JP4088363B2 - Coal hydrocracking method - Google Patents

Coal hydrocracking method Download PDF

Info

Publication number
JP4088363B2
JP4088363B2 JP02792198A JP2792198A JP4088363B2 JP 4088363 B2 JP4088363 B2 JP 4088363B2 JP 02792198 A JP02792198 A JP 02792198A JP 2792198 A JP2792198 A JP 2792198A JP 4088363 B2 JP4088363 B2 JP 4088363B2
Authority
JP
Japan
Prior art keywords
gas
coal
pyrolysis
hydrogen
char
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02792198A
Other languages
Japanese (ja)
Other versions
JPH11228973A (en
Inventor
英昭 矢部
隆文 河村
広行 小水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP02792198A priority Critical patent/JP4088363B2/en
Publication of JPH11228973A publication Critical patent/JPH11228973A/en
Application granted granted Critical
Publication of JP4088363B2 publication Critical patent/JP4088363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、石炭を水素含有雰囲気下において急速に熱分解させて、ガス、タール、チャーを製造するための方法に関するものである。
【0002】
【従来の技術】
本発明者らは現在までに、石炭を急速に加熱し、熱分解することにより、石炭からガス、タール、チャーのような有用成分を製造するプロセスに関する提案を行っている。
例えば、特開平1−113491号公報には、石炭を気相中で、間接的に昇温された熱分解発生ガスと混合させることによって、石炭を短時間で熱分解し、石炭中の揮発分の多くをタール、ガスとして回収する技術が開示されている。また、特開平5−295371号公報には、石炭を急速熱分解して得られたチャーの一部を酸素でガス化し、その高温ガス中に微粉炭を吹き込むことによって、石炭の熱分解を行う技術が開示されている。更に、特開平6−88078号公報では、含水素物質を酸素で部分燃焼させ、雰囲気ガス中水素濃度を20%以上としたガス雰囲気中に石炭を吹き込むことによって石炭の熱分解を行い、石炭から生成するBTX(ベンゼン、トルエン、キシレン)の収率を特に増加させる技術の提案を行っている。
【0003】
また、現在までに、石炭水添ガス化または水素化熱分解と呼ばれるプロセスもいくつか提案されている。このプロセスは、石炭を高温高圧下において水素と反応させて、直接メタンをはじめとする炭化水素ガスおよびBTXをはじめとする液状炭化水素を製造することに特徴がある。
【0004】
【発明が解決しようとする課題】
特開平6−88078号公報で示されたプロセスは、雰囲気ガス中の水素濃度を高めることによって、特開平5−295371号公報におけるプロセスよりも、石炭の熱分解の結果生成するBTXの収率を増加させることに特徴がある。しかし、生成した熱分解ガスを酸素で部分燃焼するだけでは、雰囲気ガス中の水素濃度を高めるのには限界があるため、生成物として得られるBTXの収率にも限界点があった。図2に石炭水添ガス化プロセスのフローシートの一例を示す(燃料協会誌、第69巻、694ぺ一ジ、1990)。石炭水添ガス化プロセスにおいては、石炭を高温高圧かつほぼ100%近い高濃度の水素雰囲気下で熱分解を行うため、反応生成物として、メタンをはじめとする炭化水素を高濃度で含有する高カロリーガス、BTXをはじめとする軽質油成分を高収率で得ることができる。
【0005】
しかし、図2に示すように、石炭水添ガス化プロセスは、雰囲気ガスである非常に高濃度の水素ガスを精製するために、▲1▼生成した熱分解ガス中の水素のみを分離するための深冷分離装置、▲2▼チャーのガス化によって生成したガス全量を水素に転換、精製するための装置(酸性ガス除去装置、COシフト反応装置)が必要となる。従って、プロセスは非常に大がかりなものとなり、設備のイニシャルコストは莫大なものとなってしまう。
【0006】
また、石炭水添ガス化プロセスにおいて、ガス化のために必要な熱は、下記式(1)のような反応式で示されるメタンの生成熱によって供給される。
C+2H2 =CH4 +74.873kJ/mol・・・・・・(1)
しかし、文献(燃料協会誌、第69巻、707ぺ一ジ、1990)によると、水添ガス化反応器における壁からの熱損失、ベンゼンおよびキシレンの生成熱(吸熱反応)等を考慮すると、メタンの生成熱のみで反応器内を通常の水添ガス化反応に必要な800℃以上の温度レベルに保つのは困難であり、何らかの熱補給が必要であると述べられている。
【0007】
熱補給の方法としては、▲1▼ガス化後の生成ガスと水素の間で熱交換を行う方法、▲2▼ガス化反応器中に酸素を供給して、生成ガスや水素の一部を燃焼させて熱補給する方法、が挙げられている。しかし、前者の方法においては、高圧において効率良く稼働し、かつ生成ガス中のタール、BTX、水等の凝縮による能力低下のない大型の熱交換器の開発が必要であった。また、後者の方法においては、生成ガスや水素の一部が燃焼して消失するため、冷ガス効率が低下してしまうという欠点があった。
【0008】
本発明の目的は、メタンをはじめとする炭化水素ガスおよびBTXをはじめとする液状炭化水素を高い収率で製造することが可能であり、かつ設備のイニシャルコストを低減し、熱補給の必要がない高い熱効率の石炭水素化熱分解方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明の石炭水素化熱分解方法は、石炭を急速に熱分解させて、ガス、タール、チャーを製造するプロセスにおいて、チャー、石炭、又はその他の炭素質原料の酸素によるガス化で生ずる高温ガス中に、水素リッチガスを混合し、水素濃度を高めたガス雰囲気中に石炭を吹き込み、石炭の急速加熱・熱分解反応を気流層で圧力10〜100atm且つ温度700〜1000℃にて行わせて熱分解ガス、タール及びチャーを生成し、当該生成物からチャーを分離後、前記熱分解ガスを精製して製品ガスとBTXとすると共に、前記タールを精製してBTXとその他液成分とし、更に、前記製品ガスの一部をシフト反応により前記水素リッチガスとして前記ガス化で生じる高温ガス中に混合する。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。図1に本発明の石炭水素化熱分解方法のフローシートを示す。
微粉砕した石炭は気流層型の熱分解反応器1へ導入される。熱分解反応器1では、高温ガス発生器2において発生する高温ガスおよび水素ガスとの混合ガスに石炭を混合し、熱分解することによって、熱分解反応生成物として熱分解ガス、タール、チャーが発生する。発生したチャーは、サイクロン3によってガス、タールと分離される。分離されたチャーの一部または全量は、高温ガス発生器2において酸素ガスによってガス化(部分酸化)され、高温ガス(主成分は水素および一酸化炭素)に変換される。高温ガス発生器2を熱分解反応器下部に設置することによって、高温ガスの顕熱は、放熱を最小限として効率良く、熱分解反応器1へ導入される。なお、炭種によっては、ガス化温度を制御するために、スチームをガス化剤として添加する場合もある。また、発生したチャーを他の用途に使用する場合は、チャーの代わりに石炭または他の炭素質原料を使用しても良い。
【0011】
熱分解ガスおよびタールは冷却器4によって分離される。タールは更に蒸留等の方式のタール精製器5によって、BTX、その他液成分に分離精製される。一方の熱分解ガスは、脱硫器6によって硫黄を除去した後、吸収等の方式のガス精製器7によって、BTXと製品ガスに分離精製される。
【0012】
製品ガスの一部はシフト反応器8へ導入され、下記(2)式に示す水性ガスシフト反応によって、一酸化炭素が水素および二酸化炭素へと変換され、水素リッチガスとなる。水素リッチガスは脱炭酸器9によって二酸化炭素が除去され、水素ガスとしてリサイクル利用される。
CO+H2 O=CO2 +H2 +40.3kJ/mol・・・・・・(2)
熱分解雰囲気ガス中の水素濃度は30%以上となるように、製品ガスをリサイクルするのが望ましい。リサイクルする水素ガスが増加した場合には、熱交換器10を設置して、熱分解ガスとの熱交換を実施しても良い。
【0013】
熱分解反応器1内の反応条件は、温度500〜1600℃、圧力1〜150atm 、ガス滞留時間0.01〜30sec とするが、BTXの収率を向上させるためには、特に温度700〜1000℃、圧力10〜100atm 、ガス滞留時間0.01〜5sec とするのが望ましい。
【0014】
【実施例】
図1に示したフローに従って、石炭1000kgの熱分解を実施した。熱分解反応温度を800℃、圧力を30atm 、ガス滞留時間を1sec とし、製品ガス1920Nm3 の内の1000Nm3 をリサイクルした。また、発生したチャーは、その全量を高温ガス発生器においてガス化した。
【0015】
表1に、その結果得られた熱分解反応生成物の発生量を示す。また比較例として、製品ガスのリサイクルを行わない、従来プロセスでの熱分解の結果を示す。実施例においては比較例よりもBTXの収率が大幅に増加した。また、BTX以外の液成分も大幅に増加したが、実施例におけるこれらの液成分の平均分子量が195であるのに対し、比較例では308であり、実施例の液成分の方がより軽質化が進行していた。
【0016】
【表1】

Figure 0004088363
【0017】
表2に実施例と比較例における製品ガスの組成および燃焼熱を示す。実施例においては30atm の高圧ガスが発生するため、比較例の場合と比較して、特に発電用途に優れていた。また、製品ガス中のH2 /CO比が大きいため、メタノール合成等の化学原料としても好適である。
【0018】
【表2】
Figure 0004088363
【0019】
【発明の効果】
本発明により、メタンをはじめとする炭化水素ガスおよびBTXをはじめとする液状炭化水素を高い収率で製造することが可能であり、かつ設備のイニシャルコストを低減し、熱補給の必要がない高い熱効率の石炭水素化熱分解方法を提供可能となる。
【図面の簡単な説明】
【図1】本発明の石炭水素化熱分解方法のフローシートである。
【図2】公知の石炭水添ガス化プロセスのフローシートである。
【符号の説明】
1 熱分解反応器
2 高温ガス発生器
3 サイクロン
4 冷却器
5 タール精製器
6 脱硫器
7 ガス精製器
8 シフト反応器
9 脱炭酸器
10 熱交換器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for producing gas, tar and char by rapidly pyrolyzing coal in a hydrogen-containing atmosphere.
[0002]
[Prior art]
To date, the present inventors have proposed a process for producing useful components such as gas, tar and char from coal by rapidly heating and pyrolyzing the coal.
For example, in Japanese Patent Laid-Open No. 1-113491, coal is pyrolyzed in a short time by mixing coal with a pyrolysis gas that has been indirectly heated in the gas phase, and the volatile matter in the coal. A technique for recovering most of these as tar and gas is disclosed. Japanese Patent Laid-Open No. 5-295371 discloses that coal is pyrolyzed by gasifying a part of char obtained by rapid pyrolysis of coal with oxygen and blowing pulverized coal into the high-temperature gas. Technology is disclosed. Furthermore, in Japanese Patent Laid-Open No. 6-88078, coal is thermally decomposed by partially burning a hydrogen-containing substance with oxygen and blowing coal into a gas atmosphere in which the hydrogen concentration in the atmosphere gas is 20% or more. Proposals have been made for a technique for particularly increasing the yield of BTX (benzene, toluene, xylene) produced.
[0003]
To date, several processes called coal hydrogenation gasification or hydropyrolysis have been proposed. This process is characterized in that coal is reacted with hydrogen under high temperature and high pressure to directly produce hydrocarbon gas including methane and liquid hydrocarbon including BTX.
[0004]
[Problems to be solved by the invention]
The process shown in Japanese Patent Laid-Open No. 6-88078 has a higher yield of BTX produced as a result of coal pyrolysis than the process in Japanese Patent Laid-Open No. 5-295371 by increasing the hydrogen concentration in the atmospheric gas. It is characterized by increasing. However, there is a limit in the yield of BTX obtained as a product because there is a limit in increasing the hydrogen concentration in the atmospheric gas only by partially burning the generated pyrolysis gas with oxygen. FIG. 2 shows an example of a flow sheet for the coal hydrogasification process (Journal of Fuel Association, Vol. 69, page 694, 1990). In the coal hydrogenation gasification process, coal is thermally decomposed in a high-temperature, high-pressure and nearly 100% high-concentration hydrogen atmosphere, so that a high concentration of hydrocarbons such as methane is contained as a reaction product. Light oil components including caloric gas and BTX can be obtained in high yield.
[0005]
However, as shown in FIG. 2, in the coal hydrogenation gasification process, in order to purify very high concentration hydrogen gas, which is an atmospheric gas, (1) only hydrogen in the generated pyrolysis gas is separated. (2) A device for converting and purifying the total amount of gas generated by gasification of char to hydrogen (an acid gas removal device, a CO shift reaction device) is required. Therefore, the process becomes very large and the initial cost of the equipment becomes enormous.
[0006]
In the coal hydrogenation gasification process, the heat required for gasification is supplied by the heat of formation of methane represented by the following reaction formula (1).
C + 2H 2 = CH 4 +74.873 kJ / mol (1)
However, according to the literature (Journal of Fuel Association, Vol. 69, page 707, 1990), considering heat loss from the walls in the hydrogenation gasification reactor, heat of formation of benzene and xylene (endothermic reaction), etc., It is stated that it is difficult to keep the inside of the reactor at a temperature level of 800 ° C. or higher, which is necessary for a normal hydrogenation gasification reaction, only with the heat of formation of methane, and some kind of heat supply is required.
[0007]
As a heat supply method, (1) a method in which heat is exchanged between the gasified product gas and hydrogen, (2) oxygen is supplied into the gasification reactor, and a part of the product gas or hydrogen is removed. And a method of replenishing heat by burning. However, in the former method, it was necessary to develop a large-sized heat exchanger that operates efficiently at high pressure and does not deteriorate in capacity due to condensation of tar, BTX, water, etc. in the product gas. Further, the latter method has a drawback in that cold gas efficiency is lowered because part of the generated gas and hydrogen is burned and lost.
[0008]
The object of the present invention is to produce hydrocarbon gas such as methane and liquid hydrocarbon such as BTX in high yield, reduce the initial cost of equipment, and need to replenish heat. There is no high thermal efficiency coal hydropyrolysis process.
[0009]
[Means for Solving the Problems]
The coal hydrogenation pyrolysis method of the present invention is a high-temperature gas generated by gasification of char, coal, or other carbonaceous raw material with oxygen in a process of rapidly pyrolyzing coal to produce gas, tar, or char. Inside, a hydrogen rich gas is mixed and coal is blown into a gas atmosphere in which the hydrogen concentration is increased, and the coal is rapidly heated and thermally decomposed at a pressure of 10 to 100 atm and a temperature of 700 to 1000 ° C. in a gas stream. Generating cracked gas, tar and char, separating char from the product, purifying the pyrolysis gas to product gas and BTX, purifying the tar to BTX and other liquid components, A part of the product gas is mixed as a hydrogen-rich gas into the high-temperature gas generated by the gasification by a shift reaction.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. FIG. 1 shows a flow sheet of the coal hydrogenation pyrolysis method of the present invention.
The finely pulverized coal is introduced into a gas-flow-type pyrolysis reactor 1. In the pyrolysis reactor 1, coal is mixed with the mixed gas of the high-temperature gas and hydrogen gas generated in the high-temperature gas generator 2 and pyrolyzed, so that pyrolysis gas, tar, and char are produced as pyrolysis reaction products. appear. The generated char is separated from gas and tar by the cyclone 3. Part or all of the separated char is gasified (partially oxidized) with oxygen gas in the high temperature gas generator 2 and converted into high temperature gas (main components are hydrogen and carbon monoxide). By installing the hot gas generator 2 below the pyrolysis reactor, the sensible heat of the hot gas is efficiently introduced into the pyrolysis reactor 1 with minimal heat dissipation. Depending on the coal type, steam may be added as a gasifying agent in order to control the gasification temperature. When the generated char is used for other purposes, coal or other carbonaceous raw material may be used instead of char.
[0011]
The pyrolysis gas and tar are separated by the cooler 4. The tar is further separated and purified into BTX and other liquid components by a tar purifier 5 such as distillation. One pyrolysis gas, after removing sulfur by the desulfurizer 6, is separated and purified into BTX and product gas by a gas purifier 7 such as absorption.
[0012]
A part of the product gas is introduced into the shift reactor 8, and carbon monoxide is converted into hydrogen and carbon dioxide by the water gas shift reaction shown in the following formula (2) to become a hydrogen rich gas. Carbon dioxide is removed from the hydrogen rich gas by the decarbonator 9 and recycled as hydrogen gas.
CO + H 2 O = CO 2 + H 2 +40.3 kJ / mol (2)
It is desirable to recycle the product gas so that the hydrogen concentration in the pyrolysis atmosphere gas is 30% or more. When the hydrogen gas to be recycled increases, the heat exchanger 10 may be installed to perform heat exchange with the pyrolysis gas.
[0013]
The reaction conditions in the pyrolysis reactor 1 are a temperature of 500 to 1600 ° C., a pressure of 1 to 150 atm, and a gas residence time of 0.01 to 30 seconds. In order to improve the yield of BTX, a temperature of 700 to 1000 is particularly preferred. It is desirable that the temperature is 10 ° C., the pressure is 10 to 100 atm, and the gas residence time is 0.01 to 5 seconds.
[0014]
【Example】
According to the flow shown in FIG. 1, 1000 kg of coal was pyrolyzed. The pyrolysis reaction temperature was 800 ° C., the pressure was 30 atm, the gas residence time was 1 sec, and 1000 Nm 3 of the product gas 1920 Nm 3 was recycled. Further, the generated char was gasified in a high temperature gas generator.
[0015]
Table 1 shows the amount of pyrolysis reaction products generated as a result. Further, as a comparative example, the result of thermal decomposition in a conventional process in which product gas is not recycled is shown. In the examples, the yield of BTX was significantly increased as compared with the comparative examples. In addition, the liquid components other than BTX increased significantly, but the average molecular weight of these liquid components in the examples was 195, whereas in the comparative example, it was 308, and the liquid components of the examples were lighter. Was progressing.
[0016]
[Table 1]
Figure 0004088363
[0017]
Table 2 shows the composition of the product gas and the heat of combustion in the examples and comparative examples. In the examples, 30 atm of high-pressure gas was generated, so that it was particularly excellent in power generation applications as compared with the comparative example. Further, since the H 2 / CO ratio in the product gas is large, it is also suitable as a chemical raw material for methanol synthesis and the like.
[0018]
[Table 2]
Figure 0004088363
[0019]
【The invention's effect】
According to the present invention, it is possible to produce hydrocarbon gas including methane and liquid hydrocarbon including BTX with high yield, and the initial cost of the equipment is reduced, and there is no need for heat supply. It becomes possible to provide a thermal hydrogenation pyrolysis method with high efficiency.
[Brief description of the drawings]
FIG. 1 is a flow sheet of a coal hydrogenation pyrolysis method of the present invention.
FIG. 2 is a flow sheet of a known coal hydrogenation gasification process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Thermal decomposition reactor 2 High temperature gas generator 3 Cyclone 4 Cooler 5 Tar refiner 6 Desulfurizer 7 Gas refiner 8 Shift reactor 9 Decarbonator 10 Heat exchanger

Claims (1)

石炭を急速に熱分解させて、ガス、タール、チャーを製造するプロセスにおいて、チャー、石炭、又はその他の炭素質原料の酸素によるガス化で生ずる高温ガス中に、水素リッチガスを混合し、水素濃度を高めたガス雰囲気中に石炭を吹き込み、石炭の急速加熱・熱分解反応を気流層中で圧力10〜100atm且つ温度700〜1000℃にて行わせて熱分解ガス、タール及びチャーを生成し、当該生成物からチャーを分離後、前記熱分解ガスを精製して製品ガスとBTXとすると共に、前記タールを精製してBTXとその他液成分とし、更に、前記製品ガスの一部をシフト反応により前記水素リッチガスとして前記ガス化で生じる高温ガス中に混合することを特徴とする石炭水素化熱分解方法。In the process of rapidly pyrolyzing coal to produce gas, tar, and char, hydrogen-rich gas is mixed with high-temperature gas generated by gasification of char, coal, or other carbonaceous raw materials with oxygen, and hydrogen concentration Coal is blown into a gas atmosphere in which the temperature is increased, and the rapid heating and pyrolysis reaction of coal is performed in the airflow layer at a pressure of 10 to 100 atm and a temperature of 700 to 1000 ° C. to generate pyrolysis gas, tar and char, After separating the char from the product, the pyrolysis gas is purified to product gas and BTX, the tar is purified to BTX and other liquid components, and a part of the product gas is converted by a shift reaction. A coal hydrogenation pyrolysis method, wherein the hydrogen-rich gas is mixed in a high-temperature gas generated by the gasification.
JP02792198A 1998-02-10 1998-02-10 Coal hydrocracking method Expired - Lifetime JP4088363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02792198A JP4088363B2 (en) 1998-02-10 1998-02-10 Coal hydrocracking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02792198A JP4088363B2 (en) 1998-02-10 1998-02-10 Coal hydrocracking method

Publications (2)

Publication Number Publication Date
JPH11228973A JPH11228973A (en) 1999-08-24
JP4088363B2 true JP4088363B2 (en) 2008-05-21

Family

ID=12234361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02792198A Expired - Lifetime JP4088363B2 (en) 1998-02-10 1998-02-10 Coal hydrocracking method

Country Status (1)

Country Link
JP (1) JP4088363B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863889B2 (en) * 2007-01-16 2012-01-25 新日鉄エンジニアリング株式会社 Coal hydrocracking process
JP4906519B2 (en) * 2007-01-16 2012-03-28 新日鉄エンジニアリング株式会社 Coal hydrocracking process
JP2009298909A (en) * 2008-06-12 2009-12-24 Nippon Steel Engineering Co Ltd Utilizing method of pyrolysis char as carbonaceous material for sintering
JP5316948B2 (en) * 2008-10-14 2013-10-16 Jfeエンジニアリング株式会社 Biomass pyrolysis equipment
CN101984021B (en) * 2010-10-26 2011-08-10 西峡龙成特种材料有限公司 Heating gas circulating type coal substance decomposing equipment
JP6293472B2 (en) * 2013-12-13 2018-03-14 三菱日立パワーシステムズ株式会社 Hydrogen production apparatus and hydrogen production method

Also Published As

Publication number Publication date
JPH11228973A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
US8038746B2 (en) Reduced-emission gasification and oxidation of hydrocarbon materials for liquid fuel production
RU2600373C2 (en) Partial oxidation of methane and higher hydrocarbons in flows of synthesis gas
JP5919393B2 (en) Method and apparatus for converting carbon dioxide to carbon monoxide
RU2495914C2 (en) Apparatus and methods of processing hydrogen and carbon monoxide
EP0745659B1 (en) Process for the complete conversion of hydrocarbon materials with a high molecular weight
US7008967B2 (en) Production of synthesis gas and synthesis gas derived products
JP5630626B2 (en) Organic raw material gasification apparatus and method
KR101644760B1 (en) Two stage gasification with dual quench
WO2008067221A1 (en) Improved synthetic fuel production methods and apparatuses
CZ2004440A3 (en) Method for controlling temperature of combustion turbine inlet fuel in order to achieve maximum power output
WO2005118750A1 (en) Solid-fuel gasification system
EP0503773B1 (en) Electrical power generation
JP2001131560A (en) Method and apparatus for thermally decomposing hydrocarbon raw material
JP5460970B2 (en) Woody biomass gas reforming system
CA2727395C (en) Method and equipment for producing synthesis gas
JP2003336079A (en) Method for reforming thermally cracked gas
JP4088363B2 (en) Coal hydrocracking method
JP2008069017A (en) Method for producing hydrogen
US4328009A (en) Coal gasification
JP4233175B2 (en) Power generation method using coal pyrolysis reaction products
JP3904161B2 (en) Method and apparatus for producing hydrogen / carbon monoxide mixed gas
Zuberbühler et al. Gasification of Biomass–An overview on available technologies
JP3947894B2 (en) Method and apparatus for producing hydrogen gas, etc.
US20090173080A1 (en) Method and apparatus to facilitate substitute natural gas production
EP0503772B1 (en) Electrical power generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term