JP4088945B2 - Fuel cell evaporator - Google Patents

Fuel cell evaporator Download PDF

Info

Publication number
JP4088945B2
JP4088945B2 JP18846698A JP18846698A JP4088945B2 JP 4088945 B2 JP4088945 B2 JP 4088945B2 JP 18846698 A JP18846698 A JP 18846698A JP 18846698 A JP18846698 A JP 18846698A JP 4088945 B2 JP4088945 B2 JP 4088945B2
Authority
JP
Japan
Prior art keywords
tube
evaporated
fuel cell
sintered metal
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18846698A
Other languages
Japanese (ja)
Other versions
JP2000016801A (en
Inventor
榮 千々岩
実 水澤
武憲 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP18846698A priority Critical patent/JP4088945B2/en
Publication of JP2000016801A publication Critical patent/JP2000016801A/en
Application granted granted Critical
Publication of JP4088945B2 publication Critical patent/JP4088945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、固体高分子型燃料電池の燃料改質系統に用いるメタノール及び水の蒸発器に関する。
【0002】
【従来の技術】
固体高分子型燃料電池(Polymer Electrolyte Fuel Cell:PEFC)は、図4の原理図に示すように、電解質にプロトン(H+ )導電性を有する高分子膜1を用い、この膜の両側に薄い多孔質Pt触媒電極2(アノードとカソード)を付けた構造を有する。それぞれの電極にH2 およびO2 を供給し、室温〜100℃前後で動作させると、H2 はH2 極(アノード)でH+ に酸化され、H+ は膜内を移動してO2 極(カソード)に到達する。一方e- は外部回路を通って電気的な仕事をしたのち、O2 極に到達する。O2 極ではO2 が到達したH+ およびe- と反応してH2 Oに還元される。
【0003】
PEFCの構造例を図5に示す。PEFCは、セパレータ5の間に膜/電解質接合体4を挟んで1つのセルが構成される。膜/電解質接合体4は、イオン交換膜1の両面に、Pt黒又はPt担持カーボンからなる多孔質電極2と、カーボンペーパあるいはカーボン布からなる支持集電体3を配置したものである。また、セパレータ5は、両面にガスを流す溝を有し、かつ内部に冷却水を流す溝を有する導電性の板である。なお図5の例では内部の冷却溝は2枚のセパレータを接合して構成されている。
【0004】
セパレータ5と膜/電解質接合体4を交互に複数積層することによりスタック(積層電池)が構成される。ガスや冷却水のシールは、ゴムシートやテフロンシートを間に挟んで行うことが多いが、イオン交換膜の弾性を利用して、膜自身でシールする場合もある。また、スタックの両端には金属の集電板(図示せず)を配置して外部電流取出し端子とし、さらに絶縁板を介して締付板を配置し、全体をボルト等で締め付けて一体化する。
上述した固体高分子型燃料電池(PEFC)は、100℃以下の低温作動であるために、放熱損失が少なく、システムがコンパクト化できるメリットがあり、電気自動車等への可搬型電源として各国で精力的に研究されている。
【0005】
図6は、メタノールを燃料とし、メタノール改質器とPEFCとを組み合わせた可搬電源の構成図である。この図において、メタノール改質器では、メタノールと水から、CH3 OH+H2 O→3H2 +CO2 の反応により、水素と二酸化炭素が生成される。この反応温度は約300℃前後であり、水とメタノールの蒸発及び改質反応に必要な熱は、燃料電池の未利用の水素を含む燃料排ガスおよび空気を燃焼させて供給される。かかる小型可搬電源は、例えば、電気自動車等の車両用電源として用いることができる。
【0006】
【発明が解決しようとする課題】
電気自動車等の車両用電源は、特に小型化と起動特性が要求される。すなわち、図6に示したPEFC電源において、蒸発器は改質反応よりも大量の熱量を必要とするため大型になりやすくPEFC電源自体の小型化を阻害する要因となっていた。また、車両用電源は短時間に起動/停止する必要があり、蒸発器の起動/停止時間の短縮化が要望されていた。
従来の蒸発器として、例えば、「メタノールリホーマーの蒸発器」(特公平2−42762号)が開示されている。この蒸発器は、蒸発管内にメタノール水溶液を流し、外部からバーナで加熱するものである。この他に、同様に伝熱管内に被蒸発液を流し、その外側から電気ヒータ、燃焼ガスで加熱するのもの、容器内の被蒸発液内に電気ヒータ、燃焼ガスで加熱する加熱管を入れ、この加熱管により加熱するもの、等が知られている。
【0007】
しかし、これら従来の蒸発器では、特に液体側の伝熱面積及び熱伝達率が小さく小型化が困難である問題点があった。また、従来の蒸発器では、熱容量が大きいため起動に時間がかかり、かつ停止後に余分な蒸気が大量に残存する問題点があった。更に、従来の蒸発器では、圧力制御及び流量制御が複雑である問題点があった。
【0008】
本発明は上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、液体側の伝熱面積及び熱伝達率が大きく小型化が可能であり、短時間で起動ができ、かつ停止後の残存蒸気量が少なく、更に圧力制御及び流量制御が容易な燃料電池用蒸発器を提供することにある。
【0009】
【課題を解決するための手段】
本発明によれば、内管(11)と外管(12)とからなる二重管(13)と、内管及び外管にしその間に挟持された円筒形の焼結金属管(14)とからなり、内管及び/又は外管を加熱し、焼結金属管に被蒸発液を浸透させて蒸発させ、前記焼結金属管(14)の外面に螺旋状に被蒸発液を供給するように、外管(12)の内面に螺旋溝(12a)が設けられ、かつ内管(11)の外面に軸方向の延びる蒸気用の流路(11a)が設けられている、ことを特徴とする燃料電池用蒸発器が提供される。
【0010】
上記本発明の構成により、外管(12)の内面の螺旋溝(12a)から焼結金属管(14)の外面に螺旋状に被蒸発液を供給し、焼結金属管に被蒸発液を浸透させ、これを加熱された内管及び/又は外管からの伝熱により焼結金属管内で蒸発させ、内管(11)の外面に設けられた蒸気用の流路(11a)を介して、燃料電池用の改質器等に供給することができる。
焼結金属管は、中実の金属材料に近い熱伝導率を有し、かつ比表面積が大きくことから、見掛けの容積が小さいにもかかわらず実質的な伝熱面積が大きい。また、被蒸発液(メタノール又は水、或いはその混合液)を表面張力で内部に浸透させて保有することができ、かつ内部で蒸発させて排出することができるので、高い熱伝達率を有する。従って、液体側の伝熱面積及び熱伝達率が大きく小型化が可能となる。
更に、内管及び/又は外管を加熱して焼結金属管を加熱することができるので、起動時には熱媒体を用いて内面から加熱し、定常時には燃焼ガスを用いて外面から加熱することができ、或いは一方又は両方を併用することができる。
また、焼結金属管を予熱した状態で保持し、被蒸発液を必要量だけ供給することにより、短時間で起動ができ、かつ停止後の残存蒸気量を少なくできる。
【0011】
また、前記外管(12)はその外周部に複数の伝熱フィン(12b)を有し、更に、前記二重管(13)を囲む中空円筒形のシェル(16)と、シェル内を複数の空間に仕切りかつそれぞれ貫通穴(17a)を有するバッフル(17)とを備え、シェル内に高温ガスが供給される。更に、前記内管(11)の内側に加熱した熱媒体が供給される。
この構成により、バッフル(17)の貫通穴(17a)を通して、高温ガス(例えば燃焼ガス)を順次外管(12)のまわりの伝熱フィン(12b)に接触させることができ、外管(12)を介して焼結金属管を効率的に加熱することができる。また、内管(11)に加熱した熱媒体を供給することにより、内管を介しても焼結金属管を加熱することができ、起動時や定常時にその一方を使用して、或いは両方を併用することができる。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において、共通する部分には同一の符号を付して使用する。
図1は、本発明による燃料電池用蒸発器の全体構成図である。この図に示すように、本発明の燃料電池用蒸発器10は、二重管13を囲む中空円筒形のシェル16と、シェル16内を複数の空間に仕切りかつそれぞれ貫通穴17aを有するバッフル17とを備える。二重管13を構成する外管12の外周部には複数の伝熱フィン12bが取り付けられている。シェル16の両端部は平板又は鏡板で閉じられており、この平板又は鏡板を二重管13が貫通している。また、バッフル17はシェル16の軸線に垂直な仕切り板であり、シェル16内をほぼ均等な複数(この図で5つ)の空間に仕切っている。バッフル17の貫通穴17aは、仕切られた各空間の幅方向端部に交互に設けられている。また、シェル16の両端部に位置する空間に高温ガス7を供給し排出する供給/排出口16a,16bがそれぞれ設けられている。なお、この図で9aは、被蒸発液(メタノール又は水、或いはその混合液)であり、メタノール又は水を単独に蒸発させてもよく、或いは水・メタノールの混合液を蒸発させてもよい。また、9bは被蒸発液が蒸発した蒸気である。
【0013】
この構成により、シェル16内に高温ガス7を供給することにより、図に破線の矢印で示すように、バッフル17の貫通穴17aを通して、高温ガス7(例えば燃焼ガス)を順次外管12のまわりの伝熱フィン12bに接触させることができ、外管12を介してその内部(後述する焼結金属管)を効率的に加熱することができる。
更に、図1に示すように、この実施形態では、二重管13を構成する内管11の内側に加熱した熱媒体8を供給するようになっている。この構成により、内管11を介しても二重管13の内部(後述する焼結金属管)を加熱することができ、起動時や定常時にその一方を使用して、或いは両方を併用することができる。
【0014】
図2は、図1のA部の拡大断面図であり、図3は、図2のB−B線における断面図である。図1及び図2に示すように、本発明の燃料電池用蒸発器10は、内管11と外管12とからなる二重管13と、内管11及び外管12に密着してその間に挟持された円筒形の焼結金属管14とからなる。内管11と外管12とは、図2に示すように、その端部で溶接等により気密に接合されている。また、前述のように、外管12の外周部には複数の伝熱フィン12bが十分小さいピッチで取り付けられている。
【0015】
焼結金属管14は、金属粒子を充填して所望の形状(この場合、円筒形)に成形し、更に高温で焼結して粒子間を部分的にシンタリングさせたものである。本発明に用いる焼結金属管14は、熱伝導率の高い金属粒子を用い、かつその粒子間の隙間に被蒸発液を表面張力で浸透させることができ、かつ表面張力で内部に保持することができるように平均の隙間が設定されている。
【0016】
図1及び図2に示すように、本発明の燃料電池用蒸発器10では、更に、焼結金属管14の外面に螺旋状に被蒸発液9aを供給するように、外管12の内面に螺旋溝12aが設けられている。この螺旋溝12aには外管12の端部に取り付けられた液供給管12cから、被蒸発液9aが供給される。
更に、内管11の外面に軸方向の延びる蒸気用の流路11aが設けられている。この構成により、内管11及び/又は外管12を加熱し、焼結金属管14に被蒸発液9aを浸透させて蒸発させることができる。
【0017】
上述した本発明の構成により、外管12の内面の螺旋溝12aから焼結金属管14の外面に螺旋状に被蒸発液9aを供給し、焼結金属管14に被蒸発液9aを表面張力(毛細管現象)により浸透させ、これを加熱された内管11及び/又は外管12からの伝熱により焼結金属管14内で蒸発させ、内管11の外面に設けられた蒸気用の流路11aを介して、蒸気9bを燃料電池用の改質器等に供給することができる。
焼結金属管14は、中実の金属材料に近い熱伝導率を有し、かつ比表面積が大きくことから、見掛けの容積が小さいにもかかわらず実質的な伝熱面積が大きい。また、被蒸発液9a(メタノール又は水、或いはその混合液)を表面張力で内部に浸透させて保有することができ、かつ内部で蒸発させて排出することができるので、高い熱伝達率を有する。従って、液体側の伝熱面積及び熱伝達率が大きく小型化が可能となる。
【0018】
更に、内管11及び/又は外管12を加熱して焼結金属管14を加熱することができるので、起動時には熱媒体8を用いて内面から加熱し、定常時には燃焼ガス7を用いて外面から加熱することができ、或いは一方又は両方を併用することができる。
また、焼結金属管14を予熱した状態で保持し、被蒸発液9aを必要量だけ供給することにより、短時間で起動ができ、かつ停止後の残存蒸気量を少なくできる。更に、供給した被蒸発液9aの全量がそのまま蒸発するので、圧力制御及び流量制御を容易に行うことができる。
【0019】
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0020】
【発明の効果】
上述したように、本発明の燃料電池用蒸発器は、液体側の伝熱面積及び熱伝達率が大きく小型化が可能であり、短時間で起動ができ、かつ停止後の残存蒸気量が少なく、更に圧力制御及び流量制御が容易である、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明による燃料電池用蒸発器の全体構成図である。
【図2】図1のA部の拡大断面図である。
【図3】図2のB−B線における断面図である。
【図4】固体高分子型燃料電池の原理図である。
【図5】固体高分子型燃料電池の構造図である。
【図6】従来のメタノール改質器とPEFCとを組み合わせた可搬電源の構成図である。
【符号の説明】
1 イオン交換膜(高分子膜)
2 電極
3 支持集電体
4 膜/電解質接合体
5 セパレータ
7 高温ガス
8 熱媒体
9a 被蒸発液(メタノール又は水、或いはその混合液)
9b 蒸気
11 内管
11a 蒸気流路
12 外管
12a 螺旋溝
12b 伝熱フィン
12c 液供給管
13 二重管
14 焼結金属管
16 シェル
17 バッフル
17a 貫通穴
[0001]
[Industrial application fields]
The present invention relates to an evaporator of methanol and water used for a fuel reforming system of a polymer electrolyte fuel cell.
[0002]
[Prior art]
A polymer electrolyte fuel cell (PEFC) uses a polymer membrane 1 having proton (H + ) conductivity as an electrolyte and is thin on both sides of the membrane as shown in the principle diagram of FIG. It has a structure with a porous Pt catalyst electrode 2 (anode and cathode). Supplying H 2 and O 2 to the respective electrodes, operating at around room temperature to 100 ° C., H 2 is oxidized to H + with H 2-pole (anode), H + is moved to the film O 2 Reach the pole (cathode). On the other hand, e reaches the O 2 pole after performing electrical work through an external circuit. At the O 2 electrode, O 2 reacts with the reached H + and e and is reduced to H 2 O.
[0003]
A structural example of PEFC is shown in FIG. In PEFC, one cell is configured with a membrane / electrolyte assembly 4 sandwiched between separators 5. The membrane / electrolyte assembly 4 is obtained by disposing a porous electrode 2 made of Pt black or Pt-supported carbon and a support current collector 3 made of carbon paper or carbon cloth on both surfaces of the ion exchange membrane 1. The separator 5 is a conductive plate having a groove for flowing gas on both sides and a groove for flowing cooling water inside. In the example of FIG. 5, the internal cooling groove is formed by joining two separators.
[0004]
A stack (laminated battery) is formed by alternately laminating a plurality of separators 5 and membrane / electrolyte assemblies 4. Gas or cooling water is often sealed with a rubber sheet or a Teflon sheet sandwiched between them, but sometimes the film itself is sealed by utilizing the elasticity of the ion exchange membrane. In addition, metal current collector plates (not shown) are arranged at both ends of the stack to serve as external current extraction terminals, and further, a clamping plate is arranged through an insulating plate, and the whole is integrated by tightening with bolts or the like. .
Since the polymer electrolyte fuel cell (PEFC) described above operates at a low temperature of 100 ° C. or less, it has the advantage of reducing heat dissipation and making the system compact, and it is vigorous in various countries as a portable power source for electric vehicles. Has been studied.
[0005]
FIG. 6 is a configuration diagram of a portable power source using methanol as a fuel and combining a methanol reformer and a PEFC. In this figure, in a methanol reformer, hydrogen and carbon dioxide are produced from methanol and water by a reaction of CH 3 OH + H 2 O → 3H 2 + CO 2 . The reaction temperature is about 300 ° C., and the heat required for the evaporation and reforming reaction of water and methanol is supplied by burning fuel exhaust gas containing unused hydrogen of the fuel cell and air. Such a small portable power source can be used as a power source for a vehicle such as an electric vehicle.
[0006]
[Problems to be solved by the invention]
A power source for a vehicle such as an electric vehicle is particularly required to have a small size and start-up characteristics. That is, in the PEFC power source shown in FIG. 6, the evaporator requires a larger amount of heat than the reforming reaction, so that the evaporator tends to be large and hinders the miniaturization of the PEFC power source itself. In addition, it is necessary to start / stop the vehicle power supply in a short time, and there has been a demand for shortening the start / stop time of the evaporator.
As a conventional evaporator, for example, “Methanol reformer evaporator” (Japanese Patent Publication No. 2-42762) is disclosed. In this evaporator, a methanol aqueous solution is flowed into an evaporation tube and heated by a burner from the outside. In addition, similarly, the liquid to be evaporated is caused to flow in the heat transfer tube, and an electric heater and one heated by the combustion gas from the outside thereof, and an electric heater and a heating tube heated by the combustion gas are placed in the liquid to be evaporated in the container. What is heated by this heating tube is known.
[0007]
However, these conventional evaporators have a problem that the heat transfer area and the heat transfer coefficient on the liquid side are particularly small and it is difficult to reduce the size. Further, the conventional evaporator has a problem that it takes a long time to start up due to its large heat capacity, and a large amount of excess steam remains after it stops. Furthermore, the conventional evaporator has a problem that pressure control and flow rate control are complicated.
[0008]
The present invention has been developed to solve the above-described problems. That is, the object of the present invention is that the heat transfer area and heat transfer coefficient on the liquid side are large and can be reduced in size, can be started up in a short time, and the amount of residual steam after stopping is small, and pressure control and flow control It is an object of the present invention to provide a fuel cell evaporator that is easy to achieve.
[0009]
[Means for Solving the Problems]
According to the present invention, the inner tube (11) and outer tube (12) and the double tube consisting of a (13), the inner tube and to contact the outer tube sintered metal tube clamped a cylindrical therebetween (14 The inner tube and / or the outer tube are heated, the liquid to be evaporated is permeated into the sintered metal tube and evaporated, and the liquid to be evaporated is supplied spirally to the outer surface of the sintered metal tube (14). As described above, a spiral groove (12a) is provided on the inner surface of the outer tube (12), and a steam flow path (11a) extending in the axial direction is provided on the outer surface of the inner tube (11). A fuel cell evaporator is provided.
[0010]
According to the configuration of the present invention, the liquid to be evaporated is spirally supplied from the spiral groove (12a) on the inner surface of the outer pipe (12) to the outer surface of the sintered metal pipe (14), and the liquid to be evaporated is supplied to the sintered metal pipe. This is permeated and evaporated in the sintered metal tube by heat transfer from the heated inner tube and / or outer tube, and through a steam channel (11a) provided on the outer surface of the inner tube (11). , And can be supplied to a reformer for a fuel cell.
The sintered metal tube has a thermal conductivity close to that of a solid metal material and has a large specific surface area. Therefore, the sintered metal tube has a large substantial heat transfer area even though the apparent volume is small. In addition, the liquid to be evaporated (methanol or water, or a mixture thereof) can be held inside by surface tension and can be evaporated and discharged inside, so that it has a high heat transfer coefficient. Therefore, the heat transfer area and the heat transfer coefficient on the liquid side are large and downsizing is possible.
Further, since the sintered metal tube can be heated by heating the inner tube and / or the outer tube, it is possible to heat from the inner surface using a heat medium at the start-up, and from the outer surface using a combustion gas in a steady state. Or one or both can be used together.
Further, by holding the sintered metal tube in a preheated state and supplying the required amount of liquid to be evaporated, it is possible to start up in a short time and to reduce the amount of remaining steam after stopping.
[0011]
The outer pipe (12) has a plurality of heat transfer fins (12b) on the outer periphery thereof, and further includes a hollow cylindrical shell (16) surrounding the double pipe (13), and a plurality of insides of the shell. And baffles (17) each having a through hole (17a), and hot gas is supplied into the shell. Further, a heated heat medium is supplied to the inside of the inner pipe (11).
With this configuration, high-temperature gas (for example, combustion gas) can be sequentially brought into contact with the heat transfer fins (12b) around the outer pipe (12) through the through hole (17a) of the baffle (17). ) Through which the sintered metal tube can be efficiently heated. In addition, by supplying a heated heat medium to the inner tube (11), the sintered metal tube can be heated through the inner tube, and one of them can be used at the time of start-up or steady operation, or both. Can be used together.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each drawing, common parts are denoted by the same reference numerals.
FIG. 1 is an overall configuration diagram of a fuel cell evaporator according to the present invention. As shown in this figure, a fuel cell evaporator 10 according to the present invention includes a hollow cylindrical shell 16 surrounding a double pipe 13, and a baffle 17 that partitions the inside of the shell 16 into a plurality of spaces and has through holes 17a. With. A plurality of heat transfer fins 12 b are attached to the outer peripheral portion of the outer tube 12 constituting the double tube 13. Both ends of the shell 16 are closed by a flat plate or a mirror plate, and the double tube 13 passes through the flat plate or the mirror plate. The baffle 17 is a partition plate perpendicular to the axis of the shell 16 and partitions the inside of the shell 16 into a plurality of substantially equal spaces (five in this figure). The through holes 17a of the baffle 17 are alternately provided at the end portions in the width direction of the partitioned spaces. In addition, supply / discharge ports 16 a and 16 b for supplying and discharging the high temperature gas 7 are provided in spaces positioned at both ends of the shell 16, respectively. In this figure, reference numeral 9a denotes a liquid to be evaporated (methanol or water, or a mixture thereof), and methanol or water may be evaporated alone, or a mixture of water and methanol may be evaporated. Moreover, 9b is the vapor | steam which the to-be-evaporated liquid evaporated.
[0013]
With this configuration, by supplying the high temperature gas 7 into the shell 16, the high temperature gas 7 (for example, combustion gas) is sequentially passed around the outer tube 12 through the through hole 17a of the baffle 17 as shown by the broken arrow in the figure. The heat transfer fins 12b can be brought into contact with each other, and the inside (sintered metal tube described later) can be efficiently heated through the outer tube 12.
Further, as shown in FIG. 1, in this embodiment, the heated heat medium 8 is supplied to the inside of the inner tube 11 constituting the double tube 13. With this configuration, the inside of the double pipe 13 (sintered metal pipe to be described later) can be heated through the inner pipe 11, and one of them can be used at the start-up and steady state, or both can be used together. Can do.
[0014]
2 is an enlarged cross-sectional view of a portion A in FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB in FIG. As shown in FIGS. 1 and 2, the fuel cell evaporator 10 of the present invention is in close contact with a double pipe 13 composed of an inner pipe 11 and an outer pipe 12, and the inner pipe 11 and the outer pipe 12. The cylindrical sintered metal tube 14 is sandwiched. As shown in FIG. 2, the inner tube 11 and the outer tube 12 are airtightly joined by welding or the like at their ends. As described above, a plurality of heat transfer fins 12b are attached to the outer peripheral portion of the outer tube 12 at a sufficiently small pitch.
[0015]
The sintered metal tube 14 is filled with metal particles, formed into a desired shape (in this case, a cylindrical shape), further sintered at a high temperature, and partially sintered between the particles. The sintered metal tube 14 used in the present invention uses metal particles having high thermal conductivity, allows the liquid to be evaporated to penetrate into the gaps between the particles with surface tension, and holds the particles with the surface tension inside. The average gap is set so that
[0016]
As shown in FIGS. 1 and 2, in the fuel cell evaporator 10 of the present invention, the evaporated liquid 9 a is further spirally supplied to the outer surface of the sintered metal tube 14. A spiral groove 12a is provided. The liquid to be evaporated 9a is supplied to the spiral groove 12a from a liquid supply pipe 12c attached to the end of the outer pipe 12.
Further, a steam flow passage 11 a extending in the axial direction is provided on the outer surface of the inner tube 11. With this configuration, the inner tube 11 and / or the outer tube 12 can be heated, and the liquid 9a to be evaporated can penetrate into the sintered metal tube 14 to be evaporated.
[0017]
According to the configuration of the present invention described above, the evaporating liquid 9a is supplied spirally from the spiral groove 12a on the inner surface of the outer tube 12 to the outer surface of the sintered metal tube 14, and the surface tension of the evaporating liquid 9a is applied to the sintered metal tube 14. (Capillary phenomenon) is permeated and vaporized in the sintered metal tube 14 by heat transfer from the heated inner tube 11 and / or outer tube 12, and a steam flow provided on the outer surface of the inner tube 11 The steam 9b can be supplied to a reformer for a fuel cell or the like via the path 11a.
The sintered metal tube 14 has a thermal conductivity close to that of a solid metal material and has a large specific surface area. Therefore, the sintered metal tube 14 has a large substantial heat transfer area even though the apparent volume is small. Further, since the liquid to be evaporated 9a (methanol or water, or a mixture thereof) can be held inside by surface tension and can be evaporated and discharged inside, it has a high heat transfer coefficient. . Therefore, the heat transfer area and the heat transfer coefficient on the liquid side are large and downsizing is possible.
[0018]
Further, since the inner tube 11 and / or the outer tube 12 can be heated to heat the sintered metal tube 14, the heating medium 8 is used for heating from the inner surface during startup, and the outer surface is used using the combustion gas 7 during steady operation. Can be heated, or one or both can be used together.
In addition, by holding the sintered metal tube 14 in a preheated state and supplying the required amount of the liquid 9a to be evaporated, it is possible to start up in a short time and to reduce the amount of remaining steam after stopping. Further, since the entire amount of the supplied liquid 9a is evaporated as it is, pressure control and flow rate control can be easily performed.
[0019]
In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
[0020]
【The invention's effect】
As described above, the fuel cell evaporator of the present invention has a large heat transfer area and heat transfer coefficient on the liquid side, can be downsized, can be started up in a short time, and has a small amount of remaining steam after being stopped. Further, it has excellent effects such as easy pressure control and flow rate control.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a fuel cell evaporator according to the present invention.
FIG. 2 is an enlarged cross-sectional view of a portion A in FIG.
3 is a cross-sectional view taken along line BB in FIG.
FIG. 4 is a principle diagram of a polymer electrolyte fuel cell.
FIG. 5 is a structural diagram of a polymer electrolyte fuel cell.
FIG. 6 is a configuration diagram of a portable power source combining a conventional methanol reformer and PEFC.
[Explanation of symbols]
1 Ion exchange membrane (polymer membrane)
2 Electrode 3 Support current collector 4 Membrane / electrolyte assembly 5 Separator 7 Hot gas 8 Heat medium 9a Evaporated liquid (methanol or water, or a mixture thereof)
9b Steam 11 Inner pipe 11a Steam flow path 12 Outer pipe 12a Spiral groove 12b Heat transfer fin 12c Liquid supply pipe 13 Double pipe 14 Sintered metal pipe 16 Shell 17 Baffle 17a Through hole

Claims (3)

内管(11)と外管(12)とからなる二重管(13)と、内管及び外管にしその間に挟持された円筒形の焼結金属管(14)とからなり、内管及び/又は外管を加熱し、焼結金属管に被蒸発液を浸透させて蒸発させ
前記焼結金属管(14)の外面に螺旋状に被蒸発液を供給するように、外管(12)の内面に螺旋溝(12a)が設けられ、かつ内管(11)の外面に軸方向の延びる蒸気用の流路(11a)が設けられている、ことを特徴とする燃料電池用蒸発器。
It from the inner tube (11) outer tube (12) from become double pipe (13), contact and sintered metal tube a cylindrical sandwiched therebetween on the inner tube and the outer tube (14), the inner The tube and / or the outer tube is heated, the liquid to be evaporated is permeated into the sintered metal tube and evaporated ;
A spiral groove (12a) is provided on the inner surface of the outer tube (12) so as to supply the liquid to be evaporated spirally to the outer surface of the sintered metal tube (14), and a shaft is formed on the outer surface of the inner tube (11). An evaporator for a fuel cell, characterized in that a steam flow path (11a) extending in a direction is provided .
前記外管(12)はその外周部に複数の伝熱フィン(12b)を有し、更に、前記二重管(13)を囲む中空円筒形のシェル(16)と、シェル内を複数の空間に仕切りかつそれぞれ貫通穴(17a)を有するバッフル(17)とを備え、シェル内に高温ガスが供給される、ことを特徴とする請求項1に記載の燃料電池用蒸発器。  The outer pipe (12) has a plurality of heat transfer fins (12b) on the outer periphery thereof, and further includes a hollow cylindrical shell (16) surrounding the double pipe (13), and a plurality of spaces in the shell. 2. The fuel cell evaporator according to claim 1, further comprising a baffle (17) having a partition and a through hole (17 a), wherein a high-temperature gas is supplied into the shell. 前記内管(11)の内側に加熱した熱媒体が供給されることを特徴とする、請求項1に記載の燃料電池用蒸発器。  2. The fuel cell evaporator according to claim 1, wherein a heated heat medium is supplied to the inside of the inner pipe (11). 3.
JP18846698A 1998-07-03 1998-07-03 Fuel cell evaporator Expired - Fee Related JP4088945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18846698A JP4088945B2 (en) 1998-07-03 1998-07-03 Fuel cell evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18846698A JP4088945B2 (en) 1998-07-03 1998-07-03 Fuel cell evaporator

Publications (2)

Publication Number Publication Date
JP2000016801A JP2000016801A (en) 2000-01-18
JP4088945B2 true JP4088945B2 (en) 2008-05-21

Family

ID=16224221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18846698A Expired - Fee Related JP4088945B2 (en) 1998-07-03 1998-07-03 Fuel cell evaporator

Country Status (1)

Country Link
JP (1) JP4088945B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4437766B2 (en) 2005-05-23 2010-03-24 本田技研工業株式会社 Evaporator for fuel cell and vapor generation method
JP2007046825A (en) * 2005-08-09 2007-02-22 Chino Corp Humidifier and humidifying method
JP4715765B2 (en) * 2007-02-09 2011-07-06 株式会社日立プラントテクノロジー Liquid concentrating system and liquid concentrator used therefor
JP4867722B2 (en) * 2007-03-07 2012-02-01 株式会社日立プラントテクノロジー Liquid concentrator
JP4730348B2 (en) * 2007-07-17 2011-07-20 三菱マテリアル株式会社 Liquid permeation plate and heating vaporizer
JP6011499B2 (en) * 2013-09-13 2016-10-19 株式会社デンソー Adsorber
JP6383554B2 (en) * 2014-03-28 2018-08-29 フタバ産業株式会社 Fuel reformer

Also Published As

Publication number Publication date
JP2000016801A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
EP1030396B1 (en) Solid polymer type fuel cell system
JPH08273687A (en) Supply gas humidifier of fuel cell
JPH06338338A (en) Humidification of high polymer ion exchange film of fuel cell
JP2001332281A (en) Solid polyelectrolyte fuel cell power generation system and its operation method
JP5208418B2 (en) Bipolar separator for fuel cell stack
JP4088945B2 (en) Fuel cell evaporator
JP2004146344A (en) Fuel cell
JP2004342584A (en) Battery having miniaturized sofc fuel cell
KR100853976B1 (en) Fuel cell system
JP3493896B2 (en) Fuel cell and fuel cell system
US6740438B1 (en) Cooling system for fuel cells
JPH1012262A (en) Solid high polymer electrolyte fuel cell
JPH06231788A (en) Solid high polymer type fuel cell
JP5307376B2 (en) Fuel reforming fuel cell
JP2007005134A (en) Steam generator and fuel cell
JP5005701B2 (en) Fuel cell system
JP4544055B2 (en) Fuel cell
JP2004362800A (en) Fuel cell
JPH0935737A (en) Solid polymer electrolyte fuel cell
JPH0992308A (en) Solid polymer electrolyte fuel cell
JP3575650B2 (en) Molten carbonate fuel cell
JP2003257450A (en) Fuel cell
KR100730400B1 (en) Humidifier for fuel cell
JPH11111311A (en) Solid polymer type fuel cell
JP3981476B2 (en) Fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees