修復不可能と判断された場合には溶接の中止を行うようにしたことを特徴とする自動溶接装置を提供する。
【0018】
請求項2の発明では、ホットワイヤTIG溶接法における溶接条件の修正と溶接の中止を行う際に、溶融池前縁の形状変化から溶接ワイヤ加熱量不足を判断し、溶接ワイヤ加熱電流の制御を行うようにした請求項1記載の自動溶接装置を提供する。
【0019】
上記構成によれば、溶融池を撮影するカメラの前方に、透過波長が赤外域でかつアーク光のピーク波長から離れた帯域であるフィルタを設置することにより、溶融池や電極の画面上での相対的な輝度が上昇し、電極先端位置や溶融池形状の認識精度が向上する。特に部分的に異なった透過率分布を持つ波長依存性のない減光フィルタを用いることにより、周囲の明るさを減じることなくアーク光の光量のみを相対的に減衰することができる。
【0020】
また、電極先端位置、溶接ワイヤ先端位置、開先底面の両端位置、溶融池前縁形状を同一画像から一度に認識することができるため、パルス電流のピーク値とベース値共に高い電流値で溶接を行うことが可能となり、溶接ワイヤの供給量を増加した高能率での溶接が行える。
【0021】
さらに、電極狙い位置制御を開先底面の両端位置を基準に行うことにより、開先の傾きによる電極狙い位置の誤認識を防止することができる。
【0022】
また、溶接ワイヤ挿入位置制御を上下左右で行うことにより、例えばホットワイヤTIG溶接法における溶接ワイヤの溶け落ちを防止することができる。
【0023】
さらにまた、電極先端から溶融池先端迄の距離の変化に加え、溶融池前縁の形状変化からも溶接異常を認識できるため、認識できる溶接異常の種類を増加することができ、これにより溶接欠陥発生の低減が図れる。
【0024】
また、ホットワイヤTIG溶接法に適用する場合、溶融池前縁の形状変化から溶接ワイヤ加熱電流を制御することによって、溶接ワイヤの加熱不足による溶接欠陥発生を防止することができる。
【0025】
【発明の実施の形態】
以下、本発明に係る自動溶接装置の一実施形態について、図面を参照して説明する。
【0026】
図1は本実施形態による自動溶接装置のシステム構成を示すである。
【0027】
この図1に示すように、溶接ヘッド1には溶接トーチ2、溶接ワイヤ給電チップ3および監視カメラ4が取り付けられている。この溶接ヘッド1の操作により、あらかじめ設定された溶接条件に従って溶接を行い、溶接トーチ2の先端に設けられた電極5と、溶接ワイヤ給電チップ3から送り出される溶接ワイヤ6とを、図1に示す如く前方斜め上方から監視カメラ(例えばCCDカメラ)4によって撮影するようになっている。
【0028】
そして、本実施形態では、センサ制御装置7、溶接制御装置8および溶接電源9が備えられ、センサ制御装置7は監視カメラ4によって撮影された映像からの情報に加え、溶接電源9からの電流・電圧出力計測値を基に電極狙い位置、ワイヤ狙い位置、溶接条件の修正と溶接の中止を判断し、溶接制御装置8に指示を送るようになっている。
【0029】
また、図2に拡大して示すように、監視カメラ4の前方に、波長依存性のない減光フィルタ(NDフィルタ)10と、狭帯域フィルタ11とが設置されている。狭帯域フィルタ11は、透過波長が赤外域で、かつアーク光14のピーク波長から離れた帯域に設定されている。これにより、溶融池や電極5の画面上での相対的な輝度を上昇させ、電極先端位置や溶融池形状の認識精度の向上を図っている。
【0030】
即ち、波長依存性のない減光フィルタ10は、図3に示すように、撮影範囲の中央部のみで減光できるようにフィルタ中央部12の透過率が低く設定され、フィルタ外周部13の透過率は高く設定されている。
【0031】
図4は、アーク光14の透過状態を説明するための溶接部の拡大平面図である。この図4に示すように、減光フィルタ10と狭帯域フィルタ11とを通して監視カメラ4によって撮影される映像においては、アーク光14が透過率の低い減光フィルタ10のフィルタ中央部15を通過することによりかなり減衰される一方、アーク光14の反射光を用いて認識される開先底面両端18の光量は、透過率の高い減光フィルタ10のフィルタ外周部13を通過するためほとんど減衰しない。さらに、狭帯域フィルタ11が通ることによって電極や溶融池の輝度が相対的に高くなる。
【0032】
その結果、電極先端16、溶接ワイヤ先端17、開先底面両端18および溶融池前縁形状19がアーク光14の影響を受けずに明瞭に映し出され、同一画面で各形状や位置の検出が高精度で行えるようになる。従って、パルス電流のピーク値とベース値に差を設ける必要がなくなり、溶接ワイヤ供給量を増加することによって高能率溶接が可能となる。
【0033】
図5は、本実施形態における溶接制御の手順を具体的に示すフローチャートである。
【0034】
この図5に示すように、全ての制御項目の中で、最初に電極狙い位置の制御が行われる。即ち、まずS1で現在の電極狙い位置の検出が行われ、S2でその位置が適正であるか否かの判断が行われる。適正でないと判断された場合には、S3で電極狙い位置の修正が行われ、再度S1で修正した結果が確認される。S2で電極位置が適正であると判断された場合には、S4でワイヤ狙い位置の検出が行われ、S5でそれが適正であるか否かの判断が行われる。適正でないと判断された場合には、S6でワイヤ狙い位置の修正が行われ、再度S4で修正した結果が確認される。
【0035】
S5でワイヤ狙い位置が適正であると判断された場合には、S7でワイヤ加熱量の確認が行われる。S8では、加熱量が適正であるか否かの判断が行われ、適性でないと判断された場合には、S9でワイヤ加熱量の修正が行われ、S4のワイヤ狙い位置が再確認される。
【0036】
このようにして、電極狙い位置、ワイヤ狙い位置およびワイヤ加熱量の全てが適正である前提の下で、S10において溶融池前縁形状による溶接条件の確認が行われる。その結果、S11で溶接条件が適正でないと判断された場合には、S12で溶接条件修正可能な範囲か否かが判断され、修正可能な場合にはS13で溶接条件の修正が行われ、不可能な場合にはS14で溶接が中止される。S11において溶接条件が適正と判断された場合には、再びS1に戻り、電極狙い位置の確認から制御が進められる。
【0037】
次に、電極狙い位置の確認および制御について説明する。図6は溶接部を拡大して示す平面図である。
【0038】
この図6に示すように、電極5の先端16と溶接進行方向に対する一側(図の左側)の開先底面端部20との水平距離をLとし、電極先端16と他側(図の右側)開先底面端部21との水平距離をLとすると、電極狙い位置の確認は、これらのLおよびLを計測することによって行われる。
【0039】
図7は、電極狙い位置制御の手順を示すフローチャートである。この図7に示すように、S15でLとLとが計測され、S16においてL=Lとなっているか否かが確認される。L≠Lの場合には、S17においてLとLとの差に応じて溶接トーチ2の位置が溶接進行方向に対する左右方向に移動調整され、S15において位置調整の結果が確認される。S16において、L=Lと判断されれば、電極狙い位置の確認が終了し、次のワイヤ狙い位置とワイヤ加熱量の制御へと移る。
【0040】
これに対し、ワイヤ狙い位置制御は、溶融池映像から得られる情報と、溶接電源9から得られる出力計測値とに基づいて行われる。図8は溶融池を示す拡大平面図であり、図9は溶接電源9から得られるワイヤ加熱電流の時間変化を示すグラフである。
【0041】
溶融池映像から確認する情報は図8で示すように、電極5の先端16と溶接ワイヤ6の先端17との間の水平距離Mおよび垂直距離MZ1と、溶融池先端23とワイヤ先端17との間の垂直距離MZ2とである。また、溶接電源9から確認する情報は、図9に示すように、ワイヤ加熱電流Iの時間変化25である。
【0042】
また、ワイヤ加熱量制御も溶融池映像から得られる情報と、溶接電源9から得られる出力計測値とに基づいて行われる。溶融池映像から確認する情報は、図10(A),(B)に示すように、溶融池前縁における溶接ワイヤ6挿入位置近傍の形状26であり、図10(A)は正常時の状態を示し、図10(B)は異常時の状態を示している。なお、溶接電源から確認する情報は、前述した図9に示したワイヤ加熱電流Iの時間変化25である。
【0043】
図11は、これらのワイヤ狙い位置およびワイヤ加熱量の制御手順を示すフローチャートである。
【0044】
まず、ワイヤ左右位置の制御を行うために、S18でMの計測が行われ、S19でM=0となっているか否かが判断される。M=0でなければ、S20でM量に応じたワイヤ左右位置修正が行われ、M=0であれば、ワイヤ左右位置の確認が終了する。
【0045】
次に、ワイヤ前後位置確認を行うために、S21でMZ1が計測され、S22でMZ1が適正値であるか否か判断される。適正値でなければ、S23で適正値からのズレ量に応じたワイヤ前後位置修正が行われ、適正値であればワイヤ前後位置の確認が終了する。
【0046】
アークの輻射熱が通常より強い場合や、溶接ワイヤ6の加熱量が通常より多い場合(ワイヤ加熱量過剰時)には、MZ1が適正値であっても、溶融池に挿入する前に溶接ワイヤ6が溶け出してしまうため、S24でIの計測が行われる。S25において、Iが設定値通り出力されているか否か確認され、溶融池に挿入する前に溶接ワイヤ6が溶け出し、Iの出力が低下している場合(ワイヤ加熱量不足時)には、S26でMZ2の計測が行われ、MZ2=0であるか否かの判定が行われる。
【0047】
ここで、MZ2≠0であれば、アークの輻射熱が通常より強い場合と判断され、S27でMZ1の適正値が増加され、S21に戻り、ワイヤ位置をアークから遠ざける修正が行われる。MZ2=0であれば、ワイヤ加熱量が通常より多い場合と判断され、S28でIの設定値が減少されて再度、S21からワイヤ前後位置の修正が行われる。
【0048】
S25においては、Iが設定値通り出力されている場合には、ワイヤ加熱量が通常より少なくないかを確認するために、S29で溶融池前縁形状26の検出が行われる。S30で溶融池前縁形状26が正常時のもの(図10(A))であるか否かが判断され、異常時の形状(図10(B))である場合には、S31でIの設定値が増加され、再度S21からワイヤ前後位置の修正が行われる。S30で溶融池前縁形状26が正常時の形状(図10(A))であれば、ワイヤ狙い位置の確認およびワイヤ加熱量の確認が終了し、溶融池前縁形状26による溶接条件の確認が行われる。
【0049】
溶融池前縁形状26による溶接条件の確認については、図12(A),(B)に示すように((A)は正常時、(B)は異常時)、溶融池前縁形状26における開先壁面との濡れ形状27が観察される。この形状観察を基に、下地形状不良や電極摩耗あるいはガスシールド不良といった外乱による溶接異常の発生防止が行われる。また、図13に示すように、電極先端16から溶融池先端23までの距離Lが観察され、これを基に、溶着量設定ミスによる溶接異常の発生防止が行われる。これらの制御手順を、図14に示してある。即ち、S32において溶融池前縁の濡れ形状27の検出が行われ、S33でそれが正常時の形状においてあるかの判断が行われる。異常時の形状(図12(B))である場合には、S34において溶接条件の修正による修復が可能であるか否かが判断され、可能である場合には、S35において溶接電流の修正が行われ、S32で結果の確認が行われる。修復不可能と判断された場合には、S36で溶接が中止される。
【0050】
また、S32において、溶融池前縁の濡れ形状27が正常時の形状(図12(A))と判断されれば、次にS37においてLの計測が行われる。S38でLが適正値であるか否かの判断が行われ、適正でなければS39で溶接速度の修正が行われ、溶着量の増減が調整される。適正であれば、全項目の確認が終了し、再び電極狙い位置から確認が行われる。
【0051】
また、裏波溶接にて溶接条件の確認を行う場合には、図15に示すように、電極先端16から溶融池先端23までの距離Lと溶融池最大幅Wとが計測される。特に上進溶接では裏波の抜け落ちが発生し易く、その際、図16の表(上進溶接における裏波状態と溶融池寸法との関係)に示すように、LとWが通常寸法に対して大小に変化する。即ち、Lが大きい場合は未溶融状態であり、小さい場合は抜け落ちとなる。逆に、Wが大きい場合は抜け落ちとなり、小さい場合は未溶融である。
【0052】
そこで、図17のフローチャートに示すように、S40でLとWの計測が行われ、S41でLとWとが正常値であるかの判断が行われ、その結果、異常であると判断された場合には、S42で溶接電流の修正が行われ、S40でその結果が確認される。これによって、良好な裏波形状を確保することが可能となる。
【0053】
以上の溶接制御によって、電極狙い位置ズレによるビード整形不良や開先際の溶融不足、ワイヤ狙い位置ズレによるビード整形不良、ワイヤ加熱不良による溶接金属供給不足や空孔の発生、下地形状不良や電極摩耗やガスシールド不良といった外乱による開先際の溶融不足、溶着量設定ミスによる開先際の溶融不足、ルート寸法のバラツキによる裏波不良を未然に防ぐことができ、従来に比して高品質の溶接が可能となる。
【0054】
【発明の効果】
以上で詳述したように、本発明によれば、電極先端位置や溶融池形状の視覚的な認識精度を向上することができるとともに、同一画像から必要な情報を同時に認識することができ、これによりパルス電流のピーク値とベース値とが共に高い電流値の下で溶接を行うことが可能となり、溶接ワイヤの供給量を増加した高能率で高品質の溶接が行える。
【0055】
また、本発明によれば、開先の傾きによる電極狙い位置の誤認識が防止できるとともに、溶接ワイヤの溶け落ちの防止が図れ、さらに溶接欠陥発生の低減も有効に図れる。
【0056】
さらに、本発明によれば、認識できる溶接異常の種類が増加するため、高品質での溶接が可能な自動溶接装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態による自動溶接装置を示すシステム構成図。
【図2】図1に示したフィルタ等を拡大して示す斜視図。
【図3】図2に示した減光フィルタの透過率分布を示す図。
【図4】前記実施形態における監視カメラによって撮影される溶融池映像を示す図。
【図5】溶接制御の手順を示すフローチャート。
【図6】電極狙い位置制御を行う際の溶融池映像上の計測箇所を示す図。
【図7】電極狙い位置制御の手順を示すフローチャート。
【図8】ワイヤ狙い位置制御を行う際の溶融池映像上の計測箇所を示す図。
【図9】ワイヤ加熱量の正常時と加熱過剰時とのワイヤ加熱電流出力の違いを示す図。
【図10】(A),(B)は、ワイヤ加熱量の正常時と加熱不足時の溶融池前縁形状の違いを示す図。
【図11】ワイヤ狙い位置およびワイヤ加熱量の制御手順を示すフローチャート。
【図12】(A),(B)は、正常溶接時と外乱による溶接異常時との溶融池前縁形状の違いを示す図。
【図13】溶接条件制御を行う際の電極先端と溶融池先端との距離を示す図。
【図14】溶接条件制御の手順を示すフローチャート。
【図15】裏波溶接での溶接条件制御を行う際の溶融池映像上の計測箇所を示す図。
【図16】上進溶接時における裏波状態と溶融池寸法との関係を示す表。
【図17】裏波溶接での溶接条件制御手順を示すフローチャート。
【符号の説明】
1 溶接ヘッド
2 溶接トーチ
3 溶接ワイヤ給電チップ
4 監視カメラ
5 電極
6 溶接ワイヤ
7 センサ制御装置
8 溶接制御装置
9 溶接電源
10 減光フィルタ(NDフィルタ)
11 狭帯域フィルタ
14 アーク光
12 フィルタ中央部
13 フィルタ外周部
15 フィルタ中央部
16 電極先端
17 溶接ワイヤ先端
18 開先底面両端
19 溶融池前縁形状
23 溶融池先端
25 時間変化
26 溶融池前縁形状
27 溶融池前縁の濡れ形状
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automatic welding apparatus applied to TIG welding or the like, and more particularly to a visual sensor type automatic welding apparatus which uses a monitoring camera to input position information of a welded portion and uses it as a control element.
[0002]
[Prior art]
Conventionally, as an automatic welding device applied to, for example, TIG welding, a weld pool being welded is photographed with a monitoring camera, and the electrode tip position, welding wire insertion position, groove shoulder position, and weld pool tip position are based on the image. And the like for revising welding conditions and the like are known. In such a visual sensor type automatic welding apparatus, for example, the left and right electrode aiming positions are controlled based on information on the electrode tip position and the groove shoulder positions, and the electrode tip position and the welding wire insertion position are controlled. Controls the left and right welding wire insertion positions based on the information, and recognizes welding abnormalities based on distance information between the molten pool tip position and the electrode tip position, and corrects welding conditions or cancels welding. 0003
By the way, in photographing the molten pool in TIG welding, the emission intensity of arc light is very high compared to the surroundings. For this reason, the brightness is completely different between the vicinity of the arc light where the electrode tip and the welding wire tip are located, and the groove shoulders and the molten pool contour separated from the arc light, the electrode tip position, the welding wire insertion position, It was extremely difficult to recognize both the groove shoulder positions and the molten pool tip position at the same time.
[0004]
Therefore, conventionally, for example, the welding current is changed to a pulsed current, and the intensity of the arc light is applied to recognize the position of both shoulders of the groove and the position of the molten pool tip during the strong peak current of the arc light. Measures such as recognizing the tip position and welding wire melting position are taken.
[0005]
[Problems to be solved by the invention]
However, in the above-described automatic welding method, the relative luminance on the weld pool or electrode screen is low, and the recognition accuracy of the electrode tip position or the molten pool shape cannot be sufficiently improved.
[0006]
In particular, when correcting or canceling welding conditions, it is difficult to recognize a welding abnormality that does not change the preceding distance of the weld pool, such as a base shape defect, and the quality of the welded part is always sufficiently secured. I can't say that.
[0007]
Also, when controlling the electrode aiming position, if the groove image taken due to the inclination of the installation of the automatic welding head is tilted, the electrode aiming position calculated from the groove shoulder position and the true electrode aiming position The center of a certain groove bottom face shifts and correct electrode aiming position control cannot be performed. When controlling the welding wire aiming position, in the hot wire TIG welding method, if the welding wire insertion position is too close to the arc or the heating amount of the welding wire is too large, the welding wire is quickly melted and burns out.
[0008]
Moreover, when increasing the welding wire supply amount by the hot wire TIG welding method, if the heating amount of the welding wire is too small, a welding defect tends to occur at the bottom of the molten pool regardless of the welding wire insertion position.
[0009]
Furthermore, in order to ensure the images necessary for all controls, a large difference must be made between the peak value and the base value of the pulse current, and the amount of welding wire fed can be reduced by a highly efficient welding method such as hot wire TIG welding. In the case of increasing the construction, it is difficult to secure a high quality because it is impossible to obtain a heat input sufficient for melting the welding wire at the base current.
[0010]
The present invention has been made in view of such circumstances, and an object thereof is to improve the visual recognition accuracy of the electrode tip position and the molten pool shape and simultaneously recognize necessary information from the same image. This makes it possible to perform welding under high current values of both the peak value and base value of the pulse current, and an automatic welding device that can perform high-efficiency welding with an increased supply of welding wire Is to provide.
[0011]
Another object of the present invention is to provide an automatic welding apparatus that can prevent erroneous recognition of the electrode aiming position due to the inclination of the groove, can prevent the welding wire from being burned out, and is also effective in reducing the occurrence of welding defects. It is to provide.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a wavelength-independent neutral density filter having a partially different transmittance distribution, a transmission wavelength in the infrared region, and a peak of arc light are provided in front of the surveillance camera. A filter with a band away from the wavelength is installed so that the molten pool can be photographed. Then, for example, the electrode tip position and both ends of the groove bottom surface are detected from the photographed image to control the left and right electrode aiming positions, and the electrode tip position and the welding wire tip position are detected from the image. In addition, the welding wire aiming position is controlled on the top, bottom, left, and right, and the welding abnormalities are recognized by detecting the shape change of the molten pool front edge and the change of the distance from directly under the arc to the molten pool tip from the captured images. Correct or stop welding. Furthermore, in the hot wire TIG welding method, etc., the shape change of the molten pool front edge is detected from the photographed image, and the output change of the welding wire heating current is added to this, and the upper and lower welding wire target positions and the welding wire heating current are detected. It is characterized by performing control.
[0013]
That is, according to the first aspect of the present invention, the welding head is provided with a monitoring camera, and information such as the electrode tip position, wire tip position, groove position, and molten pool captured by the monitoring camera is input to the control device. An automatic welding apparatus that corrects welding conditions based on a control signal output from the camera, and is installed in front of the monitoring camera, and is partially different so that only the central part of the imaging range by the monitoring camera can be dimmed A neutral density filter having transmittance distribution and a narrow band filter installed in front of the neutral density filter and having a transmission wavelength in the infrared region and a band away from the peak wavelength of the welding light, When controlling torch aiming position based on the video taken by the surveillance camera, the electrode aiming position deviation is judged from both ends of the groove bottom and the electrode tip position, and the left and right electrode aiming positions are controlled. Utotomoni determines welding wire insertion position offset from the electrode tip position and the welding wire melting position, the automatic welding apparatus that controls the welding wire insertion position of the left and right front and rear, the stop of the welding and correcting the welding conditions When performing the welding abnormality from the change in the distance from the electrode tip to the molten pool tip and the shape change of the molten pool leading edge, if it is determined that the shape of the molten pool leading edge is normal, When the distance from the electrode tip to the molten pool tip is measured, and it is determined that this distance is not appropriate, the welding conditions are corrected , and when the shape of the leading edge of the molten pool is determined to be abnormal it determines whether repairable or not a modified welding conditions, performs correction of welding conditions if it is judged to be repaired, if it is determined that the restoration impossible that to perform the stop of the welding Providing automatic welding equipment featuring To.
[0018]
In the invention of claim 2, when correcting the welding conditions in the hot wire TIG welding method and stopping the welding, the welding wire heating current is determined to be insufficient from the shape change of the molten pool leading edge, and the welding wire heating current is controlled. An automatic welding apparatus according to claim 1 is provided.
[0019]
According to the above configuration, by installing a filter whose transmission wavelength is in the infrared region and away from the peak wavelength of the arc light, in front of the camera for photographing the molten pool, The relative luminance increases, and the recognition accuracy of the electrode tip position and the molten pool shape is improved. In particular, by using a neutral density filter having a partially different transmittance distribution and having no wavelength dependency, it is possible to relatively attenuate only the amount of arc light without reducing the surrounding brightness.
[0020]
In addition, since the electrode tip position, welding wire tip position, both end positions of the groove bottom surface, and the weld pool leading edge shape can be recognized from the same image at a time, both the peak value and base value of the pulse current are welded at high current values. It is possible to perform welding with high efficiency by increasing the supply amount of the welding wire.
[0021]
Furthermore, by performing the electrode aiming position control based on the both end positions of the groove bottom face, it is possible to prevent erroneous recognition of the electrode aiming position due to the inclination of the groove.
[0022]
Further, by performing welding wire insertion position control in the up, down, left, and right directions, for example, it is possible to prevent the welding wire from being burned out in the hot wire TIG welding method.
[0023]
Furthermore, in addition to the change in the distance from the electrode tip to the weld pool tip, the weld abnormality can be recognized from the shape change of the weld pool leading edge, so the number of types of weld abnormality that can be recognized can be increased. Generation can be reduced.
[0024]
Moreover, when applied to the hot wire TIG welding method, by controlling the welding wire heating current from the shape change of the molten pool leading edge, it is possible to prevent the occurrence of welding defects due to insufficient heating of the welding wire.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an automatic welding apparatus according to the present invention will be described with reference to the drawings.
[0026]
FIG. 1 shows a system configuration of an automatic welding apparatus according to the present embodiment.
[0027]
As shown in FIG. 1, a welding torch 2, a welding wire feeding tip 3 and a monitoring camera 4 are attached to the welding head 1. FIG. 1 shows the electrode 5 provided at the tip of the welding torch 2 and the welding wire 6 fed from the welding wire feeding tip 3 by performing welding according to preset welding conditions by operating the welding head 1. In this way, the camera 4 (for example, a CCD camera) 4 is used to shoot from an obliquely upper front.
[0028]
In this embodiment, a sensor control device 7, a welding control device 8, and a welding power source 9 are provided. The sensor control device 7 includes the information from the image captured by the monitoring camera 4, the current from the welding power source 9. Based on the voltage output measurement value, the electrode aiming position, the wire aiming position, the modification of the welding conditions and the stop of the welding are determined, and an instruction is sent to the welding control device 8.
[0029]
Further, as shown in an enlarged view in FIG. 2, a neutral density filter (ND filter) 10 and a narrow band filter 11 having no wavelength dependency are installed in front of the monitoring camera 4. The narrow band filter 11 has a transmission wavelength in the infrared region and is set in a band away from the peak wavelength of the arc light 14. Thereby, the relative luminance on the screen of the molten pool and the electrode 5 is increased, and the recognition accuracy of the electrode tip position and the molten pool shape is improved.
[0030]
That is, in the neutral density filter 10 having no wavelength dependency, as shown in FIG. 3, the transmittance of the filter central portion 12 is set low so that the light can be attenuated only in the central portion of the imaging range, and the transmission of the filter outer peripheral portion 13 is performed. The rate is set high.
[0031]
FIG. 4 is an enlarged plan view of a welded portion for explaining a transmission state of the arc light 14. As shown in FIG. 4, in an image photographed by the monitoring camera 4 through the neutral density filter 10 and the narrow band filter 11, the arc light 14 passes through the filter central portion 15 of the neutral density filter 10 having a low transmittance. On the other hand, the amount of light at both ends 18 of the groove bottom recognized by using the reflected light of the arc light 14 passes through the filter outer peripheral portion 13 of the neutral density filter 10 having a high transmittance and is hardly attenuated. Furthermore, the brightness | luminance of an electrode or a molten pool becomes relatively high because the narrow-band filter 11 passes.
[0032]
As a result, the electrode tip 16, the welding wire tip 17, the groove bottom end 18 and the molten pool leading edge shape 19 are clearly projected without being affected by the arc light 14, and each shape and position can be detected on the same screen. It can be done with accuracy. Therefore, it is not necessary to provide a difference between the peak value and the base value of the pulse current, and high-efficiency welding can be performed by increasing the welding wire supply amount.
[0033]
FIG. 5 is a flowchart specifically showing the procedure of welding control in the present embodiment.
[0034]
As shown in FIG. 5, the electrode aiming position is first controlled among all the control items. That is, first, the current electrode aiming position is detected in S1, and whether or not the position is proper is determined in S2. If it is determined that it is not appropriate, the electrode aiming position is corrected in S3, and the corrected result is confirmed again in S1. If it is determined in S2 that the electrode position is appropriate, the wire aiming position is detected in S4, and whether or not it is appropriate is determined in S5. If it is determined that it is not appropriate, the wire aiming position is corrected in S6, and the corrected result is confirmed again in S4.
[0035]
If it is determined in S5 that the wire aiming position is appropriate, the wire heating amount is confirmed in S7. In S8, it is determined whether or not the heating amount is appropriate. If it is determined that the heating amount is not appropriate, the wire heating amount is corrected in S9, and the wire target position in S4 is reconfirmed.
[0036]
In this manner, the welding conditions based on the molten pool leading edge shape are confirmed in S10 under the assumption that the electrode aiming position, the wire aiming position, and the wire heating amount are all appropriate. As a result, if it is determined in S11 that the welding conditions are not appropriate, it is determined in S12 whether or not the welding conditions can be corrected. If correction is possible, the welding conditions are corrected in S13. If possible, the welding is stopped in S14. If it is determined in S11 that the welding conditions are appropriate, the process returns to S1 again, and control proceeds from confirmation of the electrode aiming position.
[0037]
Next, confirmation and control of the electrode aiming position will be described. FIG. 6 is an enlarged plan view showing the welded portion.
[0038]
As shown in FIG. 6, the horizontal distance between the tip 16 of the electrode 5 and the groove bottom end 20 on one side (left side in the figure) with respect to the welding progress direction is L L , and the electrode tip 16 and the other side (in the figure). If the horizontal distance between the right) groove bottom end 21 and L R, confirmation of the electrode target position is carried out by measuring these L L and L R.
[0039]
FIG. 7 is a flowchart showing a procedure for controlling the electrode aiming position. The 7, and L L and L R is measured in S15, whether a L L = L R is confirmed in S16. In the case of L L ≠ L R is moved and adjusted in the lateral direction with respect to the welding direction position of the welding torch 2 in accordance with the difference between L L and L R at S17, the position of the adjustment result is confirmed step S15 . In S16, if it is determined that L L = L R, confirmation of the electrode target position is completed, it moves to the control of the next wire target position and the wire heating amount.
[0040]
On the other hand, the wire aiming position control is performed based on the information obtained from the molten pool image and the output measurement value obtained from the welding power source 9. FIG. 8 is an enlarged plan view showing the molten pool, and FIG. 9 is a graph showing the time change of the wire heating current obtained from the welding power source 9.
[0041]
As shown in FIG. 8, the information to be confirmed from the weld pool image is the horizontal distance MY and the vertical distance M Z1 between the tip 16 of the electrode 5 and the tip 17 of the welding wire 6, and the weld pool tip 23 and the wire tip 17. And the vertical distance MZ2 . Also, information identifying the welding power source 9, as shown in FIG. 9, the time variation 25 of the wire heating current I w.
[0042]
Further, the wire heating amount control is also performed based on information obtained from the molten pool image and an output measurement value obtained from the welding power source 9. As shown in FIGS. 10A and 10B, the information to be confirmed from the weld pool image is a shape 26 in the vicinity of the welding wire 6 insertion position at the front edge of the weld pool, and FIG. FIG. 10B shows a state at the time of abnormality. The information to be identified from the welding power source is the time variation 25 of the wire heating current I w as shown in FIG. 9 described above.
[0043]
FIG. 11 is a flowchart showing a control procedure of the wire aiming position and the wire heating amount.
[0044]
First, in order to control the wire left and right positions, it performed the measurement of M Y at S18, whether a M Y = 0 is determined in S19. Otherwise M Y = 0, S20 wire lateral position correction corresponding to the M Y amount is performed, if M Y = 0, check the wire left and right positions is completed.
[0045]
Next, in order to check the wire front-rear position, M Z1 is measured in S21, and it is determined in S22 whether M Z1 is an appropriate value. If it is not an appropriate value, the wire front / rear position correction is performed in S23 according to the amount of deviation from the appropriate value, and if it is an appropriate value, the confirmation of the wire front / rear position is completed.
[0046]
When the radiant heat of the arc is stronger than normal or when the heating amount of the welding wire 6 is higher than normal (when the heating amount of the wire is excessive), even if MZ1 is an appropriate value, the welding wire is not inserted before being inserted into the molten pool. since the 6 will be melted, the measurement of the I w is carried out in S24. In S25, I w is checked whether it is output set value as welding prior to insertion into the molten pool wire 6 melts, when the output of the I w is decreased (when the wire heating shortage) In step S26, M Z2 is measured, and it is determined whether M Z2 = 0.
[0047]
Here, if M Z2 ≠ 0, it is determined that the radiant heat of the arc is stronger than usual. In S27, the appropriate value of M Z1 is increased, and the process returns to S21 to correct the wire position away from the arc. If M Z2 = 0, wire heating amount is determined to when more than usual, again is reduced set value of I w, S21 from the wire longitudinal position correction is performed in S28.
[0048]
In S25, if the I w is output set value as is, to see if the wire heating amount is not less than normal, the detection of molten pool leading edge shape 26 performed in S29. S30 that during normal molten pool leading edge shape 26 whether (FIG. 10 (A)) is determined, if it is abnormal in shape (FIG. 10 (B)) is a S31 I w The set value is increased, and the front and rear positions of the wire are corrected again from S21. If the molten pool leading edge shape 26 is a normal shape in S30 (FIG. 10A), the confirmation of the wire aiming position and the confirmation of the wire heating amount are completed, and the welding condition confirmation by the molten pool leading edge shape 26 is confirmed. Is done.
[0049]
Regarding confirmation of the welding conditions by the molten pool leading edge shape 26, as shown in FIGS. 12A and 12B, (A) is normal and (B) is abnormal), A wet shape 27 with the groove wall surface is observed. Based on this shape observation, it is possible to prevent the occurrence of welding abnormalities due to disturbances such as substrate shape failure, electrode wear, or gas shield failure. Further, as shown in FIG. 13, the distance L P from the electrode tip 16 to the molten pool tip 23 is observed, on the basis of this, welding abnormality occurred prevention by welding capacity setting error is made. These control procedures are shown in FIG. In other words, the wet shape 27 of the molten pool leading edge is detected in S32, and it is determined whether or not it is in the normal shape in S33. If the shape is abnormal (FIG. 12B), it is determined in S34 whether or not the repair can be performed by correcting the welding conditions. If so, the welding current is corrected in S35. The result is confirmed in S32. If it is determined that the repair is impossible, the welding is stopped in S36.
[0050]
Further, in S32, if it is determined that the shape of the normal wetting shape 27 of the molten pool leading edge (FIG. 12 (A)), then in S37 the measurement between L P is performed. In S38, it is determined whether or not L P is an appropriate value. If it is not appropriate, the welding speed is corrected in S39, and the increase or decrease in the welding amount is adjusted. If it is appropriate, the confirmation of all items is completed, and the confirmation is performed again from the electrode aiming position.
[0051]
Further, when the confirmation of the welding conditions at the back wave welding, as shown in FIG. 15, the distance L P from the electrode tip 16 to the molten pool tip 23 and the molten pool maximum width W P is measured. In particular, ascending welding is likely to cause back wave dropout. At that time, as shown in the table of FIG. 16 (relationship between the backwave state and the weld pool size in ascending welding), L P and W P are normal dimensions. It changes in size. That is, when LP is large, it is in an unmelted state, and when LP is small, it falls off. Conversely, if the W P is large becomes fall out, the smaller is the unmelted.
[0052]
Therefore, as shown in the flowchart of FIG. 17, measured between L P and W P is performed in S40, determination of whether the L P and W P is normal value is performed in S41, the result is an abnormal If it is determined, the welding current is corrected in S42, and the result is confirmed in S40. This makes it possible to ensure a good back wave shape.
[0053]
Due to the above welding control, bead shaping failure due to misalignment of the electrode and insufficient melting at the groove, bead shaping failure due to misalignment of the wire aiming position, insufficient weld metal supply due to wire heating failure, generation of voids, poor base shape and electrode High quality compared to conventional products, which can prevent inadequate melting at the groove due to disturbance such as wear and gas shield failure, insufficient melting at the groove due to welding amount setting mistake, and back surface failure due to variations in route dimensions. Can be welded.
[0054]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to improve the visual recognition accuracy of the electrode tip position and the molten pool shape, and simultaneously recognize necessary information from the same image. As a result, it becomes possible to perform welding under a current value in which both the peak value and the base value of the pulse current are high, and high-quality and high-quality welding can be performed with an increased supply amount of welding wire.
[0055]
In addition, according to the present invention, it is possible to prevent erroneous recognition of the electrode aiming position due to the inclination of the groove, to prevent the welding wire from being burned out, and to effectively reduce the occurrence of welding defects.
[0056]
Furthermore, according to the present invention, since the types of welding abnormalities that can be recognized increase, an automatic welding apparatus capable of high-quality welding can be provided.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing an automatic welding apparatus according to an embodiment of the present invention.
2 is an enlarged perspective view showing the filter and the like shown in FIG.
3 is a diagram showing a transmittance distribution of the neutral density filter shown in FIG. 2. FIG.
FIG. 4 is a view showing a molten pool image taken by the monitoring camera in the embodiment.
FIG. 5 is a flowchart showing a procedure of welding control.
FIG. 6 is a diagram showing measurement points on a molten pool image when performing electrode aiming position control.
FIG. 7 is a flowchart showing a procedure of electrode aim position control.
FIG. 8 is a diagram showing measurement points on a molten pool image when performing wire aiming position control.
FIG. 9 is a diagram showing a difference in wire heating current output between when the wire heating amount is normal and when heating is excessive.
FIGS. 10A and 10B are diagrams showing the difference in the molten pool leading edge shape between when the wire heating amount is normal and when heating is insufficient.
FIG. 11 is a flowchart showing a procedure for controlling a wire aiming position and a wire heating amount.
FIGS. 12A and 12B are diagrams showing the difference in the weld pool leading edge shape between normal welding and abnormal welding due to disturbance.
FIG. 13 is a diagram showing a distance between an electrode tip and a molten pool tip when performing welding condition control.
FIG. 14 is a flowchart showing a procedure of welding condition control.
FIG. 15 is a diagram showing measurement points on a weld pool image when performing welding condition control in back wave welding.
FIG. 16 is a table showing the relationship between the back wave state and the weld pool size during upward welding.
FIG. 17 is a flowchart showing a welding condition control procedure in reverse wave welding.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Welding head 2 Welding torch 3 Welding wire feeding chip 4 Monitoring camera 5 Electrode 6 Welding wire 7 Sensor control device 8 Welding control device 9 Welding power supply 10 Neutral filter (ND filter)
DESCRIPTION OF SYMBOLS 11 Narrow band filter 14 Arc light 12 Filter center part 13 Filter outer peripheral part 15 Filter center part 16 Electrode tip 17 Welding wire tip 18 Groove bottom end 19 Molten pool leading edge shape 23 Molten pool leading edge 25 Time change 26 Molten pool leading edge shape 27 Wet shape of the molten pool front edge

Claims (2)

溶接ヘッドに監視カメラを備え、この監視カメラで捉えた電極先端位置、ワイヤ先端位置、開先位置、溶融池等の情報を制御装置に入力し、この制御装置から出力される制御信号に基づいて溶接条件の修正を行う自動溶接装置であって、
前記監視カメラの前方に設置され、この監視カメラによる撮影範囲の中央部のみ減光できるように部分的に異なる透過率分布をもつ波長依存性のない減光フィルタと、この減光フィルタの前方に設置され、透過波長を赤外領域で、かつ溶接光のピーク波長から離れた帯域に設定した狭帯域フィルタとからなり、監視カメラで撮影された映像を基にトーチ狙い位置制御を行う際に、開先底面の両端と電極先端位置とから、電極狙い位置ズレを判断し、左右の電極狙い位置の制御を行うとともに、電極先端位置と溶接ワイヤ溶融位置とから溶接ワイヤ挿入位置ズレを判断し、前後左右の溶接ワイヤ挿入位置の制御を行うようにした自動溶接装置において、
溶接条件の修正と溶接の中止を行う際に、電極先端から溶融池先端迄の距離の変化と溶融池前縁の形状変化とから溶接異常を判断し、前記溶融池前縁の形状が正常であると判断された場合には、前記電極先端から溶融池先端迄の距離を計測し、この距離が適正でないと判断された場合には溶接条件の修正を行い、前記溶融池前縁の形状が異常であると判断された場合には、溶接条件の修正で修復可能か否か判断し、修復可能と判断された場合には溶接条件の修正を行い、修復不可能と判断された場合には溶接の中止を行うようにしたことを特徴とする自動溶接装置。
The welding head is equipped with a monitoring camera, and information such as the electrode tip position, wire tip position, groove position, and molten pool captured by the monitoring camera is input to the control device, and based on the control signal output from the control device An automatic welding device for correcting welding conditions,
A wavelength-independent neutralizing filter having a partially different transmittance distribution so that only the central part of the photographing range by the surveillance camera can be dimmed, and a front of the darkening filter. It is installed and consists of a narrowband filter whose transmission wavelength is set in the infrared region and a band far from the peak wavelength of welding light, and when performing torch aiming position control based on the image taken by the surveillance camera, From the both ends of the groove bottom surface and the electrode tip position, determine the electrode aim position deviation, control the left and right electrode aim positions, determine the welding wire insertion position deviation from the electrode tip position and the welding wire melting position, In automatic welding equipment that controls the front and rear, left and right welding wire insertion positions,
When correcting the welding conditions and canceling the welding, the welding abnormality is judged from the change in the distance from the electrode tip to the molten pool tip and the shape change of the molten pool leading edge, and the shape of the molten pool leading edge is normal. If it is determined that there is, measure the distance from the tip of the electrode to the tip of the molten pool, and if it is determined that the distance is not appropriate, the welding conditions are corrected and the shape of the leading edge of the molten pool is If it is determined to be abnormal, it is determined whether the repair is possible by correcting the welding conditions. If it is determined that the repair is possible, the welding conditions are corrected . If it is determined that the repair is not possible, An automatic welding apparatus characterized in that welding is stopped.
ホットワイヤTIG溶接法における溶接条件の修正と溶接の中止を行う際に、溶融池前縁の形状変化から溶接ワイヤ加熱量不足を判断し、溶接ワイヤ加熱電流の制御を行うようにした請求項1記載の自動溶接装置。2. The welding wire heating current is controlled by judging the welding wire heating amount shortage from the shape change of the molten pool leading edge when correcting the welding conditions and stopping the welding in the hot wire TIG welding method. The automatic welding apparatus described.
JP11376599A 1999-04-21 1999-04-21 Automatic welding equipment Expired - Fee Related JP4090620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11376599A JP4090620B2 (en) 1999-04-21 1999-04-21 Automatic welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11376599A JP4090620B2 (en) 1999-04-21 1999-04-21 Automatic welding equipment

Publications (3)

Publication Number Publication Date
JP2000301340A JP2000301340A (en) 2000-10-31
JP2000301340A5 JP2000301340A5 (en) 2005-06-09
JP4090620B2 true JP4090620B2 (en) 2008-05-28

Family

ID=14620586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11376599A Expired - Fee Related JP4090620B2 (en) 1999-04-21 1999-04-21 Automatic welding equipment

Country Status (1)

Country Link
JP (1) JP4090620B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100602382B1 (en) * 2004-12-20 2006-07-18 재단법인 포항산업과학연구원 Arc welding apparatus and method thereof
CN102785045B (en) * 2012-04-01 2014-10-22 中国航空工业集团公司北京航空制造工程研究所 Wire aligning method and device used in metal wire melting processing
KR101379084B1 (en) * 2012-05-11 2014-04-04 주식회사 포스코 Apparatus for arc welding
JP6755709B2 (en) * 2016-05-18 2020-09-16 株式会社東芝 Welding equipment and welding method
JP6974950B2 (en) * 2017-02-24 2021-12-01 三菱重工業株式会社 Welding equipment, welding methods and programs
JP7059099B2 (en) * 2018-05-07 2022-04-25 株式会社神戸製鋼所 Weld monitoring equipment, welding monitoring methods, and programs
JP7116006B2 (en) * 2019-05-08 2022-08-09 三菱重工業株式会社 Welding control device, welding control method, and welding control program
CN114160974B (en) * 2021-12-20 2023-03-31 清华大学 Image acquisition device and parameter determination method

Also Published As

Publication number Publication date
JP2000301340A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
US8890023B2 (en) Method of verifying seam quality during a laser welding process
JP3733485B2 (en) Automatic groove copying welding apparatus and method
US7766213B2 (en) Device and method for monitoring a welding area and an arrangement and a method for controlling a welding operation
JP4090620B2 (en) Automatic welding equipment
JPH029538B2 (en)
CN104668739B (en) A kind of gas metal-arc welding weld seam recognition vision sensor
CN104339080B (en) Method for steel engagement
JPH11104833A (en) Weld line tracking method in welding
JPH05185228A (en) Automatic welding device using welding head for welding parameter measurement and this welding head
JP2000351071A (en) Automatic welding system
JP3787401B2 (en) Control method for multilayer prime welding and multilayer prime welding apparatus
JP6639741B2 (en) Methods and systems for monitoring the production of multilayer welds and narrow gap welding methods.
JPH10137929A (en) Method and device for brazing
US20130228613A1 (en) Method Of And System For Brazing Aluminum Workpieces Using A Flame And Monitoring Of The Flame Color
JP2014024069A (en) Bead inspection method in laser welding
JP4237963B2 (en) Welding position automatic scanning control device
KR20170090048A (en) Hybrid Welding Apparatus
JP2891593B2 (en) TIG welding electrode shape detector
JPH11309576A (en) Automatic welding equipment
JPH0647541A (en) Method for judging status of arc
JPH08174217A (en) Automatic welding method and apparatus thereof
JPH0413070B2 (en)
JPH09103874A (en) Control system for welding
JP2024128173A (en) Welding equipment and welding method
WO2022065364A1 (en) Weld measuring system, and weld measuring method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees