JP4089831B2 - Multi-vortex flow meter with integrated pressure gauge - Google Patents

Multi-vortex flow meter with integrated pressure gauge Download PDF

Info

Publication number
JP4089831B2
JP4089831B2 JP2006163342A JP2006163342A JP4089831B2 JP 4089831 B2 JP4089831 B2 JP 4089831B2 JP 2006163342 A JP2006163342 A JP 2006163342A JP 2006163342 A JP2006163342 A JP 2006163342A JP 4089831 B2 JP4089831 B2 JP 4089831B2
Authority
JP
Japan
Prior art keywords
vortex
pressure
temperature sensor
flow
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006163342A
Other languages
Japanese (ja)
Other versions
JP2007333460A (en
Inventor
慎嗣 小田
賢一 高井
孝治 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Corp
Original Assignee
Oval Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Corp filed Critical Oval Corp
Priority to JP2006163342A priority Critical patent/JP4089831B2/en
Priority to CN200780021889XA priority patent/CN101467008B/en
Priority to EP07742716A priority patent/EP2028457B1/en
Priority to DE602007006481T priority patent/DE602007006481D1/en
Priority to US12/225,884 priority patent/US8069734B2/en
Priority to PCT/JP2007/059281 priority patent/WO2007145037A1/en
Publication of JP2007333460A publication Critical patent/JP2007333460A/en
Application granted granted Critical
Publication of JP4089831B2 publication Critical patent/JP4089831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F7/00Volume-flow measuring devices with two or more measuring ranges; Compound meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F5/00Measuring a proportion of the volume flow

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

本発明は、渦流量計の機能と熱式流量計の機能とを兼ね備えてなるマルチ渦流量計に関し、詳しくは、圧力計が一体となるマルチ渦流量計に関する。   The present invention relates to a multi-vortex flow meter having both the function of a vortex flow meter and the function of a thermal flow meter, and more particularly to a multi-vortex flow meter in which a pressure gauge is integrated.

流管に流れる被測定流体の流量を計測するために、渦流量計や熱式流量計が用いられている。   In order to measure the flow rate of the fluid to be measured flowing in the flow tube, a vortex flow meter or a thermal flow meter is used.

渦流量計は、周知のように、流体の流れの中に渦発生体を配設したとき、所定のレイノルズ数範囲では、渦発生体から単位時間内に発生するカルマン渦の数(渦周波数)が気体、液体に関係なく流量に比例することを利用したもので、この比例定数はストローハル数と呼ばれている。渦検出器としては、熱センサ、歪みセンサ、光センサ、圧力センサ、超音波センサ等が挙げられ、これらは渦による熱変化、揚力変化等を検出することが可能なものになっている。渦流量計は、被測定流体の物性に影響されずに流量を測定できる簡易な流量計であって、気体や流体の流量計測に広く使用されている(例えば特許文献1参照)。   As is well known, when a vortex generator is arranged in a fluid flow, the vortex flowmeter is the number of Karman vortices (vortex frequency) generated from the vortex generator within a unit time within a predetermined Reynolds number range. Is proportional to the flow rate regardless of gas or liquid. This proportionality constant is called the Strouhal number. Examples of the vortex detector include a thermal sensor, a strain sensor, an optical sensor, a pressure sensor, an ultrasonic sensor, and the like, which can detect a thermal change, a lift change, and the like due to the vortex. The vortex flowmeter is a simple flowmeter that can measure the flow rate without being affected by the physical properties of the fluid to be measured, and is widely used for measuring the flow rate of gas or fluid (see, for example, Patent Document 1).

熱式流量計は、感温センサ(流体温度検出センサ)と加熱感温センサ(加熱側温度センサ)とを備えて構成されており、温度センサと加熱センサの機能を有する加熱感温センサ(流速センサ(ヒータ))の温度が感温センサで計測される温度に対して一定の温度差になるように制御されている。これは、被測定流体を流した時にヒータから奪われる熱量が質量流量と相関があるからであって、ヒータに対する加熱電力量から質量流量が算出されるようになっている(例えば特許文献2参照)。   The thermal flow meter includes a temperature sensor (fluid temperature sensor) and a heating temperature sensor (heating temperature sensor), and is a heating temperature sensor (flow velocity) having the functions of a temperature sensor and a heating sensor. The temperature of the sensor (heater) is controlled to be a constant temperature difference with respect to the temperature measured by the temperature sensor. This is because the amount of heat taken away from the heater when the fluid to be measured flows is correlated with the mass flow rate, and the mass flow rate is calculated from the amount of heating power to the heater (see, for example, Patent Document 2). ).

下記特許文献3には、渦流量計の機能と熱式流量計の機能とを兼ね備えてなるマルチ渦流量計の技術が開示されている。マルチ渦流量計は、微少流量から大流量まで精度よく計測することができ、この点が特に他の流量計よりも優れている。   Patent Document 3 listed below discloses a technique for a multi-vortex flow meter that has both the function of a vortex flow meter and the function of a thermal flow meter. The multi-vortex flow meter can accurately measure from a minute flow rate to a large flow rate, and this point is particularly superior to other flow meters.

マルチ渦流量計は、流管の流路を流れる被測定流体の流れの状況に応じて渦流量計の機能と熱式流量計の機能とが使い分けられるようになっている。すなわち、微少流量域や低流量域では、熱式流量計の機能によって計測がなされ、高流量域では、渦流量計の機能によって計測がなされるようになっている。   In the multi-vortex flow meter, the function of the vortex flow meter and the function of the thermal flow meter are selectively used according to the flow state of the fluid to be measured flowing through the flow path of the flow tube. That is, measurement is performed by the function of the thermal flow meter in the minute flow rate region and the low flow rate region, and measurement is performed by the function of the vortex flow meter in the high flow rate region.

渦流量計は、流量が低くなって渦差圧が小さくなると渦検出器の感度が不足してしまうことから、マルチ渦流量計では、所定の下限流量で熱式流量計へ機能を切り替えるような制御がなされている。
特許第2869054号公報 (第3頁、第1図) 特開2004−12220号公報 (第6頁、第4図) 特開2006−29966号公報 (第4−8頁、第1−5図)
In vortex flowmeters, the sensitivity of the vortex detector becomes insufficient when the flow rate decreases and the vortex differential pressure decreases, so the multi-vortex flowmeter switches the function to the thermal flowmeter at a predetermined lower limit flow rate. Control is being made.
Japanese Patent No. 2869054 (Page 3, Fig. 1) JP 2004-12220 A (Page 6, FIG. 4) JP 2006-29966 A (page 4-8, FIG. 1-5)

本願発明者は、流量が低くても流管内の圧力が上昇すると渦差圧が高くなり、これによって流量計の機能を切り替える際の判断基準となる下限流量を下げることが可能であることを見出し、この見出した結果をマルチ渦流量計に反映したいと考えている。本願発明者は、渦流量計の利点を生かすために、できるだけこの渦流量計の機能を用いて流量を測定したいと考えている。このため、流管内の圧力変動を把握する圧力計を備えることがマルチ渦流量計には必要であると本願発明者は考えている。   The inventor of the present application has found that, even if the flow rate is low, the vortex differential pressure increases as the pressure in the flow tube increases, and this makes it possible to lower the lower limit flow rate that is a criterion for switching the function of the flow meter. I would like to reflect this finding in the multi-vortex flowmeter. The inventor of the present application wants to measure the flow rate using the function of the vortex flowmeter as much as possible in order to take advantage of the vortex flowmeter. For this reason, this inventor thinks that it is necessary for a multi vortex flowmeter to provide the pressure gauge which grasps | ascertains the pressure fluctuation in a flow tube.

本発明は、上述した事情に鑑みてなされたもので、より良いマルチ渦流量計となる圧力計一体形マルチ渦流量計を提供することを課題とする。   This invention is made | formed in view of the situation mentioned above, and makes it a subject to provide the pressure gauge integrated multi vortex flow meter used as a better multi vortex flow meter.

上記課題を解決するためになされた請求項1記載の本発明の圧力計一体形マルチ渦流量計は、流路に設けられており、管断面が角形状となる筒状に形成され、被測定流体が流れる方向に沿って伸びるように形成され、前記被測定流体を通過させる測定管と,前記被測定流体の流れに対向するように前記測定管の被測定流体が流れる部分であって、前記測定管の被測定流体が流入する側の開口部分中央に位置するように設けられる渦発生体と,前記測定管内の前記渦発生体の下流側に配置される受圧板と前記受圧板内部に埋設された圧力検出素子板とからなり前記渦発生体により生じるカルマン渦に基づく変動圧力を受圧板を介して圧力検出素子板により検出してカルマン渦に基づく変化を検出する渦検出器と,を有する渦式検出手段を備えるとともに,棒状の温度センサによって構成する感温センサと温度センサと加熱センサの機能を有する棒状の流速センサによって構成する加熱感温センサを前記流路の流れ方向に垂直に配置する熱式検出手段を備え,更に変換器ケースを有し、該変換器ケースの内部にマイクロコンピュータの構成を有するアンプボードが設けられている流量変換器を備えるマルチ渦流量計において,前記測定管の上流側で且つ前記測定管の近傍に圧力計測部を形成し、該圧力計測部には、圧力計を収納する部分と、流路を流れる被測定流体の一部を導く受圧口を設け、前記渦検出器、前記感温センサ及び加熱感温センサに対して上流側に離れた位置で前記流量変換器に対し、前記渦検出器及び前記熱式検出手段と共に配線される前記流路を流れる前記被測定流体の圧力を計測する圧力計を一体に設けることを特徴としている。 The multi-vortex flow meter integrated with a pressure gauge according to claim 1 of the present invention, which has been made to solve the above-mentioned problems, is provided in a flow path, is formed in a cylindrical shape having a square tube cross section, and is measured A measuring tube that is formed to extend along a direction in which the fluid flows, and that allows the fluid to be measured to pass therethrough, and a portion in which the fluid to be measured flows in the measuring tube so as to face the flow of the fluid to be measured, A vortex generator provided so as to be located in the center of the opening portion of the measurement tube on the side into which the fluid to be measured flows, a pressure receiving plate disposed downstream of the vortex generator in the measurement tube, and embedded in the pressure receiving plate And a vortex detector for detecting a change based on the Karman vortex by detecting a fluctuating pressure based on the Karman vortex generated by the vortex generator by the pressure detecting element plate via the pressure receiving plate. Equipped with vortex detection means Both the thermal type detection means for arranging vertically heating temperature sensor constituting the flow direction of the flow path by rodlike flow rate sensor having a function of temperature-sensitive sensor and the temperature sensor and the heating sensors constituting the temperature sensor of the rod-shaped A multi-vortex flowmeter comprising a converter case, and a flow rate converter provided with an amplifier board having a microcomputer configuration inside the converter case, on the upstream side of the measuring tube and A pressure measurement unit is formed in the vicinity of the measurement tube, and the pressure measurement unit is provided with a portion for accommodating the pressure gauge and a pressure receiving port for guiding a part of the fluid to be measured flowing through the flow path, the vortex detector, against the flow transducer at a position spaced upstream of the temperature-sensitive sensor and the heating temperature-sensitive sensor, the vortex detector and the measured flow through the flow path are wired together with the thermal type detection means It is characterized in providing integrated pressure gauge for measuring the pressure of the.

このような特徴を有する本発明によれば、圧力計の測定値が流量変換器に取り込まれることにより、流量が低くても渦差圧が高い場合を把握することができるようになり、切り替えの際の判断基準となる下限流量を下げることが可能になる。流量変換器に対して一体となる圧力計は、マルチ渦流量計に対して圧力計別置の場合と比べると、配線への外乱影響等を配慮しなくても良い等の利点を有する。これにより、検出精度等を高めることが可能になる。また、流量変換器に対して一体となる圧力計は、マルチ渦流量計に対して圧力計別置の場合と比べると、セットアップが容易になるという利点や、最適な位置での圧力の計測が可能になるという利点を有する。
さらに本発明によれば、圧力計測部が形成されてここに圧力計が収納されることから、カルマン渦に基づく変化の検出に影響のでない状態での圧力計測が可能になる。
According to the present invention having such a feature, the measurement value of the pressure gauge is taken into the flow rate converter, so that it is possible to grasp the case where the vortex differential pressure is high even when the flow rate is low. It becomes possible to lower the lower limit flow rate, which is a judgment criterion at the time. The pressure gauge integrated with the flow rate converter has the advantage that it is not necessary to consider the influence of disturbance on the wiring, etc., compared to the case of separately installing the pressure gauge with respect to the multi-vortex flow meter. As a result, the detection accuracy and the like can be increased. In addition, the pressure gauge integrated with the flow rate converter has the advantage that setup is easier compared to the multi-vortex flow meter, and the pressure measurement at the optimum position is possible. It has the advantage of being possible.
Furthermore, according to the present invention, since the pressure measurement unit is formed and the pressure gauge is housed therein, pressure measurement can be performed without affecting the detection of the change based on the Karman vortex.

本発明によれば、従来よりも格段により良くなるマルチ渦流量計を提供することができるという効果を奏する。また、本発明によれば、できるだけ渦流量計の機能を用いて流量を測定することができるという効果を奏する。   According to the present invention, there is an effect that it is possible to provide a multi-vortex flowmeter that is much better than before. Moreover, according to this invention, there exists an effect that a flow volume can be measured using the function of a vortex flowmeter as much as possible.

以下、図面を参照しながら説明する。図1は本発明の圧力計一体形マルチ渦流量計の一実施の形態を示す正面図である。また、図2は図1のA−A線断面図、図3は流量変換器の断面図である。   Hereinafter, description will be given with reference to the drawings. FIG. 1 is a front view showing an embodiment of a pressure gauge integrated multi-vortex flow meter according to the present invention. 2 is a cross-sectional view taken along line AA in FIG. 1, and FIG. 3 is a cross-sectional view of the flow rate converter.

図1及び図2において、引用符号1は本発明のマルチ渦流量計(圧力計一体形マルチ渦流量計)を示している。このマルチ渦流量計1は、渦流量計の機能と熱式流量計の機能とを兼ね備えるように構成されている。また、マルチ渦流量計1は、後述するが、切り替えの際の判断基準となる下限流量を下げることが可能な構造を有するように構成されている。マルチ渦流量計1は、測定用取付配管2、圧力計3、測定管4、渦発生体5、及び渦検出器6を有する渦式検出手段7と、感温センサ8及び加熱感温センサ9を有する熱式検出手段10と、渦式検出手段7及び熱式検出手段10からの出力信号に基づいて被測定流体(図示省略)の流速又は流量を算出する流量変換器11とを備えて構成されている。以下、図1ないし図3を参照しながら各構成について説明する。   1 and 2, reference numeral 1 denotes a multi-vortex flow meter (multi-vortex flow meter integrated with a pressure gauge) of the present invention. The multi-vortex flow meter 1 is configured to have both the function of a vortex flow meter and the function of a thermal flow meter. In addition, as will be described later, the multi-vortex flow meter 1 is configured to have a structure capable of lowering a lower limit flow rate that is a criterion for switching. The multi-vortex flow meter 1 includes a vortex detection means 7 having a measurement mounting pipe 2, a pressure gauge 3, a measurement pipe 4, a vortex generator 5, and a vortex detector 6, a temperature sensor 8 and a heating temperature sensor 9. And a flow rate converter 11 for calculating a flow rate or a flow rate of a fluid to be measured (not shown) based on output signals from the vortex type detection unit 7 and the thermal type detection unit 10. Has been. Hereinafter, each configuration will be described with reference to FIGS. 1 to 3.

測定用取付配管2は、流管12の中間に着脱自在に取り付けられて(流管12の中間に限らず、端部に取り付けても可)、この内部に流路13を形成する例えば図示のような筒状の構造体として形成されている。測定用取付配管2の両端には、それぞれ継ぎ手が形成されている。このような測定用取付配管2の外部には、流量変換器11が適宜手段で固定されている。測定用取付配管2に形成される流路13は、断面円形状に形成されている。この流路13には、被測定流体が矢印方向に流れるようになっている。   The measurement attachment pipe 2 is detachably attached to the middle of the flow pipe 12 (not limited to the middle of the flow pipe 12 but may be attached to the end), and the flow path 13 is formed in the inside thereof. It is formed as such a cylindrical structure. Joints are formed at both ends of the measurement mounting pipe 2. The flow rate converter 11 is fixed to the outside of the measurement mounting pipe 2 by appropriate means. The flow path 13 formed in the measurement mounting pipe 2 has a circular cross section. A fluid to be measured flows in the flow path 13 in the direction of the arrow.

流路13の中間には、測定管4や、感温センサ8及び加熱感温センサ9が設けられている。また、これら測定管4等の上流側で且つ測定管4の近傍には、圧力計測部14が形成されている(配置は一例であるものとする)。この圧力計測部14には、圧力計3が収納されるような状態で取り付けられている。圧力計測部14は、圧力計3を収納する部分と、流路13を流れる被測定流体の一部を導入する部分とを有している。圧力計3は、流路13を流れる被測定流体の圧力を計測するためのものであって、ここでは公知の圧力計が用いられている(但し流量変換器11に対応可能なものとする)。圧力計3は、流量変換器11に対し一体化するように取り付けられている。圧力計3は、渦検出器6や感温センサ8及び加熱感温センサ9に対して若干上流側に離れた位置で流量変換器11に対し一体化されている。   A measuring tube 4, a temperature sensor 8, and a heating temperature sensor 9 are provided in the middle of the flow path 13. In addition, a pressure measurement unit 14 is formed on the upstream side of the measurement tube 4 and the like and in the vicinity of the measurement tube 4 (the arrangement is an example). The pressure measuring unit 14 is attached in such a state that the pressure gauge 3 is accommodated. The pressure measurement unit 14 has a part for housing the pressure gauge 3 and a part for introducing a part of the fluid to be measured flowing through the flow path 13. The pressure gauge 3 is for measuring the pressure of the fluid to be measured flowing through the flow path 13, and here, a known pressure gauge is used (however, the pressure gauge 3 can be used for the flow rate converter 11). . The pressure gauge 3 is attached to the flow rate converter 11 so as to be integrated. The pressure gauge 3 is integrated with the flow rate converter 11 at a position slightly upstream from the vortex detector 6, the temperature sensor 8, and the heating temperature sensor 9.

測定管4は、管断面が四角形状となる筒状に形成されている(形状は一例であるものとする)。測定管4は、被測定流体が流れる矢印方向に沿って伸びるように形成されている。測定管4の被測定流体が流れる部分には、渦発生体5と、この渦発生体5の下流側に位置する後述の受圧板15とが設けられている。測定管4の外部には、感温センサ8及び加熱感温センサ9の先端を保持する温度センサ保持部16が設けられている(本形態では一体であるが、この限りでないものとする)。測定管4は、連結筒部17を介して渦検出器6に固定されている。本形態において、測定管4を連結した渦検出器6は、測定用取付配管2に対して着脱自在となるように取り付けられている。   The measuring tube 4 is formed in a cylindrical shape having a rectangular tube cross section (the shape is an example). The measuring tube 4 is formed so as to extend along the arrow direction in which the fluid to be measured flows. A vortex generator 5 and a pressure receiving plate 15 (described later) located on the downstream side of the vortex generator 5 are provided at a portion of the measurement tube 4 where the fluid to be measured flows. Outside the measuring tube 4, a temperature sensor holding unit 16 is provided to hold the tips of the temperature sensor 8 and the heating temperature sensor 9 (in this embodiment, it is integrated, but not limited to this). The measurement tube 4 is fixed to the vortex detector 6 via the connecting cylinder portion 17. In this embodiment, the vortex detector 6 connected to the measurement tube 4 is attached to the measurement attachment pipe 2 so as to be detachable.

渦発生体5は、測定管4の内部に渦を発生させるための部分であって、被測定流体の流れに対向するように、この形状が設定されている。渦発生体5は、本形態において、三角柱形状に形成されている(形状は一例であるものとする。特許文献1の特許第2869054号公報には幾つかの例が開示されている)。渦発生体5は、測定管4の被測定流体が流入する側の開口部分に設けられている。渦発生体5は、測定管4の開口部分中央に位置するように設けられている。   The vortex generator 5 is a part for generating a vortex inside the measurement tube 4 and is configured to face the flow of the fluid to be measured. In this embodiment, the vortex generator 5 is formed in a triangular prism shape (the shape is an example. Japanese Patent No. 2869054 of Patent Document 1 discloses several examples). The vortex generator 5 is provided in the opening portion of the measuring tube 4 on the side into which the fluid to be measured flows. The vortex generator 5 is provided so as to be located at the center of the opening of the measurement tube 4.

ここで、渦発生体5により生じる渦について説明する。渦は、測定管4の上記開口部分に流入する被測定流体が渦発生体5に沿って流れる流れによって生じる運動量変化の大きい位置から剥離するもので、渦発生体5の断面が本形態のように三角形状の場合は、三角形エッジ部が剥離点となる。渦発生体5から剥離し流出する渦は、カルマンの安定渦条件に従って、千鳥状に交互に発生し、一定の渦間距離及び渦列間距離を保った渦列を形成しながら流出する。渦間距離は、単位時間当たりに発生する渦の数、すなわち、渦周波数と、所定時間内に、例えば、基準タンク等の基準容器に流入した流体から求めた流量に基づいて算出された単位時間当たりの流速とから求めることができる。   Here, the vortex generated by the vortex generator 5 will be described. The vortex is separated from the position where the change in momentum generated by the flow of the fluid to be measured flowing into the opening portion of the measuring tube 4 along the vortex generator 5 is large, and the cross section of the vortex generator 5 is like this embodiment. In the case of a triangular shape, the triangular edge portion becomes the peeling point. The vortices that peel off and flow out of the vortex generator 5 are alternately generated in a staggered manner according to Karman's stable vortex condition, and flow out while forming a vortex array that maintains a constant vortex distance and vortex string distance. The distance between the vortices is the unit time calculated based on the number of vortices generated per unit time, that is, the vortex frequency and the flow rate obtained from the fluid flowing into the reference container such as the reference tank within a predetermined time. It can be obtained from the hit flow rate.

温度センサ保持部16は、測定管4の下壁から水平方向に、言い換えれば測定管4の両側壁からそれぞれ突出するように形成されている。温度センサ保持部16は、特に限定するものではないが、平面視の形状が三角形となるように形成されている。温度センサ保持部16は、測定管4に恰もヒレがあるような形状に形成されている。このような温度センサ保持部16の三角形頂部近傍には、感温センサ8、加熱感温センサ9の各先端が真っ直ぐに差し込まれるようになっている。   The temperature sensor holding part 16 is formed so as to protrude from the lower wall of the measurement tube 4 in the horizontal direction, in other words, from both side walls of the measurement tube 4. The temperature sensor holding part 16 is not particularly limited, but is formed so that the shape in plan view is a triangle. The temperature sensor holding part 16 is formed in a shape in which the measuring tube 4 has a fin. The tips of the temperature sensor 8 and the heating temperature sensor 9 are inserted straight into the vicinity of the triangular top of the temperature sensor holding unit 16.

渦検出器6は、渦検出のためのセンサであって、ここでは受圧センサが用いられている。渦検出器6は、測定管4内の渦発生体5の下流側に配置される受圧板(センサ受圧板)15と、渦検出器6内部に設けられる圧力検出素子板とを有しており、渦発生体5により生じるカルマン渦に基づく変動圧力(交番圧力)を受圧板15を介して圧力検出素子板により検出するように構成されている。渦検出器6は、本形態において、流量変換器11に対し一体化するように取り付けられている。   The vortex detector 6 is a sensor for detecting vortices, and a pressure receiving sensor is used here. The vortex detector 6 includes a pressure receiving plate (sensor pressure receiving plate) 15 disposed on the downstream side of the vortex generator 5 in the measurement tube 4 and a pressure detection element plate provided inside the vortex detector 6. The fluctuating pressure (alternating pressure) based on the Karman vortex generated by the vortex generator 5 is detected by the pressure detecting element plate via the pressure receiving plate 15. In this embodiment, the vortex detector 6 is attached so as to be integrated with the flow rate converter 11.

渦式検出手段7は、測定用取付配管2内を流動する被測定流体の流速又は流量を求めるために設けられている。測定用取付配管2内を流動する被測定流体の流速又は流量は、測定管4内を流れる被測定流体の流速又は流量を、測定用取付配管2の部分流速又は部分流量として算出することにより求められるようになっている。これは、測定用取付配管2の管断面の全体ではなく、この一部について測定しても流れが均一ならば全体流量を推定することができることに基づくものである。すなわち、直管を流れる整流された流体の流速分布は、レイノルズ数の関数として与えられるので、測定用取付配管2の中心部から或る距離の位置での流速を測定用取付配管2内の平均流速に換算することができるものである。   The vortex detection means 7 is provided for obtaining the flow velocity or flow rate of the fluid to be measured flowing in the measurement mounting pipe 2. The flow rate or flow rate of the fluid to be measured flowing in the measurement mounting pipe 2 is obtained by calculating the flow rate or flow rate of the fluid to be measured flowing in the measurement pipe 4 as the partial flow rate or partial flow rate of the measurement mounting pipe 2. It is supposed to be. This is based on the fact that the entire flow rate can be estimated if the flow is uniform even if a part of the pipe section of the measurement mounting pipe 2 is measured instead of the whole pipe cross section. That is, since the flow velocity distribution of the rectified fluid flowing through the straight pipe is given as a function of the Reynolds number, the flow velocity at a certain distance from the center of the measurement attachment pipe 2 is averaged in the measurement attachment pipe 2. It can be converted into a flow rate.

熱式検出手段10を構成する感温センサ8及び加熱感温センサ9は、共に公知のものが用いられている。尚ここでは、具体的な構成についての説明を省略するものとする。本形態の感温センサ8は、棒状の温度センサであり、同じく棒状の加熱感温センサ9は、温度センサと加熱センサの機能を有する流速センサ(ヒータ)であるものとする。感温センサ8及び加熱感温センサ9は、本形態において、流量変換器11に対し一体化するように取り付けられている。   As the temperature sensor 8 and the heating temperature sensor 9 constituting the thermal detection means 10, known ones are used. Here, the description of the specific configuration is omitted. The temperature sensor 8 of this embodiment is a rod-shaped temperature sensor, and the rod-shaped heating temperature sensor 9 is also a flow rate sensor (heater) having functions of a temperature sensor and a heating sensor. In this embodiment, the temperature sensor 8 and the heating temperature sensor 9 are attached to the flow rate converter 11 so as to be integrated.

感温センサ8及び加熱感温センサ9は、測定用取付配管2の流路13に突出しており、最先端部分が温度センサ保持部16によって保持されている。感温センサ8及び加熱感温センサ9の各感温部分は、測定管4の近傍に配置されている。感温センサ8及び加熱感温センサ9は、渦検出器6と共に横一列に並んで配置されている(配置は一例であるものとする。渦検出に影響を来さないように配置すれば他でもよいものとする)。尚、感温センサ8及び加熱感温センサ9の各感温部分を温度センサ保持部16から更に流路13の中央に突出させるように長くしてもよいものとするのとする(外部から測定用取付配管2に伝わる熱の作用を避けるため)。   The temperature sensor 8 and the heating temperature sensor 9 protrude into the flow path 13 of the measurement mounting pipe 2, and the most advanced part is held by the temperature sensor holding part 16. Each temperature sensing part of the temperature sensor 8 and the heating temperature sensor 9 is arranged in the vicinity of the measuring tube 4. The temperature sensor 8 and the heating temperature sensor 9 are arranged side by side with the vortex detector 6 (the arrangement is an example. If the arrangement is made so as not to affect the vortex detection, the temperature sensor 8 and the heating temperature sensor 9 may be different. But shall be fine). It should be noted that each temperature sensing part of the temperature sensor 8 and the heating temperature sensor 9 may be elongated so as to protrude further from the temperature sensor holding part 16 to the center of the flow path 13 (measured from the outside). To avoid the effect of heat transmitted to the mounting pipe 2).

流量変換器11は、変換器ケース18を有している。この変換器ケース18の内部には、マイクロコンピュータ等の構成を有するアンプボード19が設けられている。アンプボード19には、圧力計3の伝送線20と、感温センサ8及び加熱感温センサ9の各リードと、渦検出器6の伝送線21とが接続されている(図3中の感温センサ8及び加熱感温センサ9の配置を便宜上変えて図示している。実際には90°回転した位置に配置される。渦検出器6の伝送線21と共に図3の紙面直角方向に並ぶように配置される)。   The flow rate converter 11 has a converter case 18. Inside the converter case 18, an amplifier board 19 having a configuration such as a microcomputer is provided. The amplifier board 19 is connected to the transmission line 20 of the pressure gauge 3, the leads of the temperature sensor 8 and the heating temperature sensor 9, and the transmission line 21 of the vortex detector 6 (sensation in FIG. 3). The arrangement of the temperature sensor 8 and the heating temperature sensor 9 is changed for convenience, and is actually arranged at a position rotated by 90 °, and aligned with the transmission line 21 of the vortex detector 6 in the direction perpendicular to the paper surface of FIG. Arranged).

感温センサ8及び加熱感温センサ9と伝送線20及び21は、変換器ケース18の内部に引き込まれている。感温センサ8及び加熱感温センサ9と伝送線20及び21は、外部に露出することなく変換器ケース18の内部に引き込まれている。感温センサ8及び加熱感温センサ9と、圧力計3と、渦検出器6と、アンプボード19は、流量計測部及び流量演算部としての機能を有している。   The temperature sensor 8, the heating temperature sensor 9, and the transmission lines 20 and 21 are drawn into the converter case 18. The temperature sensor 8, the heating temperature sensor 9, and the transmission lines 20 and 21 are drawn into the converter case 18 without being exposed to the outside. The temperature sensor 8, the heating temperature sensor 9, the pressure gauge 3, the vortex detector 6, and the amplifier board 19 have functions as a flow rate measurement unit and a flow rate calculation unit.

変換器ケース18の開口部分には、スイッチボード22やディスプレイボード23を有する変換器カバー24がパッキン(符号省略)を挟んだ状態で取り付けられている。変換器ケース18の一側壁には、伝送ケーブル25が接続されている。   A converter cover 24 having a switch board 22 and a display board 23 is attached to the opening of the converter case 18 with a packing (not shown) interposed therebetween. A transmission cable 25 is connected to one side wall of the converter case 18.

上記構成及び構造において、本発明のマルチ渦流量計1は、測定用取付配管2の流路13を流れる被測定流体の流れの状況に応じて渦流量計の機能と熱式流量計の機能とが使い分けられるようになっている。すなわち、微少流量域や低流量域では、熱式流量計の機能によって計測がなされ、高流量域では、渦流量計の機能によって計測がなされるようになっている。本発明のマルチ渦流量計1は、熱式流量計の機能における高流量域計測と、渦流量計の機能における低流量域計測とがある程度ラップするようになっており、流量変換器11で切り換えが行われるようになっている。   In the above configuration and structure, the multi-vortex flow meter 1 of the present invention has a function of a vortex flow meter and a function of a thermal flow meter according to the flow state of the fluid to be measured flowing through the flow path 13 of the measurement mounting pipe 2. Can be used properly. That is, measurement is performed by the function of the thermal flow meter in the minute flow rate region and the low flow rate region, and measurement is performed by the function of the vortex flow meter in the high flow rate region. The multi-vortex flow meter 1 of the present invention is designed to wrap to some extent the high flow rate measurement in the function of the thermal flow meter and the low flow rate measurement in the function of the vortex flow meter, and is switched by the flow rate converter 11. Is to be done.

先ず、微少流量域や低流量域を計測する際の作用、すなわち、熱式流量計の機能によって計測を行う場合の作用を説明する。加熱感温センサ9は、感温センサ8で検出された温度に基づいて流量計測を行う。すなわち、流量変換器11における流量計測部及び流量演算部では、感温センサ8と加熱感温センサ9との温度差が一定(例えば+30℃)になるように、加熱感温センサ9を加熱する(電流を流す)とともに、この加熱に係る電流値から質量流量を算出する。算出された質量流量は、所定の単位に換算された後に、変換器カバー24の上部に設けられた表示部に表示、又は伝送ケーブル25で送信されて図示しない表示装置に表示される。   First, an operation when measuring a minute flow rate region or a low flow rate region, that is, an operation when measuring by the function of a thermal flow meter will be described. The heating temperature sensor 9 measures the flow rate based on the temperature detected by the temperature sensor 8. That is, in the flow rate measurement unit and the flow rate calculation unit in the flow rate converter 11, the heating temperature sensor 9 is heated so that the temperature difference between the temperature sensor 8 and the heating temperature sensor 9 is constant (for example, + 30 ° C.). (Make the current flow) and calculate the mass flow rate from the current value related to this heating. The calculated mass flow rate is converted into a predetermined unit, and then displayed on a display unit provided on the upper portion of the converter cover 24 or transmitted by the transmission cable 25 and displayed on a display device (not shown).

上記質量流量の算出について補足説明すると、被測定流体(図示省略)を矢印方向に流したときに、加熱感温センサ9は被測定流体によって冷やされる。感温センサ8との温度差を一定に制御するためには、さらに加熱感温センサ9に電流を流す必要がある。この時、加熱感温センサ9に流れる電流は、質量流量に比例することが知られており、これを利用して質量流量が算出される。   If it explains supplementarily about calculation of the above-mentioned mass flow rate, when fluid under measurement (illustration omitted) is poured in the direction of an arrow, heating temperature sensor 9 will be cooled with fluid under measurement. In order to control the temperature difference with the temperature sensor 8 to be constant, it is necessary to further pass a current through the heating temperature sensor 9. At this time, it is known that the current flowing through the heating temperature sensor 9 is proportional to the mass flow rate, and the mass flow rate is calculated using this.

次に、渦流量計の機能によって計測を行う場合の作用を説明する。渦発生体5により生じるカルマン渦に基づく変動圧力(交番圧力)を受圧板15及び圧力検出素子板において検出する。そして、渦検出器6における検出値から測定管4内を流れる被測定流体の流速又は流量を、測定用取付配管2の部分流速又は部分流量として算出し、測定用取付配管2内を流れる被測定流体の流速又は流量(容積流量)を算出するする。算出された流速又は流量は、所定の単位に換算された後に、変換器カバー24の上部に設けられた表示部に表示、又は伝送ケーブル25で送信されて図示しない表示装置に表示される。   Next, the operation in the case of performing measurement by the function of the vortex flow meter will be described. Fluctuating pressure (alternating pressure) based on Karman vortices generated by the vortex generator 5 is detected by the pressure receiving plate 15 and the pressure detecting element plate. Then, the flow velocity or flow rate of the fluid to be measured flowing in the measurement tube 4 is calculated as the partial flow velocity or flow rate of the measurement attachment pipe 2 from the detection value in the vortex detector 6, and the measurement object flowing in the measurement attachment pipe 2 is obtained. Calculate the flow rate or flow rate (volume flow rate) of the fluid. The calculated flow velocity or flow rate is converted into a predetermined unit, and then displayed on a display unit provided on the upper portion of the converter cover 24 or transmitted by the transmission cable 25 and displayed on a display device (not shown).

流量変換器11において行われる流量計の機能に係る切り換えに関しては、圧力計3からの測定値が流量変換器11に取り込まれ、この取り込まれた測定値を加味した上で、熱式流量計の機能から渦流量計の機能へ、或いは渦流量計の機能から熱式流量計の機能への切り替えが行われるようになっている。例えば、流量が低くても測定用取付配管2内の圧力が上昇すると渦差圧が高くなることから、このことによって熱式流量計からの切り替え際の、或いは熱式流量計への切り替え際の判断基準となる下限流量を下げて、この下げた後の下限流量に基づいて切り替えが行われるようになっている。   Regarding the switching related to the function of the flow meter performed in the flow rate converter 11, the measured value from the pressure gauge 3 is taken into the flow rate converter 11, and taking into account the taken measured value, Switching from the function to the function of the vortex flowmeter or from the function of the vortex flowmeter to the function of the thermal flowmeter is performed. For example, even if the flow rate is low, the vortex differential pressure increases as the pressure in the measurement mounting pipe 2 rises. Therefore, when switching from a thermal flow meter or when switching to a thermal flow meter, this The lower limit flow rate serving as a determination criterion is lowered, and switching is performed based on the lower limit flow rate after the lowering.

以上、図1ないし図3を参照しながら説明してきたように、本発明によれば、従来よりも格段により良くなるマルチ渦流量計1を提供することができる。マルチ渦流量計1は、ゼロや微少流量から大流量まで精度よく、被測定流体の流量を計測することができる。   As described above with reference to FIGS. 1 to 3, according to the present invention, it is possible to provide a multi-vortex flow meter 1 that is much better than the conventional one. The multi-vortex flowmeter 1 can measure the flow rate of the fluid to be measured with high accuracy from zero or a minute flow rate to a large flow rate.

本発明のマルチ渦流量計1の効果に関し、更に幾つか列挙すると、圧力計3を流量変換器11に一体化するとともに、この圧力計3を感温センサ8及び加熱感温センサ9や渦検出器6と一緒に流量変換器11へ配線することから、マルチ渦流量計1に対して圧力計が別置となる場合と比べて、配管及び配線構造を簡素化することができる。また、図示の状態からも分かるように圧力計3の伝送線20を外部に露出させていないことから、外乱に強く誤検出の起こり難い流量計にすることができる。さらに、圧力計3を流量変換器11に一体化することにより、前記の圧力計別置の場合と比べて、セットアップを容易にすることや、測定管4の近傍で圧力を計測、言い換えれば最適な位置で圧力を計測することができる。   Regarding the effects of the multi-vortex flowmeter 1 of the present invention, a few more will be listed. The pressure gauge 3 is integrated with the flow rate converter 11, and the pressure gauge 3 is integrated with the temperature sensor 8, the heating temperature sensor 9, and the vortex detection. Since the wiring is connected to the flow rate converter 11 together with the vessel 6, the piping and wiring structure can be simplified as compared with the case where the pressure gauge is provided separately from the multi-vortex flow meter 1. Moreover, since the transmission line 20 of the pressure gauge 3 is not exposed to the outside as can be seen from the state shown in the drawing, it is possible to make a flowmeter that is strong against disturbance and hardly causes erroneous detection. Furthermore, by integrating the pressure gauge 3 into the flow rate converter 11, it is easier to set up and measure the pressure in the vicinity of the measuring tube 4, in other words, optimal compared to the case where the pressure gauge is separately provided. The pressure can be measured at various positions.

尚、圧力計別置の場合では、この別置の際の作業において、動圧に影響を来すような加工を施してしまう恐れがある。しかしながら、本発明では、予め圧力計3を測定用取付配管2に一体化していることから、動圧に影響を来すような加工を施すことはないものとなる。   In addition, in the case of a separate installation of the pressure gauge, there is a risk that processing that affects the dynamic pressure may be performed in the operation of the separate installation. However, in the present invention, since the pressure gauge 3 is integrated with the measurement mounting pipe 2 in advance, no processing that affects the dynamic pressure is performed.

その他、本発明は本発明の主旨を変えない範囲で種々変更実施可能なことは勿論である。   In addition, it goes without saying that the present invention can be variously modified without departing from the spirit of the present invention.

本発明の圧力計一体形マルチ渦流量計の一実施の形態を示す正面図である。It is a front view which shows one Embodiment of the pressure gauge integrated multi vortex flowmeter of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 流量変換器の断面図である。It is sectional drawing of a flow rate converter.

符号の説明Explanation of symbols

1 マルチ渦流量計(圧力計一体形マルチ渦流量計)
2 測定用取付配管
3 圧力計
4 測定管
5 渦発生体
6 渦検出器
7 渦式検出手段
8 感温センサ
9 加熱感温センサ
10 熱式検出手段
11 流量変換器
12 流管
13 流路
14 圧力計測部
15 受圧板
16 温度センサ保持部
17 連結筒部
18 変換器ケース
19 アンプボード
20、21 伝送線
22 スイッチボード
23 ディスプレイボード
24 変換器カバー
25 伝送ケーブル
1 Multi-vortex flow meter (Integrated multi-vortex flow meter with pressure gauge)
2 Measurement mounting pipe 3 Pressure gauge 4 Measurement pipe 5 Vortex generator 6 Vortex detector 7 Vortex detector 7 Temperature sensor 9 Heating temperature sensor 10 Thermal detector 11 Flow rate converter 12 Flow pipe 13 Flow path 14 Pressure Measuring unit 15 Pressure receiving plate 16 Temperature sensor holding unit 17 Connecting cylinder unit 18 Converter case 19 Amplifier board 20, 21 Transmission line 22 Switch board 23 Display board 24 Converter cover 25 Transmission cable

Claims (1)

流路に設けられており、管断面が角形状となる筒状に形成され、被測定流体が流れる方向に沿って伸びるように形成され、前記被測定流体を通過させる測定管と,
前記被測定流体の流れに対向するように前記測定管の被測定流体が流れる部分であって、前記測定管の被測定流体が流入する側の開口部分中央に位置するように設けられる渦発生体と,
前記測定管内の前記渦発生体の下流側に配置される受圧板と前記受圧板内部に埋設された圧力検出素子板とからなり前記渦発生体により生じるカルマン渦に基づく変動圧力を受圧板を介して圧力検出素子板により検出してカルマン渦に基づく変化を検出する渦検出器と,
を有する渦式検出手段を備えるとともに、
棒状の温度センサによって構成する感温センサと温度センサと加熱センサの機能を有する棒状の流速センサによって構成する加熱感温センサを前記流路の流れ方向に垂直に配置する熱式検出手段を備え,
更に変換器ケースを有し、該変換器ケースの内部にマイクロコンピュータの構成を有するアンプボードが設けられている流量変換器を備えるマルチ渦流量計において,
前記測定管の上流側で且つ前記測定管の近傍に圧力計測部を形成し、該圧力計測部には、圧力計を収納する部分と、流路を流れる被測定流体の一部を導く受圧口を設け、前記渦検出器、前記感温センサ及び加熱感温センサに対して上流側に離れた位置で前記流量変換器に対し、前記渦検出器及び前記熱式検出手段と共に配線される前記流路を流れる前記被測定流体の圧力を計測する圧力計を一体に設ける
ことを特徴とする圧力計一体形マルチ渦流量計。
A measuring tube that is provided in the flow path, is formed in a cylindrical shape having a square tube cross section, is formed so as to extend along a direction in which the fluid to be measured flows, and passes the fluid to be measured;
A vortex generator that is provided to be positioned at the center of the opening of the measurement tube through which the fluid to be measured flows, so as to face the flow of the fluid to be measured. When,
Fluctuating pressure based on Karman vortices generated by the vortex generator comprising a pressure receiving plate disposed on the downstream side of the vortex generator in the measurement tube and a pressure detection element plate embedded in the pressure receiving plate via the pressure receiving plate. A vortex detector for detecting changes based on Karman vortices detected by a pressure sensing element plate ;
A vortex detection means having
A temperature detection sensor configured by a rod-shaped temperature sensor, and a thermal detection means for arranging a heating temperature sensor configured by a rod-shaped flow velocity sensor having the functions of a temperature sensor and a heating sensor , perpendicular to the flow direction of the flow path ,
Further, in a multi-vortex flowmeter comprising a flow rate converter having a converter case and provided with an amplifier board having a microcomputer configuration inside the converter case ,
A pressure measuring unit is formed on the upstream side of the measuring tube and in the vicinity of the measuring tube, and the pressure measuring unit includes a portion for storing the pressure gauge and a pressure receiving port for guiding a part of the fluid to be measured flowing through the flow path. the provided, the vortex detector, the feeling against the flow transducer at a position spaced upstream of the temperature sensor and the heating temperature sensor, the flow to be routed together with the vortex detector and the thermal type detection means A pressure gauge integrated multi-vortex flowmeter, wherein a pressure gauge for measuring the pressure of the fluid to be measured flowing through the passage is integrally provided.
JP2006163342A 2006-06-13 2006-06-13 Multi-vortex flow meter with integrated pressure gauge Active JP4089831B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006163342A JP4089831B2 (en) 2006-06-13 2006-06-13 Multi-vortex flow meter with integrated pressure gauge
CN200780021889XA CN101467008B (en) 2006-06-13 2007-04-23 Multi-vortex flowmeter integrating pressure gauge
EP07742716A EP2028457B1 (en) 2006-06-13 2007-04-23 Multi-vortex flowmeter integrating pressure gauge
DE602007006481T DE602007006481D1 (en) 2006-06-13 2007-04-23 CONTRAPTION
US12/225,884 US8069734B2 (en) 2006-06-13 2007-04-23 Multi-vortex flowmeter integrating pressure gauge
PCT/JP2007/059281 WO2007145037A1 (en) 2006-06-13 2007-04-23 Multi-vortex flowmeter integrating pressure gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006163342A JP4089831B2 (en) 2006-06-13 2006-06-13 Multi-vortex flow meter with integrated pressure gauge

Publications (2)

Publication Number Publication Date
JP2007333460A JP2007333460A (en) 2007-12-27
JP4089831B2 true JP4089831B2 (en) 2008-05-28

Family

ID=38831557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006163342A Active JP4089831B2 (en) 2006-06-13 2006-06-13 Multi-vortex flow meter with integrated pressure gauge

Country Status (6)

Country Link
US (1) US8069734B2 (en)
EP (1) EP2028457B1 (en)
JP (1) JP4089831B2 (en)
CN (1) CN101467008B (en)
DE (1) DE602007006481D1 (en)
WO (1) WO2007145037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236924A (en) * 2009-03-30 2010-10-21 Yamatake Corp Vortex flow meter

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089831B2 (en) * 2006-06-13 2008-05-28 株式会社オーバル Multi-vortex flow meter with integrated pressure gauge
EP2172654B2 (en) * 2008-10-01 2013-11-20 Grundfos Management A/S Centrifugal pump assembly
JP5113148B2 (en) * 2009-12-28 2013-01-09 株式会社オーバル Multi vortex flowmeter
CN102538887A (en) * 2012-01-19 2012-07-04 上海华强浮罗仪表有限公司 Thermal mass flowmeter
JP5934622B2 (en) * 2012-09-25 2016-06-15 愛知時計電機株式会社 Temperature measuring instrument, flow meter and temperature measuring method
US9222812B2 (en) * 2012-10-30 2015-12-29 Itron, Inc. Hybrid sensor system for gas flow measurements
US9170135B2 (en) 2012-10-30 2015-10-27 Itron, Inc. Module for gas flow measurements with a dual sensing assembly
US8650946B1 (en) 2013-03-01 2014-02-18 Onicon Inc. Thermal flow sensor having an electromagnetic actuator for a cyclic flow modulator
US8746032B1 (en) 2013-03-01 2014-06-10 Onicon, Inc. Flow metering system
US10739171B2 (en) * 2015-02-10 2020-08-11 Schneider Electric Systems Usa, Inc. Vortex flowmeter
JP6557124B2 (en) * 2015-11-26 2019-08-07 株式会社豊田自動織機 Fuel cell system
CN105424104B (en) * 2015-12-25 2018-07-06 燕山大学 A kind of two-way self-correcting vortex street effect flow sensor
CN111615620B (en) * 2018-12-24 2022-04-26 微动公司 Double-sensor type vortex street flowmeter
DE102021120862B4 (en) 2020-08-13 2024-03-21 Wika Alexander Wiegand Se & Co. Kg flow meter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565098A (en) * 1984-09-10 1986-01-21 Fischer & Porter Company Hybrid sensing system for vortex flowmeter
JPH07225141A (en) * 1994-02-14 1995-08-22 Oval Corp Vortex flowmeter
JP2869054B1 (en) 1998-01-16 1999-03-10 株式会社オーバル Insertion type vortex flowmeter and method for determining its probe line length
JPH11281422A (en) * 1998-03-27 1999-10-15 Tokico Ltd Vortex flow meter
JP2000002567A (en) * 1998-06-16 2000-01-07 Ishikawajima Harima Heavy Ind Co Ltd Composite type mass flow meter
US6298734B1 (en) * 1999-03-17 2001-10-09 Vortek Instruments Llc Rocker style sensor system for use in a vortex shedding flowmeter
JP3644936B2 (en) 2002-06-05 2005-05-11 株式会社オーバル Fixed sensor
DK1730476T3 (en) * 2004-03-25 2021-06-21 Micro Motion Inc Simplified measurement of fluid properties
JP4158980B2 (en) * 2004-07-15 2008-10-01 株式会社オーバル Multi vortex flowmeter
EP2028456B1 (en) * 2006-06-13 2012-05-16 Oval Corporation Multi-vortex flowmeter employing mass flow rate or volume flow rate as switching point
JP4089831B2 (en) * 2006-06-13 2008-05-28 株式会社オーバル Multi-vortex flow meter with integrated pressure gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236924A (en) * 2009-03-30 2010-10-21 Yamatake Corp Vortex flow meter

Also Published As

Publication number Publication date
DE602007006481D1 (en) 2010-06-24
EP2028457B1 (en) 2010-05-12
JP2007333460A (en) 2007-12-27
US20090301219A1 (en) 2009-12-10
EP2028457A1 (en) 2009-02-25
EP2028457A4 (en) 2009-05-20
CN101467008A (en) 2009-06-24
US8069734B2 (en) 2011-12-06
WO2007145037A1 (en) 2007-12-21
CN101467008B (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP4089831B2 (en) Multi-vortex flow meter with integrated pressure gauge
JP4158980B2 (en) Multi vortex flowmeter
JP5097855B2 (en) Speed enhancement flow measurement
US7366621B2 (en) Program product to measure density, specific gravity, and flow rate of fluids
EP2028456B1 (en) Multi-vortex flowmeter employing mass flow rate or volume flow rate as switching point
US20120266689A1 (en) Apparatus configured to detect a physical quantity of a flowing fluid, and a respective method
RU2286544C2 (en) Measuring transformer of vortex-type flow
US20110107847A1 (en) Acoustic Sensor For Averaging Pitot Tube Installation
JP4042864B2 (en) Multi-vortex flowmeter using volumetric flow rate as switching point
JP4042863B2 (en) Multi-vortex flowmeter using mass flow rate as switching point
JP5113148B2 (en) Multi vortex flowmeter
JP2005502038A (en) Eddy current pickup
JP2001194193A (en) Flow meter
JP3398251B2 (en) Flowmeter
JP2006510003A (en) Eddy current sensor
JP3705689B2 (en) Flow meter and gas meter
JP3995098B2 (en) Thermal mass flow meter
JPH09113324A (en) Vortex flowmeter
JP2000258203A (en) Flow rate measuring apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080220

R150 Certificate of patent or registration of utility model

Ref document number: 4089831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250