JP4090555B2 - 2,3,6,7,10,11-Hexakisyloxytriphenylene compound and method for producing high purity 2,3,6,7,10,11-hexahydroxytriphenylene - Google Patents

2,3,6,7,10,11-Hexakisyloxytriphenylene compound and method for producing high purity 2,3,6,7,10,11-hexahydroxytriphenylene Download PDF

Info

Publication number
JP4090555B2
JP4090555B2 JP06362298A JP6362298A JP4090555B2 JP 4090555 B2 JP4090555 B2 JP 4090555B2 JP 06362298 A JP06362298 A JP 06362298A JP 6362298 A JP6362298 A JP 6362298A JP 4090555 B2 JP4090555 B2 JP 4090555B2
Authority
JP
Japan
Prior art keywords
purity
compound
hhtp
hexahydroxytriphenylene
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06362298A
Other languages
Japanese (ja)
Other versions
JPH11255781A (en
Inventor
忠久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP06362298A priority Critical patent/JP4090555B2/en
Publication of JPH11255781A publication Critical patent/JPH11255781A/en
Application granted granted Critical
Publication of JP4090555B2 publication Critical patent/JP4090555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液晶材料であるトリフェニレン誘導体合成における有用な合成中間体である高純度の2,3,6,7,10,11−ヘキサヒドロキシトリフェニレン化合物の製造方法とその方法に用いる新規なトリフェニレン化合物に関するものである。
【0002】
【従来の技術】
近年、液晶表示素子はワードプロセッサー、パーソナルコンピューター、テレビなどに広く用いられるようになり、それに関連する素材、装置などの産業活動が活発に行われている。液晶表示材料の根本をなす素材である液晶化合物についても活発な開発研究が行われ、数多くの化合物が開発されてきた。これらの化合物は、表示素子に限らず種々の用途の開発に向け利用が考えられている。
【0003】
従来からよく知られ、より利用されている液晶化合物は棒状のものであるが、最近では円盤状の液晶化合物、いわゆるディスコティク液晶化合物が注目を浴びている。その中の代表的なものの1つにトリフェニレン誘導体がある(例えば、特開平7−258167号、同7−258170号)。
【0004】
トリフェニレン誘導体の合成原料として重要な化合物は、2,3,6,7,10,11−ヘキサヒドロキシトリフェニレン(以下、単にHHTPという)であるが、該化合物は不安定であること、特定の溶媒でないと溶け難いなどの理由で高純度で製造することは容易でなく液晶化合物に用いる場合の大きな問題であった。そのため、この問題を解決する方法として例えば特開平8−119894号(ヨウ化水素で脱アルキル化)、および特開平9−301906号(ヘキサアシル体の加水分解)が提案されている。いずれも問題点の多くを改善するが、前者においては強酸条件下で加熱するため反応装置がガラスに限定されること、後者においては加水分解がアルカリ条件下の反応であるため、アルカリ条件下で不安定な生成物(HHTP)をアルカリに曝すことになり着色等の問題が生ずる。そこで、より工業的製造において効果的な高純度HHTPの製造法の開発が引続き望まれている。
【0005】
【発明が解決しようとする課題】
したがって本発明の目的は、HHTPの製造に伴う前記の問題点を解決することであり、特に高純度HHTPの製造方法を提供することである。
【0006】
【課題を解決するための手段】
上記課題を達成するために鋭意検討した結果、本発明者は、HHTPを一旦ヘキサシリル化することにより、そのシリル化物の再結晶精製が容易で、その脱シリル化も非常に温和な条件下で起こること、そして、こうして脱シリル化して得られたHHTPの純度は極めて高いものとなることを見い出した。本発明はこの知見に基づきなされたものである。すなわち本発明の目的は、
(1)下記一般式(I)で表わされる2,3,6,7,10,11−ヘキサキスシリルオキシトリフェニレン化合物
【0007】
【化2】

Figure 0004090555
【0008】
(式中R1 、R2 、R3 、R4 、R5 およびR6 はシリル基を表わす)、及び(2)前記一般式(I)で表わされる(1)項記載の2,3,6,7,10,11−ヘキサキスシリルトリフェニレンを脱シリル化することを特徴とする高純度2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンの製造方法
により達成された。
【0009】
【発明の実施の形態】
以下、本発明について詳しく説明する。一般式(I)におけるR1 〜R6 はシリル基を表わすが、これらは互いに同一でも異なった基でもよい。好ましくは下記一般式(II)で表わされるシリル基である。
【0010】
【化3】
Figure 0004090555
【0011】
(式中、Ra 、Rb およびRc はシリコンと安定な結合を形成しうる基を表わす。)
一般式(II)のRa 、Rb およびRc はシリコンと安定な結合を形成しうる基を表わすが、詳しくは例えばハロゲン原子、炭素原子もしくは酸素原子で結合する基を表わす。好ましくはフッ素原子、置換もしくは無置換のアルキル、アリール、アルコキシ又はアリールオキシ基を表わす。これら好ましい基について詳しく説明するとメチル、エチル、プロピル、シクロヘキシル、イソプロピル、t−ブチル、アリル、クロロメチルもしくはベンジルなどのアルキル基(好ましくは炭素数1〜15のもの)、フェニル、トリル、ビフェニルイル、などのアリール基(好ましくは炭素数6〜20のもの)、メトキシ、エトキシ、イソプロポキシ、t−ブトキシもしくはベンジルオキシなどのアルコキシ基(好ましくは炭素数1〜15のもの)、フェノキシ、4−メチルフェノキシ、4−t−ブチルフェノキシ、2,4,6−トリメチルフェノキシなどのアリールオキシ基(好ましくは炭素数6〜20のもの)を表わす。
【0012】
a 、Rb およびRc のいずれか1つが隣接するシリル基上の置換基と直接又は間接に結合してもよい。
【0013】
特に好ましいRa 、Rb およびRc はメチル、エチル、イソプロピル、t−ブチル、又はフェニル基である。
【0014】
次に本発明の一般式(I)で表わされる化合物の具体例を表1および表2に示すが、本発明はこれらに限定されるものではない。
【0015】
【表1】
Figure 0004090555
【0016】
【表2】
Figure 0004090555
【0017】
次に一般式(I)で表わされる本発明の化合物の合成法を以下に説明する。代表的合成法を(スキーム1)、(スキーム2)および(スキーム3)に示した。(スキーム1)と(スキーム2)の出発原料である2,3,6,7,10,11−ヘキサヒドロキシトリフェニレン(HHTP)は、J.Mater.Chem.,,1261(1992)、イスラエル特許第70572号、特開平8−119894号、同9−301906号などに記載の方法により合成できる(スキーム3)の出発原料である2,3,6,7,10,11−ヘキサアルコキシトリフェニレンは、Tetrahedron,47,791(1991)、Synthesis,1994,477,J.Phys.Chem.99,1005(1995)などに記載の方法により合成できる。
【0018】
【化4】
Figure 0004090555
【0019】
【化5】
Figure 0004090555
【0020】
【化6】
Figure 0004090555
【0021】
一般式(I)で表わされる化合物の精製は一般には再結晶法や昇華法により行なわれる。その理由はシリル基上の置換基が小さい場合には、酸素−ケイ素結合が容易に加水分解されるので、よく用いられるシリカゲルカラムクロマトグラフィなどによる精製が困難であるからである。但し、シリル基上の置換基が立体的にかさ高い場合はかなり安定になり、シリカゲルカラムクロマトグラフィなどでの精製も可能になる場合もある。
【0022】
一般式(I)で表わされる化合物に代表されるHHTPのO−シリル化体から脱シリル化により高純度のHHTPを得る反応としては、HCl、HBr、HF、H2 SO4 および酢酸などの酸に曝す方法、水、アルコールなど求核性のある溶媒と接触させ、室温又は加熱条件下におく方法又は、フッ化物と反応させる方法があげられる。立体的かさ高い基をもつシリル基を有する場合はより強い酸性条件下に曝したり、フッ化物と反応させることが好ましいが、立体的にかさ高くない基のシリル基の場合は求核性のある溶媒中で中性条件下で容易に脱シリル化が達成できる。
【0023】
酸を使用する場合、その使用量は好ましくは存在するシリル基に対して等モル量以上になる濃度であるが、アルコールや水のような求核剤が存在する条件下では、触媒量でも十分である。反応温度は通常−20℃から150℃であり、好ましくは0℃〜50℃であり、反応時間は1分から5時間が好ましい。
【0024】
HHTPは難溶なため、通常反応液から析出するのでろ過乾燥により簡単に高純度HHTPが得られる。
【0025】
【実施例】
以下に実施例に基づき本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。
【0026】
実施例1(例示化合物(1)の合成)
2,3,6,7,10,11−ヘキサヒドロキシトリフェニレン(HHTP)5.2g(純度97% 0.015mol)のテトラヒドロフラン(50ml)溶液にN,N−ジメチルトリメチルシリルアミン12.7g(0.11mol)を加え、室温下約30分撹拌し、次に加熱還流すると徐々にジメチルアミンの発生が起きた。約3時間後、反応液をエバポレーターで濃縮し、n−ヘキサン150mlと酢酸エチル15ml加えた。その溶液に活性炭を加え、しばらく放置後セライトを用いて吸引ろ過し、ろ液を濃縮すると結晶性の残留物を10.9g得た。このものはNMRスペクトル的にはほぼ純粋であった。収率93.5%。これをアセトニトリルを用いて再結晶すると純粋な例示化合物(1)を無色結晶として7.9g(67.7%、純度99.5%)得ることができた。
(純度は高速液体クロマトグラフィー(HPLC)で測定した。)
融点146〜147℃
NMR(核磁気共鳴)スペクトル(CDCl3 )δ(ppm);0.35(54H,s),7.78(6H,s)
例示化合物(1)は220〜240℃/〜0.2mmHgで蒸留可能であったが、若干の分解が起きるようで、蒸留で得られるものの純度は低下した。
【0027】
実施例2(例示化合物(2)の合成)
HHTP、5g(0.015mol、純度97%)のジメチルホルムアミド(50ml)溶液にイミダゾール14.7g(0.216mol)加えて撹拌し、室温下トリエチルシリルクロリド16.3g(0.108mol)を加えた。室温下約1時間撹拌後、約60℃に加熱して約1時間撹拌した。その後室温にもどしてイミダゾール4.2g(0.062mol)とトリエチルシリルクロリド4.6g(0.031mol)を更に加え、室温下一晩放置した。反応液にn−ヘキサンを加えて、撹拌・抽出(水は使わない)し、ジメチルホルムアミド層を分離した後、n−ヘキサン層をアセトニトリルで洗浄し、n−ヘキサン層に活性炭を添加放置した。セライトを用いてろ過後、ろ液を減圧濃縮すると茶色の油状物が19.3g得られた。この油状物は冷蔵庫中で結晶化する。
NMRスペクトルでは、この茶色の油状物はトリエチルシリルクロリド由来の不純物を含む例示化合物(2)(純度81%)であった。
NMRスペクトル(CDCl3 )δ(ppm);0.90(36H,q,J=7.4),1.06(54H,t,J=7.4),7.75(6H,s)
【0028】
実施例3(例示化合物(3)の合成)
HHTP、1g(6.2mmol、純度97%)のジメチルホルムアミド(50ml)溶液にイミダゾール5.8g(86mmol)を加え撹拌し、室温下t−ブチルジメチルシリルクロリド6.5g(43mmol)を加えた。若干の発熱がおき約1時間撹拌後一晩放置した。反応の進行がTLCで不十分であることがわかったので115℃に加熱し、撹拌した。約3時間後イミダゾール1.7g(25mmol)とt−ブチルジメチルシリルクロリド1.9g(12mmol)を更に添加した。約3時間加熱撹拌後室温に戻し、水を加えることなくn−ヘキサン抽出を2回行なった。ジメチルホルムアミド層を分離後、n−ヘキサン抽出液を合わせ水(1回)と飽和食塩水(1回)で洗浄後、硫酸マグネシウムで乾燥した。ろ過後、減圧濃縮し、残渣をアセトニトリルで再結晶することにより例示化合物(3)を5.1g(収率82%、純度99.4%)得ることができた。
融点299〜300℃
NMRスペクトル(CDCl3 )δ(ppm);0.30(36H,s),1.06(54H,s),7.76(6H,s)
【0029】
実施例4(例示化合物(4)の合成)
HHTP、2g(6.2mmol、純度97%)のジメチルホルムアミド(50ml)溶液の中にイミダゾール5.8g(86mmol)を加え撹拌した。その中にt−ブチルジフェニルシリルクロリド、11.9g(43mmol)を加え、室温下約1時間、次に60℃に加熱して約9時間撹拌した。一晩放置後更に約11時間115℃で撹拌したが反応が完結したかったので、イミダゾール1.7g(25mmol)とt−ブチルジフェニルシリルクロリド3.4g(12mmol)を加え約7時間115℃で撹拌した。室温に戻した後水を加えることなくn−ヘキサンで3回抽出し、抽出液を合わせた後アセトニトリルで洗浄し、n−ヘキサンを減圧留去することにより黒青色の結晶性化合物を約13g得た。これをアセトニトリルと酢酸エチル混合溶液で再結晶することにより、3.4g(31.4%)の例示化合物(4)(純度99.6%)を得た。尚、ろ液にはまだ多量の例示化合物(4)が含まれていたが、それ以上の取り出しは試みなかった。
融点235〜237℃
NMRスペクトル(CDCl3 )δ(ppm);0.91(54H,s),6.88(6H,s),7.20(24H,t,J=7.5),7.32(12H,t,J=7.5),7.54(24H,d,J=7.5)
【0030】
実施例5(HHTPの合成)
実施例1で得た純度99.5%の例示化合物(1)を2g(2.6mmol)をメタノール10mlに加え、加熱還流を約2時間行なった。その後メタノール等低沸点化合物を減圧留去し、得られたHHTPの結晶を真空ポンプで乾燥後、HPLCで純度を測定した所、純度は99%であった。
実施例6(HHTPの合成)
実施例1で得た純度99.5%の例示化合物(1)2.0g(2.6mmol)を酢酸エチルに溶かし、その中に46〜48%のフッ化水素酸を0.7mlを加え室温下撹拌した。約2時間後析出した結晶をろ別し、乾燥した所純度99.3%(HPLC純度)のHHTPを0.80g(収率95.0%)得ることができた。
実施例7(HHTPの合成)
実施例1で得た純度99.5%の例示化合物(1)2.0g(2.6mmol)を酢酸(50ml)中で約1時間加熱還流し室温に戻して析出した結晶をろ別・乾燥することにより純度99.5%(HPLC純度)のHHTPを0.78g(収率92.5%)得ることができた。
【0031】
実施例8(HHTPの合成)
実施例2で得た純度81%の例示化合物(2)10gを酢酸100mlに混ぜ、約1時間加熱還流し、室温に戻して析出した結晶をろ別乾燥することにより純度99.2%(HPLC純度)のHHTPを2.4g(収率91%)得ることができた。
【0032】
参考例1(2,3,6,7,10,11−ヘキサアセトキシトリフェニレンの合成)
2,3,6,7,10,11−ヘキサアシルオキシ化合物を合成する際はHHTPを経由することなく、本発明の化合物から直接アシル化により合成することが可能である。その参考例として2,3,6,7,10,11−ヘキサアセトキシトリフェニレンの合成例を以下に示す。
例示化合物(1)、2g(純度99.5%、2.6mmol)をクロロホルム50mlに溶かし、その中にアセチルクロリド2.4g(31.2mmol)を加え、約2時間加熱還流した。反応液を減圧濃縮し、得られた結晶(8.4g)の成分をHPLCで分析した所、純度98%の2,3,6,7,10,11−ヘキサアセトキシトリフェニレン(J.Chem.Soc.(c),1971,1397)であった。
【0033】
【発明の効果】
本発明の2,3,6,7,10,11−ヘキサキスシリルオキシトリフェニレン化合物は有機溶媒への溶解性がよく、再結晶精製が容易であり、その脱シリル化は定量的かつ容易に起きるため、高純度の2,3,6,7,10,11−ヘキサヒドロキシトリフェニレン(HHTP)を容易に調製することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-purity 2,3,6,7,10,11-hexahydroxytriphenylene compound which is a useful synthetic intermediate in the synthesis of a triphenylene derivative which is a liquid crystal material, and a novel triphenylene compound used in the method. Is.
[0002]
[Prior art]
In recent years, liquid crystal display elements have been widely used in word processors, personal computers, televisions, and the like, and industrial activities such as materials and devices related thereto have been actively conducted. A lot of compounds have been developed for active research and development of liquid crystal compounds that are the basis of liquid crystal display materials. These compounds are considered to be used not only for display elements but also for development of various applications.
[0003]
Conventionally well-known and more widely used liquid crystal compounds are rod-shaped, but recently, disc-shaped liquid crystal compounds, so-called discotic liquid crystal compounds, are attracting attention. One of typical examples is a triphenylene derivative (for example, JP-A-7-258167 and JP-A-7-258170).
[0004]
An important compound as a raw material for the synthesis of a triphenylene derivative is 2,3,6,7,10,11-hexahydroxytriphenylene (hereinafter simply referred to as HHTP), but the compound is unstable and is not a specific solvent. It is not easy to produce with high purity because it is difficult to dissolve, and it has been a big problem when used for liquid crystal compounds. Therefore, as methods for solving this problem, for example, Japanese Patent Application Laid-Open No. 8-119894 (dealkylation with hydrogen iodide) and Japanese Patent Application Laid-Open No. 9-301906 (Hydroacyl hydrolysis) have been proposed. Both improve many of the problems, but in the former, the reactor is limited to glass because of heating under strong acid conditions, and in the latter, hydrolysis is a reaction under alkaline conditions, so under alkaline conditions. Unstable products (HHTP) are exposed to alkali, causing problems such as coloring. Therefore, development of a method for producing high-purity HHTP that is more effective in industrial production is still desired.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to solve the above-mentioned problems associated with the production of HHTP, and particularly to provide a method for producing high-purity HHTP.
[0006]
[Means for Solving the Problems]
As a result of diligent studies to achieve the above-mentioned problems, the present inventor, once hexasilylating HHTP, facilitates recrystallization purification of the silylated product, and desilylation also occurs under very mild conditions. In addition, it has been found that the purity of HHTP obtained by desilylation in this way is extremely high. The present invention has been made based on this finding. That is, the object of the present invention is to
(1) 2,3,6,7,10,11-hexakisyloxytriphenylene compound represented by the following general formula (I)
[Chemical 2]
Figure 0004090555
[0008]
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 represent a silyl group), and (2) 2, 3, as described in item (1), represented by the general formula (I) This was achieved by a method for producing high-purity 2,3,6,7,10,11-hexahydroxytriphenylene, characterized by desilylation of 6,7,10,11-hexakissilyltriphenylene.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. R 1 to R 6 in the general formula (I) represent a silyl group, and these may be the same or different from each other. A silyl group represented by the following general formula (II) is preferable.
[0010]
[Chemical 3]
Figure 0004090555
[0011]
(Wherein R a , R b and R c represent groups capable of forming a stable bond with silicon.)
In the general formula (II), R a , R b and R c represent groups capable of forming a stable bond with silicon, and in detail, for example, a group bonded by a halogen atom, a carbon atom or an oxygen atom. Preferably, it represents a fluorine atom, a substituted or unsubstituted alkyl, aryl, alkoxy or aryloxy group. When these preferable groups are described in detail, an alkyl group (preferably having 1 to 15 carbon atoms) such as methyl, ethyl, propyl, cyclohexyl, isopropyl, t-butyl, allyl, chloromethyl or benzyl, phenyl, tolyl, biphenylyl, Aryl groups such as those having 6 to 20 carbon atoms, alkoxy groups such as methoxy, ethoxy, isopropoxy, t-butoxy or benzyloxy (preferably having 1 to 15 carbon atoms), phenoxy, 4-methyl An aryloxy group (preferably having 6 to 20 carbon atoms) such as phenoxy, 4-t-butylphenoxy and 2,4,6-trimethylphenoxy is represented.
[0012]
Any one of R a , R b and R c may be bonded directly or indirectly to a substituent on the adjacent silyl group.
[0013]
Particularly preferred R a , R b and R c are methyl, ethyl, isopropyl, t-butyl or phenyl groups.
[0014]
Next, specific examples of the compound represented by the general formula (I) of the present invention are shown in Tables 1 and 2, but the present invention is not limited thereto.
[0015]
[Table 1]
Figure 0004090555
[0016]
[Table 2]
Figure 0004090555
[0017]
Next, a method for synthesizing the compound of the present invention represented by the general formula (I) will be described below. Representative synthetic methods are shown in (Scheme 1), (Scheme 2) and (Scheme 3). The starting materials of (Scheme 1) and (Scheme 2) are 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP). Mater. Chem. 1, 2 , 1261 (1992), Israel Patent No. 70572, JP-A Nos. 8-119894 and 9-301906, etc. (Scheme 3) which is a starting material of 2,3,6,7 , 10,11-hexaalkoxytriphenylene is described in Tetrahedron, 47 , 791 (1991), Synthesis, 1994 , 477, J. MoI. Phys. Chem. 99 , 1005 (1995) and the like.
[0018]
[Formula 4]
Figure 0004090555
[0019]
[Chemical formula 5]
Figure 0004090555
[0020]
[Chemical 6]
Figure 0004090555
[0021]
The compound represented by the general formula (I) is generally purified by a recrystallization method or a sublimation method. The reason is that, when the substituent on the silyl group is small, the oxygen-silicon bond is easily hydrolyzed, so that purification by commonly used silica gel column chromatography or the like is difficult. However, when the substituent on the silyl group is sterically bulky, it becomes quite stable and may be purified by silica gel column chromatography or the like.
[0022]
Examples of the reaction for obtaining high purity HHTP by desilylation from an O-silylated form of HHTP represented by the compound represented by the general formula (I) include acids such as HCl, HBr, HF, H 2 SO 4 and acetic acid. Exposure to water, contact with a nucleophilic solvent such as water, alcohol, and the like, and a method of leaving at room temperature or heating, or a reaction with fluoride. In the case of having a silyl group having a sterically bulky group, it is preferable to expose it to a stronger acidic condition or to react with a fluoride, but in the case of a silyl group having a sterically bulky group, it is nucleophilic. Desilylation can be easily achieved under neutral conditions in a solvent.
[0023]
When an acid is used, the amount used is preferably a concentration that is at least equimolar with respect to the silyl groups present, but under conditions where a nucleophile such as alcohol or water is present, a catalytic amount is sufficient. It is. The reaction temperature is usually −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., and the reaction time is preferably 1 minute to 5 hours.
[0024]
Since HHTP is hardly soluble, it usually precipitates from the reaction solution, so that high-purity HHTP can be easily obtained by filtration and drying.
[0025]
【Example】
EXAMPLES The present invention will be described below based on examples, but the present invention is not limited to these examples.
[0026]
Example 1 (Synthesis of Exemplified Compound (1))
To a solution of 5.2 g (purity 97% 0.015 mol) of 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) in tetrahydrofuran (50 ml) was added 12.7 g (0.11 mol) of N, N-dimethyltrimethylsilylamine. ) And stirred at room temperature for about 30 minutes, and then heated to reflux to gradually generate dimethylamine. After about 3 hours, the reaction solution was concentrated with an evaporator, and 150 ml of n-hexane and 15 ml of ethyl acetate were added. Activated carbon was added to the solution, allowed to stand for a while and then suction filtered using Celite, and the filtrate was concentrated to obtain 10.9 g of a crystalline residue. This was almost pure in NMR spectrum. Yield 93.5%. When this was recrystallized using acetonitrile, 7.9 g (67.7%, purity 99.5%) of pure exemplary compound (1) as colorless crystals could be obtained.
(Purity was measured by high performance liquid chromatography (HPLC).)
Melting point: 146-147 ° C
NMR (nuclear magnetic resonance) spectrum (CDCl 3 ) δ (ppm); 0.35 (54H, s), 7.78 (6H, s)
Exemplified compound (1) was distillable at 220 to 240 ° C./˜0.2 mmHg, but it seemed that some decomposition occurred, and the purity of what was obtained by distillation was lowered.
[0027]
Example 2 (Synthesis of Exemplified Compound (2))
14.7 g (0.216 mol) of imidazole was added to a solution of HHTP, 5 g (0.015 mol, purity 97%) in dimethylformamide (50 ml) and stirred, and 16.3 g (0.108 mol) of triethylsilyl chloride was added at room temperature. . After stirring at room temperature for about 1 hour, the mixture was heated to about 60 ° C. and stirred for about 1 hour. After returning to room temperature, 4.2 g (0.062 mol) of imidazole and 4.6 g (0.031 mol) of triethylsilyl chloride were further added, and the mixture was allowed to stand overnight at room temperature. N-Hexane was added to the reaction solution, followed by stirring and extraction (without using water), and after separating the dimethylformamide layer, the n-hexane layer was washed with acetonitrile, and activated carbon was added to the n-hexane layer and left standing. After filtration using Celite, the filtrate was concentrated under reduced pressure to obtain 19.3 g of a brown oil. This oil crystallizes in the refrigerator.
In the NMR spectrum, this brown oil was Exemplified Compound (2) (purity 81%) containing impurities derived from triethylsilyl chloride.
NMR spectrum (CDCl 3 ) δ (ppm); 0.90 (36H, q, J = 7.4), 1.06 (54H, t, J = 7.4), 7.75 (6H, s)
[0028]
Example 3 (Synthesis of Exemplified Compound (3))
To a solution of HHTP, 1 g (6.2 mmol, purity 97%) in dimethylformamide (50 ml), 5.8 g (86 mmol) of imidazole was added and stirred, and 6.5 g (43 mmol) of t-butyldimethylsilyl chloride was added at room temperature. Some exotherm occurred and the mixture was stirred for about 1 hour and left overnight. Since the reaction progress was found to be insufficient by TLC, it was heated to 115 ° C. and stirred. After about 3 hours, 1.7 g (25 mmol) of imidazole and 1.9 g (12 mmol) of t-butyldimethylsilyl chloride were further added. After heating and stirring for about 3 hours, the temperature was returned to room temperature, and n-hexane extraction was performed twice without adding water. After separating the dimethylformamide layer, the n-hexane extracts were combined, washed with water (once) and saturated brine (once), and dried over magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and 5.1 g (yield 82%, purity 99.4%) of Exemplary Compound (3) could be obtained by recrystallizing the residue with acetonitrile.
Melting point 299-300 ° C
NMR spectrum (CDCl 3 ) δ (ppm); 0.30 (36H, s), 1.06 (54H, s), 7.76 (6H, s)
[0029]
Example 4 (Synthesis of Exemplified Compound (4))
In a solution of HHTP, 2 g (6.2 mmol, purity 97%) in dimethylformamide (50 ml), 5.8 g (86 mmol) of imidazole was added and stirred. Into this, 11.9 g (43 mmol) of t-butyldiphenylsilyl chloride was added, and the mixture was stirred at room temperature for about 1 hour, then heated to 60 ° C. and stirred for about 9 hours. After standing overnight, the mixture was further stirred for about 11 hours at 115 ° C., but the reaction was not completed, so 1.7 g (25 mmol) of imidazole and 3.4 g (12 mmol) of t-butyldiphenylsilyl chloride were added and about 7 hours at 115 ° C. Stir. After returning to room temperature, the mixture was extracted three times with n-hexane without adding water. The extracts were combined, washed with acetonitrile, and n-hexane was distilled off under reduced pressure to obtain about 13 g of a black-blue crystalline compound. It was. This was recrystallized with a mixed solution of acetonitrile and ethyl acetate to obtain 3.4 g (31.4%) of exemplary compound (4) (purity 99.6%). Although the filtrate still contained a large amount of the exemplified compound (4), no further extraction was attempted.
Melting point: 235-237 ° C
NMR spectrum (CDCl 3 ) δ (ppm); 0.91 (54H, s), 6.88 (6H, s), 7.20 (24H, t, J = 7.5), 7.32 (12H, t, J = 7.5), 7.54 (24H, d, J = 7.5)
[0030]
Example 5 (Synthesis of HHTP)
2 g (2.6 mmol) of the exemplary compound (1) having a purity of 99.5% obtained in Example 1 was added to 10 ml of methanol, and the mixture was heated to reflux for about 2 hours. Thereafter, low-boiling compounds such as methanol were distilled off under reduced pressure, and the resulting HHTP crystals were dried with a vacuum pump and the purity was measured by HPLC. The purity was 99%.
Example 6 (Synthesis of HHTP)
2.0 g (2.6 mmol) of the exemplary compound (1) having a purity of 99.5% obtained in Example 1 was dissolved in ethyl acetate, 0.7 ml of 46 to 48% hydrofluoric acid was added thereto, and room temperature was added. Stirring under. After about 2 hours, the precipitated crystals were separated by filtration, and dried to obtain 0.80 g (yield 95.0%) of HHTP having a purity of 99.3% (HPLC purity).
Example 7 (Synthesis of HHTP)
2.0 g (2.6 mmol) of Exemplified Compound (1) 99.5% obtained in Example 1 was heated to reflux in acetic acid (50 ml) for about 1 hour, returned to room temperature, and the precipitated crystals were filtered off and dried. As a result, 0.78 g (yield 92.5%) of HHTP having a purity of 99.5% (HPLC purity) could be obtained.
[0031]
Example 8 (Synthesis of HHTP)
10 g of the 81% pure exemplary compound (2) obtained in Example 2 was mixed with 100 ml of acetic acid, heated to reflux for about 1 hour, returned to room temperature, and the precipitated crystals were filtered and dried to obtain a purity of 99.2% (HPLC Purity) of HHTP was obtained (yield 91%).
[0032]
Reference Example 1 (Synthesis of 2,3,6,7,10,11-hexaacetoxytriphenylene)
When a 2,3,6,7,10,11-hexaacyloxy compound is synthesized, it can be synthesized by direct acylation from the compound of the present invention without passing through HHTP. As a reference example, a synthesis example of 2,3,6,7,10,11-hexaacetoxytriphenylene is shown below.
Illustrative compound (1), 2 g (purity 99.5%, 2.6 mmol) was dissolved in 50 ml of chloroform, 2.4 g (31.2 mmol) of acetyl chloride was added thereto, and the mixture was heated to reflux for about 2 hours. The reaction solution was concentrated under reduced pressure, and the components of the obtained crystals (8.4 g) were analyzed by HPLC. As a result, 98% purity 2,3,6,7,10,11-hexaacetoxytriphenylene (J. Chem. Soc) was obtained. (C), 1971 , 1397).
[0033]
【The invention's effect】
The 2,3,6,7,10,11-hexakisyloxytriphenylene compound of the present invention has good solubility in an organic solvent, is easy to recrystallize, and its desilylation occurs quantitatively and easily. Therefore, high purity 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) can be easily prepared.

Claims (2)

下記一般式(I)で表わされる2,3,6,7,10,11−ヘキサキスシリルオキシトリフェニレン化合物。
Figure 0004090555
(式中R1 、R2 、R3 、R4 、R5 およびR6 はシリル基を表わす。)
2,3,6,7,10,11-hexakisyloxytriphenylene compound represented by the following general formula (I).
Figure 0004090555
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and R 6 represent a silyl group.)
前記一般式(I)で表わされる請求項1記載の2,3,6,7,10,11−ヘキサキスシリルトリフェニレンを脱シリル化することを特徴とする高純度2,3,6,7,10,11−ヘキサヒドロキシトリフェニレンの製造方法。The high purity 2,3,6,7, characterized by desilylating 2,3,6,7,10,11-hexakissilyltriphenylene according to claim 1 represented by the general formula (I) A method for producing 10,11-hexahydroxytriphenylene.
JP06362298A 1998-03-13 1998-03-13 2,3,6,7,10,11-Hexakisyloxytriphenylene compound and method for producing high purity 2,3,6,7,10,11-hexahydroxytriphenylene Expired - Fee Related JP4090555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06362298A JP4090555B2 (en) 1998-03-13 1998-03-13 2,3,6,7,10,11-Hexakisyloxytriphenylene compound and method for producing high purity 2,3,6,7,10,11-hexahydroxytriphenylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06362298A JP4090555B2 (en) 1998-03-13 1998-03-13 2,3,6,7,10,11-Hexakisyloxytriphenylene compound and method for producing high purity 2,3,6,7,10,11-hexahydroxytriphenylene

Publications (2)

Publication Number Publication Date
JPH11255781A JPH11255781A (en) 1999-09-21
JP4090555B2 true JP4090555B2 (en) 2008-05-28

Family

ID=13234624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06362298A Expired - Fee Related JP4090555B2 (en) 1998-03-13 1998-03-13 2,3,6,7,10,11-Hexakisyloxytriphenylene compound and method for producing high purity 2,3,6,7,10,11-hexahydroxytriphenylene

Country Status (1)

Country Link
JP (1) JP4090555B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090275A1 (en) * 2004-03-19 2005-09-29 Otsuka Chemical Co., Ltd. Crystal of hexahydroxytriphenylene monohydrate and method for preparation thereof
WO2006038709A1 (en) * 2004-10-05 2006-04-13 National University Corporation Gunma University Triphenylene compounds, process for production thereof, and organic electroluminescent devices made by using the same
KR101528827B1 (en) * 2007-08-07 2015-06-16 와코 쥰야꾸 고교 가부시키가이샤 Process for producing triphenylene compound and crystal obtained by the process
KR101350581B1 (en) 2010-12-29 2014-01-16 주식회사 엘지화학 New compounds and organic light emitting device using the same

Also Published As

Publication number Publication date
JPH11255781A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JPS63307837A (en) Optical active compound
JP4090555B2 (en) 2,3,6,7,10,11-Hexakisyloxytriphenylene compound and method for producing high purity 2,3,6,7,10,11-hexahydroxytriphenylene
JP4209626B2 (en) Method for recovering triethylamine
RU2635659C1 (en) Method of producing benzil ether derivatives of 2-aminonicotinic acid
JP3477631B2 (en) Purification method of 1,3-bis (3-aminopropyl) -1,1,3,3-tetraorganodisiloxane
JP3979743B2 (en) Method for producing optically active vinyl phosphine oxide
JP4551514B2 (en) Process for producing unsaturated hydrocarbon residue-substituted anilines
US5041620A (en) Method for producing optically active 2-cyclopenten-4-one-1-ol esters, 2-cyclopenteno-4-one-1-ol ester and complexes thereof with optically active 1,6-diphenyl-2,4-hexadiyne-1,6-diol
JP2007246517A (en) Process for producing optically active 5-hydroxy-3-keto ester compound
JP2005134365A (en) Chiral shift reagent for nmr consisting of optical active binaphthyl compound
JP3777407B2 (en) Method for producing carboxylic acid derivative
JP2905931B2 (en) Process for producing optically active 2-cyclopentenones
JPS6156188A (en) Lactic acid silyl ester
JP4776784B2 (en) Method for purifying fluorine-substituted benzamidoxime O-alkyl ethers
JP3749564B2 (en) Method for producing tetralin carboxylic acid ester
JPH10324648A (en) Production of compound of truxenes
JP2010083798A (en) METHOD FOR PRODUCING omega-HYDROXY LONG-CHAIN FATTY ACID DERIVATIVE
JPS6257194B2 (en)
JPH08176134A (en) New synthetic method of phthalide derivative
JPH0660114B2 (en) Optically active alcohol compound
JPS60146887A (en) Cyclic ester compound
JPH06733B2 (en) Process for producing optically active 3-hydroxy-4-halogeno-butyronitrile
JPH0267237A (en) Production of optically active 1,1,1-trifluoro-2-alkanol
JPH01275543A (en) Production of 1-alkoxy-3-chloro-2-propanol
JP2005220096A (en) Method for producing optically active carboxylic acid ester derivative and tertiary alcohol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees