JP4088926B2 - Discharge lamp lighting device - Google Patents

Discharge lamp lighting device Download PDF

Info

Publication number
JP4088926B2
JP4088926B2 JP2003352039A JP2003352039A JP4088926B2 JP 4088926 B2 JP4088926 B2 JP 4088926B2 JP 2003352039 A JP2003352039 A JP 2003352039A JP 2003352039 A JP2003352039 A JP 2003352039A JP 4088926 B2 JP4088926 B2 JP 4088926B2
Authority
JP
Japan
Prior art keywords
peak
discharge lamp
circuit
voltage
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003352039A
Other languages
Japanese (ja)
Other versions
JP2005116454A (en
Inventor
修 高橋
康則 家城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003352039A priority Critical patent/JP4088926B2/en
Priority to TW092130746A priority patent/TWI241867B/en
Priority to CNB2004100749825A priority patent/CN100527914C/en
Publication of JP2005116454A publication Critical patent/JP2005116454A/en
Application granted granted Critical
Publication of JP4088926B2 publication Critical patent/JP4088926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Description

この発明は、自励式インバータ回路からの高周波電力によって放電灯を点灯させる放電灯の点灯装置に係り、特に、フィラメントの予熱タイマー回路及び放電灯の寿命末期による異常から回路を保護する保護回路を備えた放電灯点灯装置に関するものである。   The present invention relates to a discharge lamp lighting device for lighting a discharge lamp with high-frequency power from a self-excited inverter circuit, and in particular, includes a preheating timer circuit for a filament and a protection circuit for protecting the circuit from abnormalities due to the end of the life of the discharge lamp. The present invention relates to a discharge lamp lighting device.

放電灯のフィラメントの予熱タイマー回路に関する従来技術においては、放電ランプの始動に際して、インバータ回路のトランジスタの発振周波数を通常の点灯時より高くし出力電圧を低くする。発振周波数を高くする際には、トランジスタをオンして、出力制御手段の制御巻線の負荷を小さくする。始動の際には、放電ランプの電圧を、ランプ電圧検出手段で検出し、時定数回路で積分する。コンデンサに蓄積される電荷がツェナーダイオードで設定する電圧より上昇すると、ツェナーダイオードがオンする。通常時の電圧となるように、トランジスタをオフして、制御巻線の負荷を大きくして、出力制御手段でインバータ回路のトランジスタの発振周波数を低くし、出力電圧を増加するようにしている。
(例えば特許文献1)
In the prior art relating to the preheating timer circuit for the filament of the discharge lamp, when starting the discharge lamp, the oscillation frequency of the transistor of the inverter circuit is made higher than during normal lighting and the output voltage is made lower. When increasing the oscillation frequency, the transistor is turned on to reduce the load of the control winding of the output control means. When starting, the voltage of the discharge lamp is detected by the lamp voltage detecting means and integrated by the time constant circuit. When the charge accumulated in the capacitor rises above the voltage set by the Zener diode, the Zener diode is turned on. The transistor is turned off and the load of the control winding is increased so that the normal voltage is obtained, and the output control means lowers the oscillation frequency of the transistor of the inverter circuit and increases the output voltage.
(For example, Patent Document 1)

また、放電灯の寿命末期の異常に対して回路を保護する保護回路に関する従来技術においては、交流電源を整流平滑する整流平滑回路と、整流平滑回路の出力端間に接続された2つのスイッチング素子の直列回路及び、スイッチング素子の両端に接続された電流トランス等からなる負荷回路を含んでなる自励式インバータ回路と、電流トランスの2次巻線に発生する電流により充電される平滑コンデンサと、平滑コンデンサの両端電圧を監視するツェナーダイオードとを有する寿命末期検出回路と、異常状態が検出されるとインバータ回路の出力抑制状態を保持する寿命末期保持回路とからなるようにしている。(例えば特許文献2)   Further, in the related art relating to a protection circuit for protecting a circuit against an abnormality at the end of the life of a discharge lamp, a rectifying / smoothing circuit for rectifying and smoothing an AC power source and two switching elements connected between output terminals of the rectifying / smoothing circuit A self-excited inverter circuit including a load circuit including a current transformer connected to both ends of the switching element, a smoothing capacitor charged by a current generated in the secondary winding of the current transformer, and a smoothing circuit An end-of-life detection circuit having a Zener diode that monitors the voltage across the capacitor, and an end-of-life holding circuit that holds the output suppression state of the inverter circuit when an abnormal state is detected. (For example, Patent Document 2)

特開平5−82270号公報(段落0030−0036、図1)JP-A-5-82270 (paragraphs 0030-0036, FIG. 1) 特開2001−93690号公報(段落0026−0033、図1〜3)JP 2001-93690 A (paragraphs 0026-0033, FIGS. 1 to 3)

特許文献1の図1の発明の実施の形態を示す回路図によれば、予熱時と点灯時のインバータ回路(特許文献1では放電ランプ点灯手段)の発振周波数の制御は出力制御手段のトランジスタをオンまたはオフして制御巻線の負荷を小さく、または、大きくすることで行われる。しかしながら、負荷回路に複数の放電灯を装着可能なようにする場合には、電流トランスには複数の放電灯の合成電流が流れることになり、電流トランスと電磁気的に結合されている電圧も複数の放電灯の合成電流の影響を受けることになる。特に、負荷回路に複数の放電灯を装着可能なようにする場合で、かつ、全数の放電灯を装着しなくても点灯できるようにする、いわゆる間引き点灯が可能な点灯装置の場合は、1灯装着の場合と複数灯装着の場合で出力制御手段の回路定数が同一では対応出来ない問題があった。   According to the circuit diagram showing the embodiment of the invention of FIG. 1 of Patent Document 1, the oscillation frequency of the inverter circuit (discharge lamp lighting means in Patent Document 1) during preheating and lighting is controlled by the transistor of the output control means. This is done by turning the control winding on or off to reduce or increase the load on the control winding. However, when a plurality of discharge lamps can be mounted on the load circuit, a combined current of the plurality of discharge lamps flows through the current transformer, and a plurality of voltages electromagnetically coupled to the current transformer are also present. Will be affected by the combined current of the discharge lamp. In particular, in the case of a lighting device capable of so-called thinning-out lighting that allows a plurality of discharge lamps to be mounted on the load circuit and can be lit without mounting all the discharge lamps, 1 There was a problem that the circuit constant of the output control means was not the same when the lamp was mounted and when multiple lamps were mounted.

特許文献2の図1、図2の発明の実施の形態を示す回路図によれば、放電灯の正常と寿命末期の電流を識別検出するための信号を負荷回路に接続した電流トランスの2次巻線に発生する電流により充電される平滑コンデンサの電圧としている。しかしながら、負荷回路に複数の放電灯を装着可能なようにする場合には、コンデンサC5の電圧は複数の放電灯の合成電流から得られる検出信号となるため確実な寿命末期検出が困難な問題があった。特に、負荷回路に複数の放電灯を装着可能なようにする場合で、かつ、全数の放電灯を装着しなくても点灯できるようにする、いわゆる間引き点灯が可能な点灯装置の場合は、正常な負荷電流値が一定ではないので特許文献2の方式では対応できない問題があった。   According to the circuit diagrams showing the embodiments of the invention of FIG. 1 and FIG. 2 of Patent Document 2, a secondary of a current transformer in which a signal for identifying and detecting normal and end-of-life currents of a discharge lamp is connected to a load circuit. The voltage of the smoothing capacitor is charged by the current generated in the winding. However, when a plurality of discharge lamps can be mounted on the load circuit, the voltage of the capacitor C5 becomes a detection signal obtained from the combined current of the plurality of discharge lamps, so that it is difficult to reliably detect the end of life. there were. In particular, when it is possible to mount a plurality of discharge lamps in the load circuit, and in the case of a lighting device capable of so-called thinning-out lighting that enables lighting without mounting all the discharge lamps, it is normal. Since the load current value is not constant, there is a problem that the method of Patent Document 2 cannot cope with.

また、放電灯のフィラメント予熱タイマー回路と寿命末期の保護回路とは、独立した別個の回路で構成されているため、形状が大きく高価になる問題があった。   Further, since the filament preheating timer circuit and the end-of-life protection circuit of the discharge lamp are formed of independent and independent circuits, there is a problem that the shape is large and expensive.

この発明は、従来装置の上記のような課題を解決するためになされたもので、この発明の第1の目的は、電源投入時に放電灯のフィラメントを一定期間予熱をするフィラメント予熱タイマー回路と、放電灯の寿命末期時に放電灯点灯装置を停止させる保護回路の一部を共用した小型で安価な放電灯点灯装置を提供することを目的とする。   The present invention has been made to solve the above-described problems of the conventional apparatus, and a first object of the present invention is to provide a filament preheating timer circuit for preheating a filament of a discharge lamp for a certain period when the power is turned on, An object of the present invention is to provide a small and inexpensive discharge lamp lighting device sharing a part of a protection circuit for stopping the discharge lamp lighting device at the end of the life of the discharge lamp.

また、この発明の第2の目的は、複数の放電灯の内、何れかを抜去しても、全ての放電灯が装着されている場合と同一の検出条件で寿命末期の検出ができる放電灯点灯装置を提供することを目的とする。   In addition, a second object of the present invention is to provide a discharge lamp that can detect the end of life under the same detection conditions as when all the discharge lamps are mounted even if any of the plurality of discharge lamps is removed. An object is to provide a lighting device.

この発明にかかる放電灯点灯装置は、直流電源と、この直流電源から供給される直流を高周波電流に変換する2つのスイッチング素子を有するハーフブリッジ回路からなるインバータ回路と、2つの2次巻線を有するチョークコイル、このチョークコイルに放電灯を介して接続されたカップリングコンデンサの直列回路を有し、上記2つの2次巻線は抵抗を介してそれぞれ上記2つのスイッチング素子に接続されて、上記2つのスイッチング素子を互い違いにオン/オフ制御するとともに、上記インバータ回路からの高周波電流により上記放電灯を点灯させる複数の放電灯負荷回路と、上記放電灯負荷回路の前記チョークコイルに各々設けた2つの2次巻線のうちいずれか一方の上記スイッチング素子に接続される各々の2次巻線に発生する電圧を各々ピーク間検出するピーク間電圧検出回路と、このピーク間電圧検出回路で検出されたピーク間検出電圧をワイヤードオアした電圧を制御電圧として電源投入時から上記放電灯の始動点灯に亘る期間、上記2つのスイッチング素子のうち、ピーク間電圧検出回路を有する側の上記スイッチング素子のオン/オフのタイミングを制御して、上記放電灯のフィラメントを流れる電流を制御する予熱タイマー回路と、上記ピーク間電圧検出回路で検出されたピーク間検出電圧をワイヤードオアした電圧が予め定めた値を越えたときに、上記インバータ回路の上記2つのスイッチング素子のうち、ピーク間電圧検出回路を有する側の上記スイッチング素子の発振を停止し、この発振停止状態を保持して、上記インバータ回路の出力が停止しつづけるようにする保護回路と、を備えたものである。 A discharge lamp lighting device according to the present invention comprises a DC power supply, an inverter circuit comprising a half bridge circuit having two switching elements for converting a DC supplied from the DC power supply into a high-frequency current, and two secondary windings. A choke coil having a series circuit of a coupling capacitor connected to the choke coil via a discharge lamp, wherein the two secondary windings are connected to the two switching elements via resistors, while alternately oN / oFF control of two switching elements, a plurality of lamp load circuit for lighting the discharge lamp by a high frequency current from the inverter circuit, and each provided in the choke coil of the discharge lamp load circuits 2 Occurs in each secondary winding connected to any one of the two secondary windings. A peak-to-peak voltage detection circuit that detects each voltage between peaks, and a period from when the power source is turned on to when the discharge lamp is started and turned on, with a voltage obtained by wired-oring the detected peak-to-peak voltage detected by the peak-to-peak voltage detection circuit. A preheating timer circuit for controlling the current flowing through the filament of the discharge lamp by controlling the on / off timing of the switching element on the side having the peak-to-peak voltage detection circuit of the two switching elements, and the peak When the voltage obtained by wired-ORing the peak-to-peak detection voltage detected by the peak-to-peak voltage detection circuit exceeds a predetermined value, of the two switching elements of the inverter circuit, the side having the peak-to-peak voltage detection circuit stops oscillation of the switching element, holds the oscillation stop state, the output of the inverter circuit is stopped quality A protection circuit for kicking manner, those having a.

この発明は、直流電源と、この直流電源から供給される直流を高周波電流に変換する2つのスイッチング素子を有するハーフブリッジ回路からなるインバータ回路と、2つの2次巻線を有するチョークコイル、このチョークコイルに放電灯を介して接続されたカップリングコンデンサの直列回路を有し、上記2つの2次巻線は抵抗を介してそれぞれ上記2つのスイッチング素子に接続されて、上記2つのスイッチング素子を互い違いにオン/オフ制御するとともに、上記インバータ回路からの高周波電流により上記放電灯を点灯させる複数の放電灯負荷回路と、上記放電灯負荷回路の前記チョークコイルに各々設けた2つの2次巻線のうちいずれか一方の上記スイッチング素子に接続される各々の2次巻線に発生する電圧を各々ピーク間検出するピーク間電圧検出回路と、このピーク間電圧検出回路で検出されたピーク間検出電圧をワイヤードオアした電圧を制御電圧として電源投入時から上記放電灯の始動点灯に亘る期間、上記2つのスイッチング素子のうち、ピーク間電圧検出回路を有する側の上記スイッチング素子のオン/オフのタイミングを制御して、上記放電灯のフィラメントを流れる電流を制御する予熱タイマー回路と、上記ピーク間電圧検出回路で検出されたピーク間検出電圧をワイヤードオアした電圧が予め定めた値を越えたときに、上記インバータ回路の上記2つのスイッチング素子のうち、ピーク間電圧検出回路を有する側の上記スイッチング素子の発振を停止し、この発振停止状態を保持して、上記インバータ回路の出力が停止しつづけるようにする保護回路と、を備えたので、小型で安価にすることができる。 The present invention relates to a DC power supply, an inverter circuit composed of a half-bridge circuit having two switching elements for converting a direct current supplied from the DC power supply into a high-frequency current, a choke coil having two secondary windings , and the choke A series circuit of a coupling capacitor connected to a coil via a discharge lamp, wherein the two secondary windings are connected to the two switching elements via resistors, respectively, and the two switching elements are staggered; in addition to the on / off control, and a plurality of lamp load circuit for lighting the discharge lamp by a high frequency current from the inverter circuit, each provided with two secondary windings to the choke coil of the discharge lamp load circuit Peak-to-peak detection of the voltage generated in each secondary winding connected to one of the switching elements The peak-to-peak voltage detection circuit, and the two switching elements for a period from when the power is turned on to when the discharge lamp is started and lit, using a voltage obtained by wired-oring the peak-to-peak detection voltage detected by the peak-to-peak voltage detection circuit as a control voltage Among them, a preheating timer circuit for controlling the current flowing through the filament of the discharge lamp by controlling the on / off timing of the switching element on the side having the peak-to-peak voltage detection circuit, and detection by the peak-to-peak voltage detection circuit When the voltage obtained by wired-ORing the detected peak-to-peak voltage exceeds a predetermined value, the oscillation of the switching element on the side having the peak-to-peak voltage detection circuit among the two switching elements of the inverter circuit is stopped. protection of times, and holds the oscillation stop state, so that the output of the inverter circuit is continuously stopped If so equipped, and can be made inexpensive small.

実施の形態
図1は、この発明の実施の形態を示す放電灯点灯装置の回路図、図2はこの発明の実施の形態の動作特性説明図である。
図1において、直流電源1は、例えば、商用電源をダイオードブリッジで整流後電解コンデンサで平滑して得られる。MOSFETからなるスイッチング素子である2、3の直列回路は直流電源1に接続されインバータ回路を構成する。
Embodiment FIG. 1 is a circuit diagram of a discharge lamp lighting device showing an embodiment of the present invention, and FIG. 2 is an operation characteristic explanatory diagram of an embodiment of the present invention.
In FIG. 1, a DC power source 1 is obtained, for example, by rectifying a commercial power source with a diode bridge and then smoothing it with an electrolytic capacitor. A series circuit of 2, 3 which is a switching element made of a MOSFET is connected to the DC power source 1 to constitute an inverter circuit.

放電灯負荷回路L1(一点鎖線で図示)においては、チョークコイル5、このチョークコイル5に放電灯6を介して接続されたカップリングコンデンサ8が直列に接続され、これらの直列回路はスイッチング素子3に並列に接続され、放電灯6にはコンデンサ7が並列に接続される。ダイオード17のアノードは直流電源1の負極に、カソードはカップリングコンデンサ8と放電灯6の接続点に接続される。ダイオード18のアノードはダイオード17のカソードに、カソードは直流電源1の正極に接続される。   In the discharge lamp load circuit L1 (illustrated by a one-dot chain line), a choke coil 5 and a coupling capacitor 8 connected to the choke coil 5 via a discharge lamp 6 are connected in series. And a capacitor 7 is connected to the discharge lamp 6 in parallel. The anode of the diode 17 is connected to the negative electrode of the DC power supply 1, and the cathode is connected to the connection point between the coupling capacitor 8 and the discharge lamp 6. The anode of the diode 18 is connected to the cathode of the diode 17, and the cathode is connected to the positive electrode of the DC power supply 1.

放電灯負荷回路L2は、放電灯負荷回路L1と同一構成であり、チョークコイル9、放電灯10、カップリングコンデンサ12は直列に接続され、これらの直列回路はスイッチング素子3に並列に接続され、放電灯10にはコンデンサ11が並列に接続される。ダイオード19のアノードは直流電源1の負極に、カソードはカップリングコンデンサ12と放電灯11の接続点に接続される。ダイオード20のアノードはダイオード19のカソードに、カソードは直流電源1の正極に接続される。   The discharge lamp load circuit L2 has the same configuration as the discharge lamp load circuit L1, the choke coil 9, the discharge lamp 10, and the coupling capacitor 12 are connected in series, and these series circuits are connected in parallel to the switching element 3, A capacitor 11 is connected to the discharge lamp 10 in parallel. The anode of the diode 19 is connected to the negative electrode of the DC power supply 1, and the cathode is connected to the connection point between the coupling capacitor 12 and the discharge lamp 11. The anode of the diode 20 is connected to the cathode of the diode 19, and the cathode is connected to the positive electrode of the DC power supply 1.

なお、各放電灯6、10の正常点灯時に、ダイオード17、18及び19、20を介して各半サイクルにおいて交互に電源1に電流が流れるように各カップリングコンデンサ8、12の容量値を定めている。   Note that the capacitance values of the coupling capacitors 8 and 12 are determined so that current flows alternately to the power supply 1 in each half cycle via the diodes 17, 18, 19, and 20 when the discharge lamps 6 and 10 are normally lit. ing.

各放電灯負荷回路L1、L2のチョークコイル5、9には、各々2つの2次巻線5a、5b及び9a、9bを設け、2次巻線5a、5b及び9a、9bは図示・印の極性でスイッチング素子2及び3を交互にON/OFF駆動するように抵抗13、15及び抵抗14、16を介してゲート・ソース間に接続される(チョークコイル5及び9の1次巻線と2次巻線の結合を表すため、一点鎖線及び破線で図示してある)。なお、スイッチング素子2、3のドレイン・ソース間に並列に内蔵される等価ダイオードとインバータ回路を起動するための起動回路は図示を省略している。また、ここで放電灯6と放電灯10が同一定格出力の場合は、各放電灯負荷回路L1、L2の回路定数を等しく選択する。また、放電灯6と放電灯10の定格出力が異なる場合は、各放電灯負荷回路L1、L2の点灯時の共振周波数が概略等しく、また、点灯時の各チョークコイルの2次巻線電圧が概略等しくなるように設定する。   The choke coils 5 and 9 of each discharge lamp load circuit L1 and L2 are each provided with two secondary windings 5a, 5b and 9a, 9b, and the secondary windings 5a, 5b and 9a, 9b are shown and marked. It is connected between the gate and the source via the resistors 13 and 15 and the resistors 14 and 16 so that the switching elements 2 and 3 are alternately turned ON / OFF by polarity (the primary windings and 2 of the choke coils 5 and 9 are connected). In order to show the coupling of the next winding, it is shown by a dashed line and a broken line). Note that an equivalent diode built in parallel between the drain and source of the switching elements 2 and 3 and a startup circuit for starting the inverter circuit are not shown. Here, when the discharge lamp 6 and the discharge lamp 10 have the same rated output, the circuit constants of the discharge lamp load circuits L1 and L2 are selected to be equal. Further, when the rated outputs of the discharge lamp 6 and the discharge lamp 10 are different, the resonance frequencies when the discharge lamp load circuits L1 and L2 are turned on are approximately equal, and the secondary winding voltage of each choke coil at the time of lighting is Set to be approximately equal.

放電灯負荷回路L1のチョークコイル5に設けた2次巻線5bに発生する電圧をピーク間検出(Peak to Peak検出)するピーク間電圧検出回路P1(破線で図示)においては、コンデンサ21、22は直列に接続され、コンデンサ22の他端は直流電源1の負極に、コンデンサ21の他端はチョークコイル5の2次巻5bと抵抗13の接続点に接続される。ダイオード23のアノードは直流電源1の負極に、カソードはコンデンサ21とコンデンサ22の接続点に接続される。ダイオード24のアノードはダイオード23のカソードに、カソードはコンデンサ29に接続される。コンデンサ29の他端は直流電源1の負極に接続される。   In the peak-to-peak voltage detection circuit P1 (illustrated by broken lines) for detecting the voltage generated in the secondary winding 5b provided in the choke coil 5 of the discharge lamp load circuit L1 (Peak to Peak detection), capacitors 21 and 22 are used. Are connected in series, the other end of the capacitor 22 is connected to the negative electrode of the DC power source 1, and the other end of the capacitor 21 is connected to the connection point between the secondary winding 5 b of the choke coil 5 and the resistor 13. The anode of the diode 23 is connected to the negative electrode of the DC power supply 1, and the cathode is connected to the connection point between the capacitor 21 and the capacitor 22. The anode of the diode 24 is connected to the cathode of the diode 23, and the cathode is connected to the capacitor 29. The other end of the capacitor 29 is connected to the negative electrode of the DC power supply 1.

このピーク間電圧検出回路P1では、チョークコイル5の2次巻線5bに発生する電圧のピーク間電圧(peak to peak電圧)がコンデンサ21とコンデンサ22の静電容量値の逆比でダイオード24のアノード電圧、即ち、コンデンサ29の電圧として得られる。   In this peak-to-peak voltage detection circuit P1, the peak-to-peak voltage of the voltage generated in the secondary winding 5b of the choke coil 5 is the inverse ratio of the capacitance values of the capacitors 21 and 22, and the diode 24 It is obtained as the anode voltage, that is, the voltage of the capacitor 29.

放電灯負荷回路L2のチョークコイル9に設けた2次巻線9bに発生する電圧をピーク間検出するピーク間電圧検出回路P2においては、コンデンサ25、26は直列に接続され、コンデンサ26の他端は直流電源1の負極にコンデンサ25他端はチョークコイル9の2次巻線9bと抵抗15の接続点に接続される。ダイオード27のアノードは直流電源1の負極に、カソードはコンデンサ25とコンデンサ26の接続点に接続される。ダイオード28のアノードはダイオード27のカソードに、カソードはダイオード24のカソードに接続される。   In the peak-to-peak voltage detection circuit P2 that detects the voltage generated in the secondary winding 9b provided in the choke coil 9 of the discharge lamp load circuit L2, the capacitors 25 and 26 are connected in series, and the other end of the capacitor 26 is connected. Is connected to the connection point between the secondary winding 9 b of the choke coil 9 and the resistor 15. The anode of the diode 27 is connected to the negative electrode of the DC power supply 1, and the cathode is connected to the connection point between the capacitor 25 and the capacitor 26. The anode of the diode 28 is connected to the cathode of the diode 27, and the cathode is connected to the cathode of the diode 24.

このピーク間電圧検出回路P2では、チョークコイル9の2次巻線9bに発生する電圧のピーク電圧を、コンデンサ25とコンデンサ26の静電容量値の逆比でダイオード28のアノード電圧、即ち、コンデンサ29の電圧として得られる。
そして、コンデンサ29には、ピーク間電圧検出回路P1、P2の内、高い方の出力電圧が得られる。
In this peak-to-peak voltage detection circuit P2, the peak voltage of the voltage generated in the secondary winding 9b of the choke coil 9 is converted to the anode voltage of the diode 28, that is, the capacitor by the inverse ratio of the capacitance values of the capacitors 25 and 26. It is obtained as 29 voltages.
The capacitor 29 can obtain the higher output voltage of the peak-to-peak voltage detection circuits P1 and P2.

抵抗30の一端はダイオード28のカソードに、他端はコンデンサ31に接続され、コンデンサ31の他端は直流電源の負極に接続される。
抵抗30とコンデンサ31はコンデンサ29に得られるピーク検出電圧を積分する回路であり、コンデンサ31の電圧は、後述する予熱タイマー回路T10及び保護回路H1の共通の入力信号となる。
One end of the resistor 30 is connected to the cathode of the diode 28, the other end is connected to the capacitor 31, and the other end of the capacitor 31 is connected to the negative electrode of the DC power supply.
The resistor 30 and the capacitor 31 are circuits for integrating the peak detection voltage obtained in the capacitor 29, and the voltage of the capacitor 31 serves as a common input signal for a preheating timer circuit T10 and a protection circuit H1 described later.

直流電源1の投入時から一定時間放電灯6、10のフィラメントに流れる電流を制御する予熱タイマー回路T10においては、抵抗33、抵抗32は直列に接続され、一端は抵抗30とコンデンサ31の接続点に、他端は直流電源1の負極に接続される。トランジスタ34のベースは抵抗33、抵抗32の接続点に、エミッタは直流電源1の負極に、コレクタは抵抗35と抵抗36の接続点に接続される。抵抗35の他端は2次巻線5bと抵抗13の接続点に、抵抗36の他端は2次巻線9bと抵抗15の接続点に接続される。ダイオード37のアノードは直流電源1の負極に、カソードはトランジスタ34のコレクタに接続される。コンデンサ38はダイオード37と並列に接続される。トランジスタ39は、ベースがトランジスタ34のコレクタに、エミッタは直流電源1の負極に、コレクタは抵抗40の一端に接続される。
予熱タイマー回路T10の抵抗40の他端は、ダイオード45のカソードに接続され、ダイオード45のアノードはMOSFET3のゲートに接続される。
In the preheating timer circuit T10 that controls the current flowing through the filaments of the discharge lamps 6 and 10 for a certain time from when the DC power supply 1 is turned on, the resistor 33 and the resistor 32 are connected in series, and one end is a connection point between the resistor 30 and the capacitor 31. The other end is connected to the negative electrode of the DC power source 1. The base of the transistor 34 is connected to the connection point of the resistors 33 and 32, the emitter is connected to the negative electrode of the DC power supply 1, and the collector is connected to the connection point of the resistors 35 and 36. The other end of the resistor 35 is connected to the connection point between the secondary winding 5 b and the resistor 13, and the other end of the resistor 36 is connected to the connection point between the secondary winding 9 b and the resistor 15. The anode of the diode 37 is connected to the negative electrode of the DC power supply 1, and the cathode is connected to the collector of the transistor 34. The capacitor 38 is connected in parallel with the diode 37. The transistor 39 has a base connected to the collector of the transistor 34, an emitter connected to the negative electrode of the DC power supply 1, and a collector connected to one end of the resistor 40.
The other end of the resistor 40 of the preheating timer circuit T10 is connected to the cathode of the diode 45, and the anode of the diode 45 is connected to the gate of the MOSFET 3.

放電灯6、10の寿命末期時にインバータ回路の発振を停止し放電灯負荷回路L1、L2への電力の供給を停止するとともに、直流電源1が遮断されるまでその状態を保持する保護回路H1においては、ツェナーダイオード41はそのカソードが抵抗30とコンデンサ31の接続点に接続され、アノードは抵抗42を介して直流電源1の負極に接続される。サイリスタ43のカソードは直流電源1の負極に、ゲートはツェナーダイオード41のアノードに、アノードはダイオード45のカソードに接続される。抵抗44は、一端はサイリスタ43のアノードに、他端は直流電源1の正極に接続される。   In the protection circuit H1 that stops the oscillation of the inverter circuit at the end of the life of the discharge lamps 6 and 10, stops the supply of power to the discharge lamp load circuits L1 and L2, and maintains the state until the DC power source 1 is shut off The Zener diode 41 has a cathode connected to the connection point between the resistor 30 and the capacitor 31, and an anode connected to the negative electrode of the DC power supply 1 through the resistor 42. The thyristor 43 has a cathode connected to the negative electrode of the DC power supply 1, a gate connected to the anode of the Zener diode 41, and an anode connected to the cathode of the diode 45. The resistor 44 has one end connected to the anode of the thyristor 43 and the other end connected to the positive electrode of the DC power source 1.

次に、この発明の実施の形態を示す放電灯点灯装置の動作を図1、図2により説明する。図2(5)は時間t=t0で直流電源1が投入された以降のコンデンサ31の電圧波形を示している。図2(1)の(a)乃至(4)の(a)はt=t0からt=t1に至る予熱時間T1期間内の図1各部の動作波形を示し、(1)の(a)は2次巻線5b又は及び9bの電圧を、(2)の(a)はトランジスタ34のコレクタ・エミッタ間電圧VCEを(3)の(a)はトランジスタ39のコレクタ・エミッタ間電圧VCEを、(4)の(a)はスイッチング素子(MOSFET)3のゲート・ソース間電圧を示している。また、(1)の(b)乃至(4)の(b)は波形はそれぞれ(1)の(a)乃至(4)の(a)に対応する時間t=t1以降の放電灯6、10の正常点灯時の波形を示している。   Next, the operation of the discharge lamp lighting device showing the embodiment of the present invention will be described with reference to FIGS. FIG. 2 (5) shows the voltage waveform of the capacitor 31 after the DC power source 1 is turned on at time t = t0. (A) to (4) in FIG. 2 (1) show the operation waveforms of the respective parts in FIG. 1 during the preheating time T1 from t = t0 to t = t1, and (a) in (1). The voltage of the secondary winding 5b or 9b, (2) (a) is the collector-emitter voltage VCE of the transistor 34, (3) (a) is the collector-emitter voltage VCE of the transistor 39, ( (A) of 4) shows the gate-source voltage of the switching element (MOSFET) 3. The waveforms (b) of (b) to (4) of (1) are the discharge lamps 6 and 10 after time t = t1 corresponding to (a) of (a) to (4) of (1). The waveform at normal lighting is shown.

図1において、時間t=t0で直流電源1が投入されると、図示を省略している起動回路によってスイッチング素子2、3は交互に高周波数で駆動される。チョークコイル5及び9の2次巻線5b及び9に発生した電圧はピーク間電圧検出回路P1、P2で検出され、コンデンサ29には、ピーク間電圧検出回路P1、P22の内、高い方の出力電圧が得られる。そして、コンデンサ29に得られたピーク検出電圧は 抵抗30とコンデンサ31の積分回路で積分され、コンデンサ31に充電された電圧は、予熱タイマー回路T10及び保護回路H1の共通の入力信号となる。 In FIG. 1, when the DC power source 1 is turned on at time t = t0, the switching elements 2 and 3 are alternately driven at a high frequency by a starting circuit not shown. Secondary winding 5b and 9 b to a voltage generated in the choke coil 5 and 9 is detected by the peak voltage detection circuit P1, P2, the capacitor 29, of the peak voltage detection circuit P1, P22, higher An output voltage is obtained. The peak detection voltage obtained in the capacitor 29 is integrated by the integrating circuit of the resistor 30 and the capacitor 31, and the voltage charged in the capacitor 31 becomes a common input signal for the preheating timer circuit T10 and the protection circuit H1.

予熱タイマー回路T10において、コンデンサ31の電圧が下記の(1)式を満足する予熱タイマ期間T1の間はトランジスタ34はOFFとなる。
VC31×R32/(R32+R33)<VBE(TR34)…(1)
ただし、上記(1)式の記号は以下を示す。
VC31:コンデンサ31の電圧
R32:抵抗32の抵抗値
R33:抵抗33の抵抗値
VBE(TR34):トランジスタ34のベース・エミッタ間閾値電圧(概略0.6V)
トランジスタ34がOFFの期間中はトランジスタ34のコレクタ・エミッタ間電圧は図(2)の(a)に示す波形になる。即ち、トランジスタ34のベース・エミッタ間電圧は上記(2)の(a)の波形になるので、(3)の(a)に示すようにトランジスタ39はTaの期間OFFした後、Tbの期間ONになる。
このように、発振周波数の各駆動サイクル毎に予め定めたTbの期間スイッチング素子3を確実にONさせた後ゲート電流をバイバスしてOFFに転じさせている。
In the preheating timer circuit T10, the transistor 34 is turned off during the preheating timer period T1 in which the voltage of the capacitor 31 satisfies the following expression (1).
VC31 × R32 / (R32 + R33) <VBE (TR34) (1)
However, the symbols in the above formula (1) indicate the following.
VC31: voltage of capacitor 31 R32: resistance value of resistor 32
R33: Resistance value of the resistor 33 VBE (TR34): Base-emitter threshold voltage of the transistor 34 (approximately 0.6 V)
During the period in which the transistor 34 is OFF, the collector-emitter voltage of the transistor 34 has a waveform shown in FIG. That is, since the base-emitter voltage of the transistor 34 has the waveform (a) in (2) above, the transistor 39 is turned off during the period Tb and then turned on during the period Tb as shown in (3) (a). become.
In this way, after the switching element 3 is reliably turned on for a predetermined period Tb for each drive cycle of the oscillation frequency, the gate current is bypassed and turned off.

トランジスタ39がONになると、スイッチング素子(MOSFET)3は(4)の(a)に示すように、そのゲート電流がダイオード45、抵抗40、トランジスタ39の経路でバイパスされるためONが維持できなくなり、Tbの期間ONした後OFFに転ずる。Ta+Tbの期間はスイッチング素子3のゲート電流をトランジスタ39を介してバイパスしない場合に比べて短くなる。即ち、T1の予熱期間中のインバータ回路の発振周波数fPHは、時間t1以降の期間の発振周波数fOPに比べ高くなる。ここで、放電灯負荷回路の共振の鋭さ(Q)を、発振周波数fPHに対して小さく、発振周波数fOPに対して大きくなるように設定すれば、予熱期間中(発振周波数fPHで動作)に直流電源1から放電灯負荷回路に流入する電流を正常点灯時(発振周波数fOPで動作)に比べて小さく制御できる。   When the transistor 39 is turned on, the switching element (MOSFET) 3 cannot be kept on because the gate current is bypassed by the path of the diode 45, the resistor 40, and the transistor 39 as shown in (4) (a). , Turn on after turning on for Tb. The period of Ta + Tb is shorter than when the gate current of the switching element 3 is not bypassed through the transistor 39. That is, the oscillation frequency fPH of the inverter circuit during the preheating period of T1 is higher than the oscillation frequency fOP in the period after time t1. Here, if the resonance sharpness (Q) of the discharge lamp load circuit is set to be small with respect to the oscillation frequency fPH and large with respect to the oscillation frequency fOP, direct current is applied during the preheating period (operating at the oscillation frequency fPH). The current flowing from the power source 1 into the discharge lamp load circuit can be controlled to be smaller than that during normal lighting (operating at the oscillation frequency fOP).

ここで、放電灯6、10に並列に接続されたコンデンサ7、11の容量値を適当に選定すれば、放電灯6、10のフィラメントを介して流れる電流(フィラメント予熱電流)によってコンデンサ7、11に発生する電圧を放電灯6、10の始動開始に必要な電圧以下にすることができ、予熱タイマ期間T1の期間では放電灯6、10は点灯しない。次に時間が進んで時間t=t1になれば、コンデンサ31の電圧は以下の(2)式を満足する。
VC31-1×R32/(R32+R33)=VBE(TR34)…(2)
ただし、上記(2)式の記号は以下を示す。
VC31-1:コンデンサ31の電圧VC31のt=t1における電圧
Here, if the capacitance values of the capacitors 7 and 11 connected in parallel to the discharge lamps 6 and 10 are appropriately selected, the capacitors 7 and 11 are caused by the current flowing through the filaments of the discharge lamps 6 and 10 (filament preheating current). Can be made to be equal to or lower than the voltage required for starting the discharge lamps 6 and 10, and the discharge lamps 6 and 10 are not lit during the preheating timer period T1. Next, when time advances and time t = t1, the voltage of the capacitor 31 satisfies the following expression (2).
VC31-1 × R32 / (R32 + R33) = VBE (TR34) (2)
However, the symbols in the above formula (2) indicate the following.
VC31-1: voltage VC31 of capacitor 31 at t = t1

t=t1以降の期間はトランジスタ34はON、トランジスタ39はOFFとなり、インバータ回路の発振周波数はfPHからfOPに低くなる。従って、前述の説明のように、放電灯負荷回路の共振の鋭さ(Q)はfOPで大きくなるので、直流電源1から放電灯負荷回路に流れる電流は増大し、コンデンサ7、11の電圧は増大し放電灯6、10は点灯に至る。放電灯6、10が点灯すれば、コンデンサ7、11には並列に放電灯6、10の等価抵抗が接続されたことになるので放電灯負荷回路の共振の鋭さは小さくなり、放電灯6、10には放電灯負荷回路の回路定数と発振周波数fOPで定まる電流が流れ放電は以降安定的に継続される。   During the period after t = t1, the transistor 34 is turned on and the transistor 39 is turned off, and the oscillation frequency of the inverter circuit is lowered from fPH to fOP. Therefore, as described above, the resonance sharpness (Q) of the discharge lamp load circuit increases with fOP, so that the current flowing from the DC power source 1 to the discharge lamp load circuit increases and the voltages of the capacitors 7 and 11 increase. The discharge lamps 6 and 10 are turned on. If the discharge lamps 6 and 10 are lit, the equivalent resistance of the discharge lamps 6 and 10 is connected in parallel to the capacitors 7 and 11, so that the sharpness of resonance of the discharge lamp load circuit is reduced. A current determined by the circuit constant of the discharge lamp load circuit and the oscillation frequency fOP flows through 10, and the discharge is stably continued thereafter.

次に、保護回路H1においては、放電灯6、10が点灯してから、例えば放電灯6が時間t=t2でフィラメントの放電物質の消耗などで寿命末期になれば、放電灯6の両端電圧は正常点灯時より上昇し、チョークコイル5の両端電圧も上昇する。その電圧の変化はチョークコイル5の2次巻線5bに設けたピーク間電圧検出回路P1で検出されコンデンサ31の電圧も上昇する。また、保護回路H1のツェナーダイオード41、抵抗42を適当に選定して、サイリスタ43が放電灯6が正常点灯している時にコンデンサ31に得られる電圧VC31ー2ではONせず、放電灯6の寿命末期で放電灯6の電圧が上昇した場合にコンデンサ31に得られる電圧VC31-3によってONするようにする。   Next, in the protection circuit H1, after the discharge lamps 6 and 10 are turned on, for example, when the discharge lamp 6 reaches the end of its life due to exhaustion of the discharge material of the filament at time t = t2, the voltage across the discharge lamp 6 is Increases from the time of normal lighting, and the voltage across the choke coil 5 also increases. The change in voltage is detected by the peak-to-peak voltage detection circuit P1 provided in the secondary winding 5b of the choke coil 5, and the voltage of the capacitor 31 also increases. Further, the zener diode 41 and the resistor 42 of the protection circuit H1 are appropriately selected, and the thyristor 43 is not turned on at the voltage VC31-2 obtained at the capacitor 31 when the discharge lamp 6 is normally lit. When the voltage of the discharge lamp 6 rises at the end of the life, the voltage VC31-3 obtained at the capacitor 31 is turned on.

時間t=t3でサイリスタ43がONすれば、チョークコイルの2次巻線から抵抗13及び15を介してスイッチング素子3のゲート流れる電流がダイオード45、サイリスタ43を介してバイバスされるため、スイッチング素子3はOFFになりインバータ回路の発振は停止する。発振が停止しても、サイリスタ43には抵抗44を介して直流電源1から保持電流が流れ続けるので直流電源1を遮断するまでこの状態は保持されるので、放電灯6が異常放電を継続した状態で運転することを防止できるものである。なお、上記では放電灯6が正常放電でない場合の説明をしたが、放電灯10が正常放電でない場合、及びいずれの放電灯も正常放電でない場合でも同様に異常放電を継続した状態で運転することを防止できる。   If the thyristor 43 is turned on at time t = t3, the current flowing through the gate of the switching element 3 from the secondary winding of the choke coil via the resistors 13 and 15 is bypassed via the diode 45 and the thyristor 43. 3 is turned OFF and the oscillation of the inverter circuit stops. Even if the oscillation stops, since the holding current continues to flow from the DC power supply 1 to the thyristor 43 through the resistor 44, this state is maintained until the DC power supply 1 is shut off, so that the discharge lamp 6 continued to abnormally discharge. It is possible to prevent driving in a state. In addition, although the case where the discharge lamp 6 is not normal discharge was demonstrated above, when the discharge lamp 10 is not normal discharge and when any discharge lamp is not normal discharge, it is operated in the state which continued abnormal discharge similarly. Can be prevented.

以上のように、複数の放電灯負荷回路L1、L2を備え、放電灯負荷回路L1、L2のチョークコイル5、9に各々設けた2次巻線5b、9bに発生する電圧を各々ピーク間検出するピーク間電圧検出回路P1、P2と、このピーク間電圧検出回路P1、P2で検出されたピーク間検出電圧をワイヤードオアした電圧を制御電圧として電源投入時から放電灯6、10の始動点灯に亘る期間、放電灯6、10のフィラメントを流れる電流を制御する予熱タイマー回路T10と、ピーク間電圧検出回路P1、P2で検出されたピーク間検出電圧をワイヤードオアした電圧が予め定めた値を越えたときに、インバータ回路のスイッチング素子2、3の発振を停止し、この発振停止状態を保持する保護回路H1と、を備えたので、ピーク間電圧検出回路P1、P2の検出電圧が予熱タイマー回路T10と保護回路H1の共用の入力電圧となり、小型で安価にすることができる。   As described above, a plurality of discharge lamp load circuits L1 and L2 are provided, and the voltages generated in the secondary windings 5b and 9b provided in the choke coils 5 and 9 of the discharge lamp load circuits L1 and L2, respectively, are detected between peaks. The discharge lamps 6 and 10 are turned on when the power is turned on using a voltage obtained by wired-ORing the peak-to-peak detection voltages detected by the peak-to-peak voltage detection circuits P1 and P2 and the peak-to-peak detection voltages P1 and P2 The preheated timer circuit T10 for controlling the current flowing through the filaments of the discharge lamps 6 and 10 and the voltage obtained by wired-or-detecting the peak-to-peak detection voltages detected by the peak-to-peak voltage detection circuits P1 and P2 exceed a predetermined value. And a protection circuit H1 that stops the oscillation of the switching elements 2 and 3 of the inverter circuit and maintains this oscillation stopped state. P1, the detection voltage of P2 is used as the input voltage of the sharing of the preheating timer circuit T10 and the protection circuit H1, it can be made inexpensive small.

また、放電灯6または放電灯10の寿命末期による故障などのためいずれかの一方の放電灯を抜去してもピーク間電圧検出回路P1、P2は各放電灯負荷回路L1、L2に対応して各々独立に設け、それらの出力をワイヤードオアした電圧でタイマ期間を制御しているので2灯の内、1灯を抜去した場合でも2灯が全て装着されている場合と同一の条件でタイマ期間を設定することができる。   Even if one of the discharge lamps is removed due to a failure due to the end of the life of the discharge lamp 6 or the discharge lamp 10, the peak-to-peak voltage detection circuits P1, P2 correspond to the discharge lamp load circuits L1, L2. Since the timer period is controlled by a voltage with their outputs wired or ORed independently, even if one of the two lamps is removed, the timer period is the same as when all two lamps are installed. Can be set.

また、放電灯6または放電灯10の寿命末期による故障などのためいずれかの一方の放電灯を抜去してもピーク間電圧検出回路P1、P2は各放電灯負荷回路に対応して各々独立に設け、それらの出力をワイヤードオアした電圧を制御電圧としているので2灯の内、1灯を抜去した場合でも2灯が全て装着されている場合と同一の条件で異常点灯状態を検出することができる。   Further, even if one of the discharge lamps is removed due to a failure due to the end of the life of the discharge lamp 6 or the discharge lamp 10, the peak-to-peak voltage detection circuits P1, P2 are independent of each other corresponding to each discharge lamp load circuit. Since the control voltage is a voltage obtained by wired-oring their outputs, even if one of the two lights is removed, the abnormal lighting state can be detected under the same conditions as when all the two lights are installed. it can.

また、予熱タイマー回路T10により、発振周波数の各駆動サイクル毎に予め定めたTaの期間スイッチング素子3を確実にONさせた後ゲート電流をバイバスしてOFFに転じさせ発振周波数を大きくするので、予熱タイマ期間T1に放電灯6、10をコールドスタートに至らない発振周波数で確実に発振継続することができる。   In addition, since the preheating timer circuit T10 reliably turns on the switching element 3 for a predetermined Ta period for each drive cycle of the oscillation frequency, the gate current is bypassed and turned off to increase the oscillation frequency. During the timer period T1, the discharge lamps 6 and 10 can be reliably oscillated at an oscillation frequency that does not cause a cold start.

また、予熱タイマー回路T10と保護回路H1の共用の入力電圧は、ピーク間電圧検出回路P1、P2の検出電圧としたので、放電灯6、10の両極の放電状態を検出することができ、また、予熱タイマT10のタイマ時間を利用して、保護回路H1の動作を遅延させているので、放電の異常状態が予熱タイマ時間に対応して継続したときに保護動作をさせることができ、保護動作の誤動作を防ぐことができる。   In addition, since the common input voltage of the preheating timer circuit T10 and the protection circuit H1 is the detection voltage of the peak-to-peak voltage detection circuits P1 and P2, it is possible to detect the discharge state of both electrodes of the discharge lamps 6 and 10. Since the operation of the protection circuit H1 is delayed using the timer time of the preheating timer T10, the protective operation can be performed when an abnormal discharge state continues corresponding to the preheating timer time. Can be prevented from malfunctioning.

また、カップリングコンデンサ8、12と放電灯6、10の接続点に各々カソードが接続され、アノードが直流電源1の負極に各々接続されたダイオード17、19と、カップリングコンデンサ8、12と放電灯6、10の接続点にアノードが各々接続され、カソードが直流電源1の正極に各々接続されたダイオード18、20と、を備えたので、放電灯6、10放電電流の非対称現象が生じた場合でも放電灯負荷回路L1、L2に流れる電流が増大しないようにし、電流増加による回路素子に不具合が生じるのを防止することができる。   Further, the cathodes are connected to the connection points of the coupling capacitors 8 and 12 and the discharge lamps 6 and 10 respectively, and the diodes 17 and 19 whose anodes are respectively connected to the negative electrode of the DC power source 1 and the coupling capacitors 8 and 12 and the discharge capacitors. Since the anodes are connected to the connection points of the electric lamps 6 and 10 and the cathodes are respectively connected to the positive electrodes of the DC power supply 1, the discharge lamps 6 and 10 have an asymmetric phenomenon of the discharge current. Even in this case, it is possible to prevent the current flowing in the discharge lamp load circuits L1 and L2 from increasing, and to prevent the circuit element from being defective due to the increase in current.

なお、本実施の形態を示す図1では、放電灯負荷回路を2個接続する場合に付いて説明したがこれが1個接続または3個以上接続した場合でもよく、同様な効果が得られる。   In FIG. 1 showing the present embodiment, the case where two discharge lamp load circuits are connected has been described. However, one or three or more discharge lamps may be connected, and the same effect can be obtained.

この発明の実施の形態を示す放電灯点灯装置の回路図である。It is a circuit diagram of a discharge lamp lighting device showing an embodiment of the present invention. この発明の実施の形態を示す放電灯点灯装置の動作特性図である。It is an operation characteristic figure of a discharge lamp lighting device showing an embodiment of this invention.

符号の説明Explanation of symbols

1 直流電源、2、3 SW素子、5、9 チョークコイル、6、10 放電灯、7、11 コンデンサ、8、12 カップリングコンデンサ、17、18、19、20 ダイオード、31 コンデンサ、39 トランジスタ、41 ツェナーダイオード、43 サイリスタ、L1、L2 放電灯負荷回路、P1、P2 ピーク間電圧検出回路、T10 予熱タイマー回路、H1 保護回路。
1 DC power supply, 2, 3 SW element, 5, 9 choke coil, 6, 10 discharge lamp, 7, 11 capacitor, 8, 12 coupling capacitor, 17, 18, 19, 20 diode, 31 capacitor, 39 transistor, 41 Zener diode, 43 thyristor, L1, L2 discharge lamp load circuit, P1, P2 peak-to-peak voltage detection circuit, T10 preheating timer circuit, H1 protection circuit.

Claims (2)

直流電源と、
この直流電源から供給される直流を高周波電流に変換する2つのスイッチング素子を有するハーフブリッジ回路からなるインバータ回路と、
2つの2次巻線を有するチョークコイル、このチョークコイルに放電灯を介して接続されたカップリングコンデンサの直列回路を有し、上記2つの2次巻線は抵抗を介してそれぞれ上記2つのスイッチング素子に接続されて、上記2つのスイッチング素子を互い違いにオン/オフ制御するとともに、上記インバータ回路からの高周波電流により上記放電灯を点灯させる複数の放電灯負荷回路と、
上記放電灯負荷回路の前記チョークコイルに各々設けた2つの2次巻線のうちいずれか一方の上記スイッチング素子に接続される各々の2次巻線に発生する電圧を各々ピーク間検出するピーク間電圧検出回路と、
このピーク間電圧検出回路で検出されたピーク間検出電圧をワイヤードオアした電圧を制御電圧として電源投入時から上記放電灯の始動点灯に亘る期間、上記2つのスイッチング素子のうち、ピーク間電圧検出回路を有する側の上記スイッチング素子のオン/オフのタイミングを制御して、上記放電灯のフィラメントを流れる電流を制御する予熱タイマー回路と、
上記ピーク間電圧検出回路で検出されたピーク間検出電圧をワイヤードオアした電圧が予め定めた値を越えたときに、上記インバータ回路の上記2つのスイッチング素子のうち、ピーク間電圧検出回路を有する側の上記スイッチング素子の発振を停止し、この発振停止状態を保持して、上記インバータ回路の出力が停止しつづけるようにする保護回路と、
を備えたことを特徴とする放電灯点灯装置。
DC power supply,
An inverter circuit composed of a half-bridge circuit having two switching elements for converting a direct current supplied from the direct current power source into a high frequency current;
A choke coil having two secondary windings and a series circuit of a coupling capacitor connected to the choke coil via a discharge lamp. The two secondary windings are respectively switched by the two switching devices via resistors. is connected to the element, while alternately turning on / off controlling the two switching elements, a plurality of lamp load circuit for lighting the discharge lamp by a high frequency current from the inverter circuit,
A peak-to-peak detection of a voltage generated in each secondary winding connected to any one of the two secondary windings provided in the choke coil of the discharge lamp load circuit. A voltage detection circuit;
The peak-to-peak voltage detection circuit of the two switching elements is a period from when the power is turned on to when the discharge lamp is started and turned on, with a voltage obtained by wired-oring the peak-to-peak detection voltage detected by the peak-to-peak voltage detection circuit as a control voltage. A preheating timer circuit for controlling the on / off timing of the switching element on the side having a current to control the current flowing through the filament of the discharge lamp;
Of the two switching elements of the inverter circuit, the side having the peak-to-peak voltage detection circuit when a voltage obtained by wired-oring the peak-to-peak detection voltage detected by the peak-to-peak voltage detection circuit exceeds a predetermined value A protection circuit that stops the oscillation of the switching element, maintains this oscillation stop state, and continues to stop the output of the inverter circuit ;
A discharge lamp lighting device comprising:
カップリングコンデンサと放電灯の接続点にカソードが接続され、アノードが直流電源の負極に接続されたダイオードと、
上記カップリングコンデンサと上記放電灯の接続点にアノードが接続され、カソードが上記直流電源の正極に接続されたダイオードと、
を備えたことを特徴とする請求項1記載の放電灯点灯装置。
A diode whose cathode is connected to the connection point of the coupling capacitor and the discharge lamp, and whose anode is connected to the negative electrode of the DC power supply;
A diode in which an anode is connected to a connection point between the coupling capacitor and the discharge lamp, and a cathode is connected to a positive electrode of the DC power supply;
The discharge lamp lighting device according to claim 1 Symbol mounting characterized by comprising a.
JP2003352039A 2003-10-10 2003-10-10 Discharge lamp lighting device Expired - Fee Related JP4088926B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003352039A JP4088926B2 (en) 2003-10-10 2003-10-10 Discharge lamp lighting device
TW092130746A TWI241867B (en) 2003-10-10 2003-11-04 Electrical discharge lamp ballast
CNB2004100749825A CN100527914C (en) 2003-10-10 2004-09-01 Discharge lamp light device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003352039A JP4088926B2 (en) 2003-10-10 2003-10-10 Discharge lamp lighting device

Publications (2)

Publication Number Publication Date
JP2005116454A JP2005116454A (en) 2005-04-28
JP4088926B2 true JP4088926B2 (en) 2008-05-21

Family

ID=34543101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003352039A Expired - Fee Related JP4088926B2 (en) 2003-10-10 2003-10-10 Discharge lamp lighting device

Country Status (3)

Country Link
JP (1) JP4088926B2 (en)
CN (1) CN100527914C (en)
TW (1) TWI241867B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728437B1 (en) 2006-07-12 2007-06-13 엘지이노텍 주식회사 Circuit for protecting inverter of driving lamps
JP4858100B2 (en) * 2006-11-14 2012-01-18 ウシオ電機株式会社 Discharge lamp lighting device and projector

Also Published As

Publication number Publication date
CN100527914C (en) 2009-08-12
TWI241867B (en) 2005-10-11
TW200514477A (en) 2005-04-16
CN1606397A (en) 2005-04-13
JP2005116454A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
CN1197585A (en) Electronic ballast
JP4145795B2 (en) Short circuit ballast protection
JP5478839B2 (en) Program start ballast
JP2001357993A (en) Discharge lamp lighting device
US7432664B2 (en) Circuit for powering a high intensity discharge lamp
JP4088926B2 (en) Discharge lamp lighting device
US20090273283A1 (en) Voltage fed programmed start ballast
US7733031B2 (en) Starting fluorescent lamps with a voltage fed inverter
JP2615653B2 (en) Inverter circuit
JP4117561B2 (en) Discharge lamp lighting device
JP4088924B2 (en) Discharge lamp lighting device
JP2005166288A (en) Discharge lamp lighting device
JPS6210000B2 (en)
US8450934B2 (en) Circuit arrangement and method for operating a low-pressure discharge lamp
KR100716562B1 (en) Electronic stabilizer for the use of high pressure discharge lamp
US8076864B2 (en) Circuit configuration for starting and operating at least one discharge lamp
JP2004063320A (en) Discharge lamp lighting device
JP2010211949A (en) Discharge lamp lighting circuit
JP2617460B2 (en) Discharge lamp lighting device
JP2868242B2 (en) Discharge lamp lighting device
JP4597335B2 (en) Discharge lamp lighting device
KR200303285Y1 (en) Fluore Scant Lamp Electronic Ballast
JP3034936B2 (en) Discharge lamp lighting device
JP2003297592A (en) Discharge lamp lighting device
JP5267829B2 (en) Discharge lamp lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees