JP4087776B2 - Liquid concentration measuring device - Google Patents

Liquid concentration measuring device Download PDF

Info

Publication number
JP4087776B2
JP4087776B2 JP2003366546A JP2003366546A JP4087776B2 JP 4087776 B2 JP4087776 B2 JP 4087776B2 JP 2003366546 A JP2003366546 A JP 2003366546A JP 2003366546 A JP2003366546 A JP 2003366546A JP 4087776 B2 JP4087776 B2 JP 4087776B2
Authority
JP
Japan
Prior art keywords
light
liquid
circuit
light emitting
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003366546A
Other languages
Japanese (ja)
Other versions
JP2005127980A (en
Inventor
実 山▲崎▼
林  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Advantech Co Ltd
Original Assignee
JFE Advantech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Advantech Co Ltd filed Critical JFE Advantech Co Ltd
Priority to JP2003366546A priority Critical patent/JP4087776B2/en
Publication of JP2005127980A publication Critical patent/JP2005127980A/en
Application granted granted Critical
Publication of JP4087776B2 publication Critical patent/JP4087776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、上下水道や河川の汚泥、パルプ製造を含む一般産業の製造工程等で発生する懸濁物質のような、液体中に含まれる固形物、粒子、コロイド状物質等の濃度(液体濃度)を測定する液体濃度測定装置及びその方法に関する。   The present invention relates to concentrations of solids, particles, colloidal substances, etc. contained in liquids, such as suspended substances generated in general industrial manufacturing processes including water and sewage systems, river sludge, and pulp manufacturing. The present invention relates to a liquid concentration measuring apparatus and a method thereof.

この種の液体濃度測定装置の測定原理としては、マイクロ波式や超音波減衰式等に加え、光学式が知られている。光学式の液体濃度測定装置は、光透過率式と散乱光演算式に大別される。また、散乱光演算式は前方散乱光演算式と後方散乱光演算式に分類される。   As a measurement principle of this type of liquid concentration measurement apparatus, an optical method is known in addition to a microwave method, an ultrasonic attenuation method, and the like. Optical liquid concentration measuring devices are roughly classified into a light transmittance formula and a scattered light calculation formula. The scattered light calculation formula is classified into a forward scattered light calculation formula and a back scattered light calculation formula.

光透過率式としては、非特許文献1に記載されているように、被測定液体の両側に光源と受光素子とを互いに対向して配置し、光源から被測定液体を透過して受光素子に到達する光の減衰量により液体中の汚泥濃度を測定する装置が知られている。   As described in Non-Patent Document 1, as the light transmittance formula, a light source and a light receiving element are arranged opposite to each other on both sides of a liquid to be measured, and the liquid to be measured is transmitted from the light source to the light receiving element. There is known an apparatus for measuring the sludge concentration in a liquid based on the amount of attenuation of light that arrives.

前方散乱光演算式としては、特許文献1から特許文献3に記載されているように、被測定液体の両側に光源と受光素子を配置し、光源から照射されて液体中の汚泥で反射された後に受光素子に達する光(散乱光)の強度により液体中の汚泥濃度を測定する装置が知られている。   As a forward scattered light calculation formula, as described in Patent Document 1 to Patent Document 3, a light source and a light receiving element are arranged on both sides of the liquid to be measured, and the light is irradiated from the light source and reflected by sludge in the liquid. An apparatus for measuring the sludge concentration in a liquid based on the intensity of light (scattered light) that reaches the light receiving element later is known.

後方散乱光演算方式としては、特許文献4及び特許文献5に記載されているように、被測定液体の片側に光源と受光素子を配置し、散乱光の強度により液体中の汚泥濃度を測定する装置が知られている。   As a backscattered light calculation method, as described in Patent Document 4 and Patent Document 5, a light source and a light receiving element are arranged on one side of the liquid to be measured, and the sludge concentration in the liquid is measured by the intensity of the scattered light. The device is known.

光透過率式及び散乱光演算式の液体濃度測定装置の測定原理を概説すると、まず特定波長の光に対する透過光強度又は散乱光強度と濃度との関係を測定し、濃度校正曲線として予め記憶しておく。そして、実際に当該特定波長の光を光源から被測定液体に照射し、受光素子で透過光強度又は散乱光強度を実測する。この透過光強度又は散乱光強度の実測値から濃度校正曲線に基づいて濃度を決定する。   To outline the measurement principle of the liquid concentration measurement device using the light transmittance formula and the scattered light calculation formula, first, the relationship between the transmitted light intensity or the scattered light intensity and the concentration for light of a specific wavelength is measured and stored in advance as a concentration calibration curve. Keep it. Then, the liquid to be measured is actually irradiated from the light source to the liquid to be measured, and the transmitted light intensity or the scattered light intensity is actually measured by the light receiving element. The density is determined from the actually measured value of the transmitted light intensity or scattered light intensity based on the density calibration curve.

液体色が変化すると光の透過率や反射率が変化する。すなわち、液体色が明るい色から暗い色へ変化すると(例えば、白色から茶褐色、明るい茶色、茶色、及びこげ茶色を経て黒色へ変化すると)、それに伴って光の透過率や反射率が変化する。特に、黒色に近い液体では、液体色の変化に対する光の透過率や反射率の変化が大きい。そのため、透過光強度や散乱光強度と濃度の関係に基づいて液体濃度を測定する場合、実際の液体濃度が変化していなくても液体色の変化により液体濃度の検出値が変化し、測定誤差となる。例えば、測定対象が下水道水の汚泥濃度である場合、汚泥の腐敗進行に伴って汚泥色は徐々に黒色に変化していく。また、複数の下水処理場から集約した汚泥を処理する汚泥処理場では、その配分が変化すると汚泥色が変化する。これら汚泥色の変化に起因する光の透過率や反射率の変化により、液体濃度の測定誤差が生じる。   When the liquid color changes, the light transmittance and reflectance change. That is, when the liquid color changes from a light color to a dark color (for example, from white to brown, light brown, brown, and dark brown to black), the light transmittance and reflectance change accordingly. In particular, in a liquid close to black, changes in light transmittance and reflectance with respect to changes in liquid color are large. Therefore, when measuring liquid concentration based on the relationship between transmitted light intensity, scattered light intensity, and concentration, even if the actual liquid concentration does not change, the detection value of the liquid concentration changes due to the change in the liquid color, resulting in a measurement error. It becomes. For example, when the measurement object is the sludge concentration of sewer water, the sludge color gradually changes to black as the sludge decays. Moreover, in the sludge treatment plant treating sludge collected from a plurality of sewage treatment plants, the sludge color changes when the distribution changes. Measurement errors of liquid concentration occur due to changes in light transmittance and reflectance caused by these sludge color changes.

特許文献6には、液体色の影響を回避するために被測定液体を脱色することが記載されている。しかし、脱色用の装置が必要となるので装置が複雑化、大型化する。また、特許文献7には受光用の光ファイバの配置と信号処理により液体色の影響を補正することが記載されている。しかし、かかる補正では液体色の影響を排除して高精度で濃度測定を行うことはできない。
特開11−108838号公報 特開11−108822号公報 特開7−270314号公報 特開2002−243640号公報 特開平7−20048号公報 特開平8−166346号公報 特開2002−365216号公報 日本下水道事業団,「設計基準(案)電気設計編」,財団法人下水道業務管理センター,第6章p6.3−80,昭和62年4月
Patent Document 6 describes that the liquid to be measured is decolorized in order to avoid the influence of the liquid color. However, since a device for decolorization is required, the device becomes complicated and large. Patent Document 7 describes that the influence of the liquid color is corrected by the arrangement of optical fibers for light reception and signal processing. However, such correction cannot remove the influence of the liquid color and perform density measurement with high accuracy.
JP 11-108838 A JP 11-108822 A JP 7-270314 A JP 2002-243640 A Japanese Patent Laid-Open No. 7-20048 JP-A-8-166346 JP 2002-365216 A Japan Sewerage Corporation, “Design Standard (Draft) Electrical Design”, Sewerage Management Center, Chapter 6, p6.3-80, April 1987

前記従来の光学式液体濃度測定装置における問題に鑑み、本発明は2種類以上の波長の光を使用することで、液体色の影響に起因する測定誤差を排除し、高精度での液体濃度測定を行うことを課題としている。   In view of the problems in the conventional optical liquid concentration measuring apparatus, the present invention eliminates measurement errors due to the influence of liquid color by using light of two or more wavelengths, and measures liquid concentration with high accuracy. The challenge is to do.

第1の発明は、被測定液体に対してそれぞれ波長の異なる光を照射する複数の発光素子と、前記複数の発光素子の1つを選択して駆動する駆動回路と、前記駆動回路が駆動する発光素子を順次切り替える発光素子切替回路と、前記発光素子から前記被測定液体に照射された光の散乱光又は透過光の強度である測定光強度を検出する受光素子と、前記発光素子切替回路から入力される信号に基づいて前記駆動回路によって現在駆動されている発光素子を識別し、この識別結果を示す信号を出力する発光素子識別回路と、前記受光素子から入力される前記測定光強度と、前記発光素子識別回路から入力される前記信号とから前記被測定液体の液体濃度を算出する演算回路とを備え、前記演算回路は、前記波長の異なる照射光間の前記測定光強度の差異の程度を表す評価量を算出し、かつ算出した前記評価量から前記被測定液体の液体色の前記測定光強度に対する影響を補正するゲイン値を算出するゲイン算出部と、前記ゲイン算出部により算出されたゲイン値と、前記測定光強度との積を算出する乗算器と、前記乗算器によって算出された前記積と、予め記憶された濃度校正曲線とにより液体濃度を算出する濃度算出部とを備える液体濃度測定装置を提供する。 In the first invention, a plurality of light emitting elements that irradiate light to be measured with different wavelengths, a driving circuit that selects and drives one of the plurality of light emitting elements, and the driving circuit drives A light emitting element switching circuit for sequentially switching the light emitting elements, a light receiving element for detecting a measurement light intensity which is an intensity of scattered light or transmitted light emitted from the light emitting element to the liquid to be measured, and the light emitting element switching circuit. A light emitting element that is currently driven by the drive circuit based on an input signal is identified, a light emitting element identifying circuit that outputs a signal indicating the identification result, the measurement light intensity input from the light receiving element, and an arithmetic circuit for calculating the liquid density of the liquid to be measured from said signal input from said light-emitting element identification circuit, the operation circuit of the measurement light intensity between different illumination light of the wavelength A gain calculation unit that calculates an evaluation amount representing a degree of difference and calculates a gain value for correcting an influence of the liquid color of the liquid to be measured on the measurement light intensity from the calculated evaluation amount; and the gain calculation unit A multiplier that calculates a product of the calculated gain value and the measurement light intensity; a concentration calculator that calculates a liquid concentration by using the product calculated by the multiplier and a concentration calibration curve stored in advance; A liquid concentration measuring device is provided.

各発光素子は異なる波長の光を出射し、駆動回路が駆動する発光素子は発光素子切替回路によって順次切り替えられる。従って、測定液体に対して照射される光の波長が順次切り替えられる。測定液体に対して照射される波長の異なる光に対応する測定光強度が受光素子で検出される。演算回路には受光素子から測定光強度が入力されると共に、発光素子識別回路から現在駆動されている発光素子の識別結果を示す信号が入力される。従って、演算回路は現在受光素子から入力されている測定光強度が、いずれの発光素子(いずれの周波数の光)に対応する測定光強度であるかを認識することができる。そのため、演算回路は複数種類の波長の光に対応する測定光強度を使用して液体濃度を算出することができる。また、波長の異なる照射光間の測定光強度の差異の程度を表す評価量に応じたゲインを乗じた散乱光強度を使用して液体濃度を決定することで、液体色の影響に起因する測定誤差を排除ないしは低減して高精度での液体濃度測定を行うことができる。 Each light emitting element emits light of a different wavelength, and the light emitting elements driven by the drive circuit are sequentially switched by the light emitting element switching circuit. Therefore, the wavelength of light irradiated to the measurement liquid is sequentially switched. Measurement light intensity corresponding to light having different wavelengths irradiated to the measurement liquid is detected by the light receiving element. The arithmetic circuit receives the measurement light intensity from the light receiving element and also receives a signal indicating the identification result of the currently driven light emitting element from the light emitting element identifying circuit. Therefore, the arithmetic circuit can recognize which measurement light intensity currently input from the light receiving element is the measurement light intensity corresponding to which light emitting element (light of which frequency). Therefore, the arithmetic circuit can calculate the liquid concentration using measurement light intensities corresponding to light of a plurality of types of wavelengths. In addition, by determining the liquid concentration using the scattered light intensity multiplied by the gain corresponding to the evaluation amount indicating the degree of difference in the measurement light intensity between the irradiation lights with different wavelengths, measurement due to the influence of the liquid color The liquid concentration can be measured with high accuracy by eliminating or reducing errors.

第2の発明は、被測定液体に対してそれぞれ波長の異なる光を照射する複数の発光素子と、それぞれ対応する前記発光素子を互いに異なる周波数で同時に点滅させる複数の駆動回路と、前記複数の発光素子から前記被測定液体に照射された光の透過光又は散乱光の強度である測定光強度を検出する受光素子と、それぞれ前記受光素子から前記測定光強度が入力され、対応する発光素子から前記被測定液に照射された光による測定光強度を、前記各発光素子の点滅周波数の相違を用いて弁別する複数の弁別回路と、前記各弁別回路より入力される測定光強度から前記被測定液体の液体濃度を算出する演算回路とを備え、前記演算回路は、前記波長の異なる照射光間の前記測定光強度の差異の程度を表す評価量を算出し、かつ算出した前記評価量から前記被測定液体の液体色の前記測定光強度に対する影響を補正するゲイン値を算出するゲイン算出部と、前記ゲイン算出部により算出されたゲイン値と、前記測定光強度との積を算出する乗算器と、前記乗算器によって算出された前記積と、予め記憶された濃度校正曲線とにより液体濃度を算出する濃度算出部とを備える液体濃度測定装置を提供する。 According to a second aspect of the present invention, there are provided a plurality of light emitting elements that irradiate light to be measured with different wavelengths, a plurality of drive circuits that simultaneously flash the corresponding light emitting elements at different frequencies, and the plurality of light emitting elements. A light receiving element for detecting a measurement light intensity which is an intensity of transmitted light or scattered light irradiated to the liquid to be measured from the element, and the measurement light intensity is input from the light receiving element, and the corresponding light emitting element A plurality of discriminating circuits for discriminating the measuring light intensity by the light irradiated to the liquid to be measured by using the difference in blinking frequency of each light emitting element, and the liquid to be measured from the measuring light intensity inputted from each of the discriminating circuits and an arithmetic circuit for calculating the liquid density, the arithmetic circuit calculates an evaluation value representing the degree of difference between the measurement light intensity between different illumination light of said wavelength, and calculated the estimated amount A gain calculation unit for calculating a gain value for correcting the influence of the liquid color of the liquid to be measured on the measurement light intensity, and a product of the gain value calculated by the gain calculation unit and the measurement light intensity. Provided is a liquid concentration measuring device comprising a multiplier, a concentration calculation unit for calculating a liquid concentration by using the product calculated by the multiplier and a concentration calibration curve stored in advance .

各発光素子は異なる波長の光を出射し、かつ対応する駆動回路によって異なる周波数で同時に点滅する。従って、測定液に対して点滅周期が異なる複数種類の波長の光が同時に照射される。受光素子から弁別回路に測定光強度が入力され、弁別回路は対応する発光素子から被測定液体に照射された光による測定光強度を弁別する。この弁別には各発光素子の点滅周波数の相違が用いられる。各弁別回路から演算回路には、いずれか1つの発光素子(いずれか1種類の周波数の光)に対応する測定光強度が入力される。そのため、演算回路は複数種類の波長の光に対応する測定光強度を使用して液体濃度を算出することができる。また、波長の異なる照射光間の測定光強度の差異の程度を表す評価量に応じたゲインを乗じた散乱光強度を使用して液体濃度を決定することで、液体色の影響に起因する測定誤差を排除ないしは低減して高精度での液体濃度測定を行うことができる。 Each light emitting element emits light of a different wavelength and flashes simultaneously at different frequencies by a corresponding driving circuit. Accordingly, a plurality of types of light having different blinking periods are simultaneously irradiated to the measurement liquid. The measurement light intensity is input from the light receiving element to the discrimination circuit, and the discrimination circuit discriminates the measurement light intensity by the light irradiated to the liquid to be measured from the corresponding light emitting element. For this discrimination, a difference in blinking frequency of each light emitting element is used. The measurement light intensity corresponding to any one light emitting element (light of any one kind of frequency) is input from each discrimination circuit to the arithmetic circuit. Therefore, the arithmetic circuit can calculate the liquid concentration using measurement light intensities corresponding to light of a plurality of types of wavelengths. In addition, by determining the liquid concentration using the scattered light intensity multiplied by the gain corresponding to the evaluation amount indicating the degree of difference in the measurement light intensity between the irradiation lights with different wavelengths, measurement due to the influence of the liquid color The liquid concentration can be measured with high accuracy by eliminating or reducing errors.

例えば、前記弁別回路は、対応する発光素子の点滅周波数を含む帯域の測定光強度を通過させるバンドパスフィルタ回路と、対応するバンドパスフィルタ回路から出力された信号を検波して前記演算回路に出力する検波回路とを備える。   For example, the discriminating circuit detects a signal output from a corresponding bandpass filter circuit that passes measurement light intensity in a band including a blinking frequency of the corresponding light emitting element, and outputs the detected signal to the arithmetic circuit. And a detection circuit.

第3の発明は、被測定液体に対してそれぞれ波長の異なる光を照射し、その発光部が互いに間隔をあけて配置された複数の発光素子と、それぞれ対応する前記発光素子を互いに異なる周波数で点滅させる複数の駆動回路と、受光部が対応する前記発光素子の発光部に近接してそれぞれ配置され、対応する発光素子から照射された光の透過光又は散乱光の強度である測定光強度を検出する複数の受光素子と、前記各受光素子から入力される測定光強度から前記被測定液体の液体濃度を算出する演算回路とを備え、前記演算回路は、前記波長の異なる照射光間の前記測定光強度の差異の程度を表す評価量を算出し、かつ算出した前記評価量から前記被測定液体の液体色の前記測定光強度に対する影響を補正するゲイン値を算出するゲイン算出部と、前記ゲイン算出部により算出されたゲイン値と、前記測定光強度との積を算出する乗算器と、前記乗算器によって算出された前記積と、予め記憶された濃度校正曲線とにより液体濃度を算出する濃度算出部とを備える液体濃度測定装置を提供する。 According to a third aspect of the present invention, a liquid to be measured is irradiated with light having different wavelengths, and a plurality of light emitting elements whose light emitting portions are arranged at intervals from each other, and the corresponding light emitting elements at different frequencies. A plurality of drive circuits to be blinked and a light receiving unit are arranged in proximity to the light emitting unit of the corresponding light emitting element, and a measurement light intensity which is the intensity of transmitted light or scattered light emitted from the corresponding light emitting element. A plurality of light receiving elements to be detected, and an arithmetic circuit that calculates a liquid concentration of the liquid to be measured from the measurement light intensity input from each of the light receiving elements, and the arithmetic circuit includes the irradiation light having different wavelengths. A gain calculation unit that calculates an evaluation amount that represents a degree of difference in measurement light intensity and calculates a gain value that corrects the influence of the liquid color of the liquid to be measured on the measurement light intensity from the calculated evaluation amount; The liquid concentration is calculated by a multiplier that calculates a product of the gain value calculated by the gain calculation unit and the measurement light intensity, the product calculated by the multiplier, and a concentration calibration curve that is stored in advance. Provided is a liquid concentration measuring device including a concentration calculating unit .

波長の異なる光を出射する複数の発光素子の発光部が互いに間隔をあけて配置されている。各受光素子の受光部は対応する発光素子の発光部に近接して配置されている。換言すれば、被測定液体に対して照射される光の波長毎に発光部と受光部とが互いに間隔をあけて(物理的に離して)配置されている。従って、各受光素子は対応する発光素子からの光による測定光強度を他の発光素子からの測定光強度と干渉することなく検出することができる。そのため、演算回路は複数種類の波長の光に対応する測定光強度を使用して液体濃度を算出することができる。また、波長の異なる照射光間の測定光強度の差異の程度を表す評価量に応じたゲインを乗じた散乱光強度を使用して液体濃度を決定することで、液体色の影響に起因する測定誤差を排除ないしは低減して高精度での液体濃度測定を行うことができる。 The light emitting portions of a plurality of light emitting elements that emit light having different wavelengths are arranged at intervals. The light receiving portion of each light receiving element is disposed in proximity to the light emitting portion of the corresponding light emitting element. In other words, the light emitting part and the light receiving part are arranged at intervals (physically separated) for each wavelength of light irradiated to the liquid to be measured. Therefore, each light receiving element can detect the measurement light intensity by the light from the corresponding light emitting element without interfering with the measurement light intensity from the other light emitting elements. Therefore, the arithmetic circuit can calculate the liquid concentration using measurement light intensities corresponding to light of a plurality of types of wavelengths. In addition, by determining the liquid concentration using the scattered light intensity multiplied by the gain corresponding to the evaluation amount indicating the degree of difference in the measurement light intensity between the irradiation lights with different wavelengths, measurement due to the influence of the liquid color The liquid concentration can be measured with high accuracy by eliminating or reducing errors.

第4の発明は、被測定液体に対してそれぞれ波長の異なる光を照射する複数の発光素子と、前記複数の発光素子の1つを選択して駆動する駆動回路と、前記駆動回路が駆動する発光素子を順次切り替える発光素子切替回路と、前記発光素子から前記被測定液体に照射された光の散乱光又は透過光の強度である測定光強度を検出する受光素子と、それぞれ前記受光素子から前記測定光強度が入力され、前記発光素子切替回路から入力される信号で駆動されて対応する発光素子から前記被測定液体に照射された光による測定光強度を検波する複数の同期検波回路と、それぞれ前記各同期検波回路毎に設けられ、対応する同期検波回路から出力された前記測定光強度を保持する複数の平滑化回路と、前記複数の平滑化回路のうち前記測定光強度を出力するものを順次切り替える信号切替回路と、前記信号切替回路から入力される信号に基づいて、前記複数の平滑化回路のうち現在測定光強度を出力しているものを識別し、この識別結果を示す信号を出力する信号識別回路と、前記平滑化回路から入力される前記測定光強度と、前記信号識別回路から入力される前記信号とから前記被測定液体の液体濃度を算出する演算回路とを備え、前記演算回路は、前記波長の異なる照射光間の前記測定光強度の差異の程度を表す評価量を算出し、かつ算出した前記評価量から前記被測定液体の液体色の前記測定光強度に対する影響を補正するゲイン値を算出するゲイン算出部と、前記ゲイン算出部により算出されたゲイン値と、前記測定光強度との積を算出する乗算器と、前記乗算器によって算出された前記積と、予め記憶された濃度校正曲線とにより液体濃度を算出する濃度算出部とを備える液体濃度測定装置を提供する。 According to a fourth aspect of the invention, a plurality of light emitting elements that irradiate light to be measured with different wavelengths, a driving circuit that selects and drives one of the plurality of light emitting elements, and the driving circuit drives A light emitting element switching circuit for sequentially switching the light emitting elements; a light receiving element for detecting a measurement light intensity which is an intensity of scattered light or transmitted light emitted from the light emitting element to the liquid to be measured; and A plurality of synchronous detection circuits that receive measurement light intensity, are driven by a signal input from the light emitting element switching circuit, and detect the measurement light intensity due to light emitted from the corresponding light emitting element to the liquid to be measured, A plurality of smoothing circuits that are provided for each of the synchronous detection circuits and hold the measurement light intensity output from the corresponding synchronous detection circuits, and output the measurement light intensity among the plurality of smoothing circuits. Based on a signal switching circuit that sequentially switches what to be performed and a signal input from the signal switching circuit, the plurality of smoothing circuits that currently output the measured light intensity are identified, and the identification result is shown A signal identification circuit that outputs a signal; an arithmetic circuit that calculates a liquid concentration of the liquid to be measured from the measurement light intensity input from the smoothing circuit and the signal input from the signal identification circuit; The arithmetic circuit calculates an evaluation amount indicating the degree of difference in the measurement light intensity between the irradiation lights having different wavelengths, and the calculated color from the calculated evaluation amount with respect to the measurement light intensity of the liquid color of the liquid to be measured A gain calculation unit that calculates a gain value for correcting the influence, a multiplier that calculates a product of the gain value calculated by the gain calculation unit and the measurement light intensity, and a multiplier that is calculated by the multiplier It said product, to provide a liquid concentration measuring device and a concentration calculator that calculates the liquid concentration with a previously stored density calibration curve.

各発光素子は異なる波長の光を出射し、駆動回路が駆動する発光素子は切替回路によって順次切り替えられる。従って、被測定液体に対して照射される光の波長が順次切り替えられる。各発光素子から照射された光による測定光強度は、受光素子で検出されて対応する同期検波回路で検波され、各平滑化回路で保持される。演算回路には平滑化回路から測定光強度が入力されると共に、信号識別回路から現在測定光強度を出力している平滑化回路を示す信号が入力される。従って、演算回路は現在入力されている測定光強度がいずれの平滑化回路(いずれの発光素子ないしはいずれの周波数の光)に対応する測定光強度であるかを認識することができる。そのため、演算回路は複数波長の光に対応する測定強度を使用して液体濃度を算出することができる。また、波長の異なる照射光間の測定光強度の差異の程度を表す評価量に応じたゲインを乗じた散乱光強度を使用して液体濃度を決定することで、液体色の影響に起因する測定誤差を排除ないしは低減して高精度での液体濃度測定を行うことができる。 Each light emitting element emits light of a different wavelength, and the light emitting elements driven by the drive circuit are sequentially switched by the switching circuit. Therefore, the wavelength of light irradiated to the liquid to be measured is sequentially switched. The measurement light intensity by the light emitted from each light emitting element is detected by the light receiving element, detected by the corresponding synchronous detection circuit, and held by each smoothing circuit. The arithmetic circuit receives the measurement light intensity from the smoothing circuit and the signal indicating the smoothing circuit that is currently outputting the measurement light intensity from the signal identification circuit. Therefore, the arithmetic circuit can recognize which smoothing circuit (which light emitting element or light of any frequency) corresponds to the currently input measurement light intensity. Therefore, the arithmetic circuit can calculate the liquid concentration using the measurement intensities corresponding to the light of a plurality of wavelengths. In addition, by determining the liquid concentration using the scattered light intensity multiplied by the gain corresponding to the evaluation amount indicating the degree of difference in the measurement light intensity between the irradiation lights with different wavelengths, measurement due to the influence of the liquid color The liquid concentration can be measured with high accuracy by eliminating or reducing errors.

第1から第4の発明によれば、複数種類の波長の光に対応する測定光強度をそれらが互いに干渉することなく検出できる。複数種類の波長の光に対応する測定光強度を使用して液体濃度を算出することで、液体色の影響に起因する測定誤差を排除し、高精度での液体濃度測定を行うことができる。   According to the first to fourth aspects of the invention, it is possible to detect the measurement light intensities corresponding to the light of a plurality of types without interfering with each other. By calculating the liquid concentration using the measurement light intensities corresponding to light of a plurality of types of wavelengths, it is possible to eliminate the measurement error caused by the influence of the liquid color and perform the liquid concentration measurement with high accuracy.

次に、添付図面を参照した本発明の実施形態を詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(第1実施形態)
図1から図3を参照すると、第1実施形態の液体濃度測定装置は、被測定液体1に対して光を照射して散乱光の強度(散乱光強度)を検出する検出器2と、検出器2で検出された散乱光強度に基づいて被測定液体1の液体濃度を算出する変換器3とを備える。
(First embodiment)
Referring to FIGS. 1 to 3, the liquid concentration measuring apparatus according to the first embodiment includes a detector 2 that irradiates light to the liquid 1 to be measured and detects the intensity of scattered light (scattered light intensity), and a detection. And a converter 3 that calculates the liquid concentration of the liquid 1 to be measured based on the scattered light intensity detected by the device 2.

検出器2は、ケーシング本体4aと、このケーシング本体4aの前面側から延びるロッド状のセンサ部4bとを有するケーシング4を備えている。ケーシング本体4aには2個の発光ダイオード、すなわち波長λ1の光を出射する発光ダイオード(第1の発光素子)6−1と、波長λ2の光を出射する発光ダイオード(第2の発光素子)6−2とが収容されている。また、ケーシング本体4aには1個のフォトダイオード(受光素子)7が収容されている。さらに、ケーシング本体4aには発光回路8と受光回路9が収容されている。   The detector 2 includes a casing 4 having a casing body 4a and a rod-shaped sensor portion 4b extending from the front side of the casing body 4a. The casing body 4a includes two light emitting diodes, that is, a light emitting diode (first light emitting element) 6-1 that emits light having a wavelength λ1, and a light emitting diode (second light emitting element) 6 that emits light having a wavelength λ2. -2 are housed. Also, one photodiode (light receiving element) 7 is accommodated in the casing body 4a. Further, a light emitting circuit 8 and a light receiving circuit 9 are accommodated in the casing body 4a.

発光ダイオード6−1が出射する光の波長λ1よりも、発光ダイオード6−2の出射する光の波長λ2が短い(λ1>λ2)。波長λ1,λ2は、被測定液体の吸光特性、被測定液体に含まる固形物等(例えば、泥や草)の反射特性、及び光ファイバを含む光学系の吸光特性等に応じて、可視光線から近赤外線の波長領域で設定される。例えば、波長λ1,λ2は600nmから1500nmの範囲で設定される。   The wavelength λ2 of the light emitted from the light emitting diode 6-2 is shorter than the wavelength λ1 of the light emitted from the light emitting diode 6-1 (λ1> λ2). The wavelengths λ1 and λ2 depend on the light absorption characteristics of the liquid to be measured, the reflection characteristics of solids (eg, mud and grass) contained in the liquid to be measured, and the light absorption characteristics of the optical system including the optical fiber. To near-infrared wavelength region. For example, the wavelengths λ1 and λ2 are set in the range of 600 nm to 1500 nm.

それぞれ基端側が対応する発光ダイオード6−1,6−2に接続された発光用光ファイバ11−1,11−2は、センサ部4bの先端まで延びている。また、基端側がフォトダイオード7に接続された受光用光ファイバ12もセンサ部4bの先端まで延びている。図3(A),(B)に示すように、各発光用光ファイバ11−1,11−2の末端側の端面である発光部13−1,13−2は、受光用光ファイバ12の末端側の端面である受光部14の周囲を取り囲み、かつ発光ダイオード6−1の発光部13−1と発光ダイオード6−2の発光部13−2が交互に隣り合うように配置されている。   The light-emitting optical fibers 11-1 and 11-2 connected to the corresponding light-emitting diodes 6-1 and 6-2 on the base end side extend to the tip of the sensor unit 4b. The light receiving optical fiber 12 whose proximal end is connected to the photodiode 7 also extends to the tip of the sensor unit 4b. As shown in FIGS. 3A and 3B, the light emitting sections 13-1 and 13-2, which are the end faces of the light emitting optical fibers 11-1 and 11-2, are connected to the light receiving optical fiber 12. The light-emitting unit 14 that surrounds the light-receiving unit 14 that is the end surface on the terminal side is disposed so that the light-emitting unit 13-1 of the light-emitting diode 6-1 and the light-emitting unit 13-2 of the light-emitting diode 6-2 are alternately adjacent to each other.

本実形態の検出器2は2個の発光ダイオード6−1,6−2を順次発光させることで、2種類の波長λ1,λ2を被測定液体1に照射し、それらの散乱光をフォトダイオード7で受光する。図3に示すように、検出器2の発光回路8はLEDドライブ回路(駆動回路)16、発振回路17、及びLED切替回路(発光素子切替回路)18を備えている。また、受光回路9はアンプ回路19と同期検波回路20を備えている。   The detector 2 of this embodiment irradiates the liquid 1 to be measured with two types of wavelengths λ1 and λ2 by sequentially emitting light from the two light emitting diodes 6-1 and 6-2, and the scattered light is emitted from the photodiode. 7 receives light. As shown in FIG. 3, the light emitting circuit 8 of the detector 2 includes an LED drive circuit (drive circuit) 16, an oscillation circuit 17, and an LED switching circuit (light emitting element switching circuit) 18. The light receiving circuit 9 includes an amplifier circuit 19 and a synchronous detection circuit 20.

LEDドライブ回路16は2個の発光ダイオード6−1,6−2の一方を選択して駆動する。外乱光との区別のために、LEDドライブ回路16は発振回路17で決まる周波数fで発光ダイオード6−1,6−2を点滅させる。換言すれば、LEDドライブ回路16で駆動中の発光ダイオード6−1,6−2は周波数fで発光と消光を交互に繰り返す。LEDドライブ回路16が駆動する発光ダイオード6−1,6−2を切り替えるタイミングはLED切替回路18から入力される信号により決まる。いずれの発光ダイオード6−1,6−2を先に駆動するかは特に限定されない。LED切替回路18の信号は、後述する変換器3の発光LED識別回路21へ電線を介して出力される。   The LED drive circuit 16 selects and drives one of the two light emitting diodes 6-1 and 6-2. In order to distinguish from disturbance light, the LED drive circuit 16 blinks the light emitting diodes 6-1 and 6-2 at a frequency f determined by the oscillation circuit 17. In other words, the light emitting diodes 6-1 and 6-2 being driven by the LED drive circuit 16 repeat light emission and extinction alternately at the frequency f. The timing for switching the light emitting diodes 6-1 and 6-2 driven by the LED drive circuit 16 is determined by a signal input from the LED switching circuit 18. Which light emitting diode 6-1 and 6-2 is driven first is not particularly limited. The signal of the LED switching circuit 18 is output to the light emitting LED identification circuit 21 of the converter 3 described later via an electric wire.

発光ダイオード6−1,6−2から発光用光ファイバ11−1,11−2及び発光部13−1,13−2を経て被測定液体1に照射された光(2種類の波長λ1,λ2がある。)は、被測定液体1に含まれる固形物等に反射され、散乱光として受光部14及び受光用光ファイバ12を経てフォトダイオード7に入射する。発光ダイオード6−1,6−2は同時に駆動されるのではなく順次駆動されるので、フォトダイオード7には発光ダイオード6−1の照射光による散乱光と、発光ダイオード6−2の照射光による散乱光とが順次入射する。フォトダイオード7で散乱光が電流に変換され、その電流値は散乱光強度に比例する。フォトダイオード7で変換された電流はアンプ回路19で増幅され、かつ電圧に変換される。変換された電圧は、同期検波回路20により発振回路17の発振周波数fに同期して検波され、直流電圧信号として電線を介して後述する変換器3のA/D回路22へ出力される。   Light irradiated from the light emitting diodes 6-1 and 6-2 through the light emitting optical fibers 11-1 and 11-2 and the light emitting units 13-1 and 13-2 to the liquid 1 to be measured (two types of wavelengths λ 1 and λ 2 Is reflected by a solid matter or the like contained in the liquid 1 to be measured, and enters the photodiode 7 through the light receiving unit 14 and the light receiving optical fiber 12 as scattered light. Since the light emitting diodes 6-1 and 6-2 are driven sequentially instead of simultaneously, the photodiode 7 is scattered by the light emitted from the light emitting diode 6-1 and the light emitted from the light emitting diode 6-2. Scattered light enters sequentially. The scattered light is converted into current by the photodiode 7, and the current value is proportional to the scattered light intensity. The current converted by the photodiode 7 is amplified by the amplifier circuit 19 and converted into a voltage. The converted voltage is detected in synchronization with the oscillation frequency f of the oscillation circuit 17 by the synchronous detection circuit 20, and is output as a DC voltage signal to the A / D circuit 22 of the converter 3 to be described later via a wire.

図3に示すように、変換器3は、発光LED識別回路(発光素子識別回路)21、A/D回路22、演算回路23、D/A回路24、LCD表示器25、設定スイッチ回路26、及びV/I変換回路27を備えている。   As shown in FIG. 3, the converter 3 includes a light emitting LED identification circuit (light emitting element identification circuit) 21, an A / D circuit 22, an arithmetic circuit 23, a D / A circuit 24, an LCD display 25, a setting switch circuit 26, And a V / I conversion circuit 27.

検出器2の同期検波回路20からの直流電圧信号は、A/D回路22でデジタル信号に変換され、演算回路23に出力される。前述のように、フォトダイオード7には発光ダイオード6−1,6−2の照射光による散乱光が順次入射する。従って、演算回路23には発光ダイオード6−1(波長λ1の照射光)に対応する散乱光強度P1と、発光ダイオード6−2(波長λ2の照射光)に対応する散乱光強度P2とが順次入力される。発光LED識別回路21は、検出器2のLED切替回路18から入力される信号に基づいて、2個の発光ダイオード6−1,6−2のうちLEDドライブ回路16によって現在駆動されているものを識別し、その識別結果を示す信号を演算回路23に出力する。従って、演算回路23は現在A/D回路22から入力されている散乱光強度P1,P2がいずれの発光ダイオード6−1,6−2(いずれの波長λ1,λ2)に対応するかを認識することができる。演算回路23は入力された散乱光強度P1,P2を使用して液体濃度を算出する。   The DC voltage signal from the synchronous detection circuit 20 of the detector 2 is converted into a digital signal by the A / D circuit 22 and output to the arithmetic circuit 23. As described above, the light scattered by the light emitted from the light emitting diodes 6-1 and 6-2 is sequentially incident on the photodiode 7. Therefore, in the arithmetic circuit 23, the scattered light intensity P1 corresponding to the light-emitting diode 6-1 (irradiated light having the wavelength λ1) and the scattered light intensity P2 corresponding to the light-emitting diode 6-2 (irradiated light having the wavelength λ2) are sequentially obtained. Entered. Based on the signal input from the LED switching circuit 18 of the detector 2, the light emitting LED identification circuit 21 is the one that is currently driven by the LED drive circuit 16 among the two light emitting diodes 6-1 and 6-2. A signal indicating the identification result is output to the arithmetic circuit 23. Accordingly, the arithmetic circuit 23 recognizes which light-emitting diodes 6-1 and 6-2 (which wavelengths λ1 and λ2) correspond to the scattered light intensities P1 and P2 currently input from the A / D circuit 22. be able to. The arithmetic circuit 23 calculates the liquid concentration using the input scattered light intensities P1 and P2.

演算回路23で算出された液体濃度はD/A回路24でアナログ電圧信号に変換され、さらにV/I回路27で電流信号に変化された後に出力される。LCD表示器25には算出された液体濃度を含む演算回路23に関連する各種情報が表示され、設定スイッチ回路26により演算回路23の各種設定を変更することができる。   The liquid concentration calculated by the arithmetic circuit 23 is converted into an analog voltage signal by the D / A circuit 24 and further converted into a current signal by the V / I circuit 27 and then output. Various information related to the arithmetic circuit 23 including the calculated liquid concentration is displayed on the LCD display 25, and various settings of the arithmetic circuit 23 can be changed by the setting switch circuit 26.

次に、演算回路23について詳細に説明する。まず、演算回路23における液体濃度の測定原理について図6を参照して説明する。図6は、波長λ1の光と波長λ1よりも短い波長λ2の光を被測定液体に照射した場合の散乱光強度と液体濃度の関係を概略的に示している。波長λ1、λ2はいずれも可視光線から近赤外線の波長領域にある。点線は液体色が比較的明るい場合(例えば、白色から茶色)を示し、実線は液体色が比較的暗い場合(例えば、こげ茶色から黒色)を示す。   Next, the arithmetic circuit 23 will be described in detail. First, the measurement principle of the liquid concentration in the arithmetic circuit 23 will be described with reference to FIG. FIG. 6 schematically shows the relationship between the scattered light intensity and the liquid concentration when the liquid to be measured is irradiated with light of wavelength λ1 and light of wavelength λ2 shorter than wavelength λ1. The wavelengths λ1 and λ2 are both in the visible to near-infrared wavelength region. A dotted line indicates a case where the liquid color is relatively bright (for example, white to brown), and a solid line indicates a case where the liquid color is relatively dark (for example, dark brown to black).

図6に示すように、散乱光強度と液体濃度との相関は概ね正特性の関係にある。ただし、液体濃度が高くなり過ぎたり、液体色が黒色に近付くと散乱光強度が低下して飽和する。濃度測定には、散乱光強度と液体濃度の相関が正特性を示す領域を利用する必要がある。   As shown in FIG. 6, the correlation between the scattered light intensity and the liquid concentration has a generally positive relationship. However, if the liquid concentration becomes too high or the liquid color approaches black, the scattered light intensity decreases and becomes saturated. In the concentration measurement, it is necessary to use a region where the correlation between the scattered light intensity and the liquid concentration shows a positive characteristic.

可視光線から近赤外線の波長領域における液体色の散乱光強度に対する影響については、まず、液体濃度が同一であっても液体色が暗くなると散乱光強度は低下する傾向がある。例えば、図6において液体濃度がC1である場合、液体色が暗い場合の散乱光強度P1’(波長λ1)は、液体色が明るい場合の散乱光強度P1よりも小さい。   Regarding the influence of the liquid color on the scattered light intensity in the visible to near-infrared wavelength region, first, even if the liquid concentration is the same, the scattered light intensity tends to decrease as the liquid color becomes darker. For example, in FIG. 6, when the liquid concentration is C1, the scattered light intensity P1 '(wavelength λ1) when the liquid color is dark is smaller than the scattered light intensity P1 when the liquid color is bright.

次に、液体色が明るい場合は散乱光強度と液体濃度の相関に対する波長差の影響は小さいが、液体色が暗くなるのに伴ってその影響が顕著になる傾向がある。具体的には、波長が長いと液体色が暗くなることに起因する散乱光強度の低下量が小さく、逆に波長が短いと液体色が暗くなることに起因する散乱光強度の低下量が大きい。例えば、図6において液体色が明るい場合は波長λ1、λ2による散乱光強度と液体濃度との相関の相違は比較的少ないが、液体色が暗い場合には波長λ1、λ2による相違は顕著となっている。また、同一の液体濃度C1については、液体色が暗い場合の波長λ1、λ2による散乱光強度の差ΔP1’は、液体色が明るい場合の散乱光強度の差ΔP1よりも大きい。   Next, when the liquid color is bright, the influence of the wavelength difference on the correlation between the scattered light intensity and the liquid concentration is small, but the influence tends to become remarkable as the liquid color becomes darker. Specifically, when the wavelength is long, the amount of decrease in the scattered light intensity due to the dark liquid color is small, and conversely, when the wavelength is short, the amount of decrease in the scattered light intensity due to the dark liquid color is large. . For example, in FIG. 6, when the liquid color is bright, the difference in correlation between the scattered light intensity due to the wavelengths λ1 and λ2 and the liquid concentration is relatively small, but when the liquid color is dark, the difference due to the wavelengths λ1 and λ2 becomes significant. ing. For the same liquid concentration C1, the difference ΔP1 ′ in scattered light intensity due to the wavelengths λ1 and λ2 when the liquid color is dark is larger than the difference ΔP1 in scattered light intensity when the liquid color is bright.

以上より、被測定液体に対して波長の異なる2種類の光を照射して得られる2つの散乱光強度の比、差等、すなわち2つの散乱光強度の差異の程度を表す評価値は、被測定液体の液体色と相関関係を有する。従って、この相関関係を使用して散乱光強度を補正することで、液体色の変化の影響を排除ないしは低減し、液体濃度の測定精度を向上することができる。なお、透過光強度と液体濃度の相関及び液体色の透過光強度に対する影響は、以上の散乱光強度の場合と逆になる。   As described above, the evaluation value indicating the ratio of two scattered light intensities obtained by irradiating the liquid to be measured with two types of light having different wavelengths, that is, the degree of difference between the two scattered light intensities, is Correlation with the liquid color of the measurement liquid. Therefore, by correcting the scattered light intensity using this correlation, the influence of the change in the liquid color can be eliminated or reduced, and the measurement accuracy of the liquid concentration can be improved. The correlation between the transmitted light intensity and the liquid concentration and the influence of the liquid color on the transmitted light intensity are opposite to those in the above scattered light intensity.

図4を参照すると、演算回路23はゲイン算出部(補正値算出部)31、乗算器32、及び濃度算出部33を備えている。2種類の波長λ1,λ2の照射光に対応する散乱光強度P1,P2がゲイン算出部31に入力される。また、波長λ1の照射光に対応する散乱強度P1は乗算器32にも入力される。   Referring to FIG. 4, the arithmetic circuit 23 includes a gain calculation unit (correction value calculation unit) 31, a multiplier 32, and a density calculation unit 33. Scattered light intensities P1 and P2 corresponding to irradiation light of two types of wavelengths λ1 and λ2 are input to the gain calculation unit 31. Further, the scattering intensity P1 corresponding to the irradiation light having the wavelength λ1 is also input to the multiplier 32.

ゲイン算出部31は後述する強度比Rを算出する。また、ゲイン算出部31は強度比RとゲインGの関係である1個のゲイン補正曲線(図5に示す。また、図4において符号35で示す。)を記憶しており、このゲイン補正曲線により強度比Rに対応するゲインGを算出する。ゲイン算出部31で算出されたゲインGが乗算器32に出力され、乗算器32では散乱光強度P1にゲインGが乗算される。散乱光強度P1とゲインGの積(P1×G)は濃度算出部33に出力される。濃度算出部33は、散乱光強度P1とゲインGの積(P1×G)と液体濃度の関係である1個の濃度校正曲線(図8に示す。また、図4において符号36で示す)を記憶しており、乗算器32から入力された積(P1×G)と濃度校正曲線により液体濃度Cを算出する。   The gain calculation unit 31 calculates an intensity ratio R described later. The gain calculation unit 31 stores one gain correction curve (shown in FIG. 5 and indicated by reference numeral 35 in FIG. 4), which is a relationship between the intensity ratio R and the gain G, and this gain correction curve. Thus, the gain G corresponding to the intensity ratio R is calculated. The gain G calculated by the gain calculation unit 31 is output to the multiplier 32, and the multiplier 32 multiplies the scattered light intensity P1 by the gain G. The product (P1 × G) of the scattered light intensity P1 and the gain G is output to the concentration calculation unit 33. The concentration calculation unit 33 shows one concentration calibration curve (shown in FIG. 8 and indicated by reference numeral 36 in FIG. 4) that is a relationship between the product of the scattered light intensity P1 and the gain G (P1 × G) and the liquid concentration. The liquid concentration C is calculated from the product (P1 × G) input from the multiplier 32 and the concentration calibration curve.

強度比Rは、波長λ1の照射光に対応する散乱光強度P1の波長λ2(λ2<λ1)の散乱光強度P2に対する比(P1/P2)である。図6を参照して説明したように、波長の異なる照射光の散乱光強度の差異の程度を表す評価量は、被測定液体の液体色と相関関係を有している。強度比Rはこの評価量の一例である。   The intensity ratio R is a ratio (P1 / P2) of the scattered light intensity P1 corresponding to the irradiation light with the wavelength λ1 to the scattered light intensity P2 at the wavelength λ2 (λ2 <λ1). As described with reference to FIG. 6, the evaluation amount indicating the degree of difference in scattered light intensity of irradiation light having different wavelengths has a correlation with the liquid color of the liquid to be measured. The intensity ratio R is an example of this evaluation amount.

次に、強度比Rとゲインの関係について図7を参照して説明する。図7は波長λ1に対応する散乱光強度P1と強度比R(P1/P2)との相関特性を示している。実線は液体色が明るい茶色の場合(液体色が明るい場合)を示し、一点鎖線は液体色がやや黒色の場合(液体色がやや暗い場合)を示し、二点鎖線が黒色の場合(液体色が暗い場合)を示す。また、破線は等濃度曲線を示す。   Next, the relationship between the intensity ratio R and the gain will be described with reference to FIG. FIG. 7 shows a correlation characteristic between the scattered light intensity P1 corresponding to the wavelength λ1 and the intensity ratio R (P1 / P2). The solid line indicates that the liquid color is light brown (when the liquid color is bright), the alternate long and short dash line indicates that the liquid color is slightly black (if the liquid color is slightly dark), and the two-dot chain line indicates that the liquid color is black (liquid color) Is dark). Moreover, a broken line shows an isodensity curve.

液体色が明るい場合には、散乱光強度P1の増加に対する強度比Rの変化は非常に小さい。次に、液体色がやや暗い場合、散乱光強度P1の増加に対する強度比Rの変化は液体色が明るい場合と比較して大幅に大きい。また、同一の液体濃度について比較すると、液体色がやや暗い場合の強度比Rは液体色が明るい場合よりも大きい。さらに、液体色が暗い場合、散乱光強度P1の増加に対する強度比Rの変化は一層大きくなる。また、同一の液体濃度について比較すると、液体色が暗い場合の強度比Rは液体色がやや暗い場合よりも一層大きくなる。従って、この図7も液体色が暗くなるほど、強度比Rが大きくなる傾向があることを示している。   When the liquid color is bright, the change in the intensity ratio R with respect to the increase in the scattered light intensity P1 is very small. Next, when the liquid color is slightly dark, the change in the intensity ratio R with respect to the increase in the scattered light intensity P1 is significantly larger than when the liquid color is bright. When comparing the same liquid concentration, the intensity ratio R when the liquid color is slightly dark is larger than that when the liquid color is bright. Further, when the liquid color is dark, the change in the intensity ratio R with respect to the increase in the scattered light intensity P1 is further increased. Further, when comparing the same liquid concentration, the intensity ratio R when the liquid color is dark is larger than when the liquid color is slightly dark. Accordingly, FIG. 7 also shows that the intensity ratio R tends to increase as the liquid color becomes darker.

1つの等濃度曲線に着目すると、液体色が明るい場合の散乱光強度P1aと比較して、液体色がやや暗い場合の散乱光強度P1bはα1だけ小さい。また、液体色が暗い場合の散乱光強度P1cと液体色が明るい場合の散乱光強度P1aの差α2はさらに大きくなる。ゲインGは、この液体色が暗くなるのに伴って増加する散乱光強度P1の低下量α1,α2を補い、液体色が明るい場合の散乱光強度P1に換算するための値(補正値)である。本実施形態では、ゲイン算出部31は図5に示すゲイン補正曲線として強度比とゲインの関係を記憶しているが、テーブル、関数等の他の形態で両者の関係を記憶していてもよい。   Focusing on one isoconcentration curve, the scattered light intensity P1b when the liquid color is slightly dark is smaller by α1 than the scattered light intensity P1a when the liquid color is bright. Further, the difference α2 between the scattered light intensity P1c when the liquid color is dark and the scattered light intensity P1a when the liquid color is bright is further increased. The gain G is a value (correction value) for compensating for the decrease amounts α1 and α2 of the scattered light intensity P1 that increases as the liquid color becomes darker and converted to the scattered light intensity P1 when the liquid color is bright. is there. In the present embodiment, the gain calculation unit 31 stores the relationship between the intensity ratio and the gain as the gain correction curve illustrated in FIG. 5, but may store the relationship between the two in other forms such as a table or a function. .

演算回路23の実行する処理を説明すると、まず、ゲイン算出部31が検出器2から入力された波長λ1,λ2(λ1>λ2)の照射光による散乱光強度P1,P2の強度比R(P1/P2)を算出する。次に、ゲイン算出部31は算出した強度比Rに対応するゲインGを図5のゲイン補正曲線により決定する。ゲイン算出部31から乗算器32にゲインGが出力され、乗算器32は波長λ1の照射光よる散乱光強度P1にゲインGを乗じる。乗算器32から濃度算出部33に散乱光強度P1とゲインGの積(P1×G)が出力され、濃度算出部33は入力された積(P1×G)に対応する濃度Cを図8の濃度校正曲線により決定する。前述のように強度比Rは被測定液体1の液体色と相関関係がある。従って、強度比Rに応じてゲインGを乗じた散乱光強度P1に基づいて液体濃度を決定することで、液体色の影響に起因する測定誤差を排除ないしは低減して高精度での液体濃度測定を行うことができる。   The processing executed by the arithmetic circuit 23 will be described. First, the gain calculation unit 31 first calculates the intensity ratio R (P1) of the scattered light intensities P1 and P2 by the irradiation light having the wavelengths λ1 and λ2 (λ1> λ2) input from the detector 2. / P2). Next, the gain calculation unit 31 determines the gain G corresponding to the calculated intensity ratio R from the gain correction curve of FIG. The gain G is output from the gain calculation unit 31 to the multiplier 32, and the multiplier 32 multiplies the scattered light intensity P1 by the irradiation light having the wavelength λ1 by the gain G. The product (P1 × G) of the scattered light intensity P1 and the gain G is output from the multiplier 32 to the density calculation unit 33, and the density calculation unit 33 sets the density C corresponding to the input product (P1 × G) in FIG. Determine by concentration calibration curve. As described above, the intensity ratio R has a correlation with the liquid color of the liquid 1 to be measured. Therefore, by determining the liquid concentration based on the scattered light intensity P1 multiplied by the gain G in accordance with the intensity ratio R, measurement error due to the influence of the liquid color is eliminated or reduced, and the liquid concentration measurement with high accuracy is performed. It can be performed.

図9(A),(B)は第1実施形態における検出器2の変形例を示す。発光ダイオード6−1,6−2は同時に駆動されるのではなく、順次駆動される。従って、この例のように両方の発光ダイオード6−1,6−2で発光用光ファイバ11を共用してもよい。   9A and 9B show a modification of the detector 2 in the first embodiment. The light emitting diodes 6-1 and 6-2 are not driven simultaneously but sequentially. Therefore, the light emitting optical fiber 11 may be shared by both the light emitting diodes 6-1 and 6-2 as in this example.

(第2実施形態)
図10に示す本発明の第2実施形態は、検出器2の構造と変換器3が発光LED識別回路21(図2参照)を備えていない点が第1実施形態と異なるが、演算回路23の実行する処理は第1実施形態と同様である。この第2実施形態では、2個の発光ダイオード6−1,6−2を異なる周波数で断続的に発光させることで、2種類の散乱光強度P1,P2を弁別している。
(Second Embodiment)
The second embodiment of the present invention shown in FIG. 10 is different from the first embodiment in that the structure of the detector 2 and the converter 3 are not provided with the light emitting LED identification circuit 21 (see FIG. 2). The process executed by is the same as in the first embodiment. In the second embodiment, two types of scattered light intensities P1 and P2 are discriminated by causing the two light emitting diodes 6-1 and 6-2 to emit light intermittently at different frequencies.

検出器2の発光回路8は、それぞれ発光ダイオード6−1,6−2を駆動するための2個のLEDドライブ回路16−1,16−2を備えている。一方のLEDドライバ回路16−1は、波長λ1の発光ダイオード6−1を発振回路17−1で決まる周波数f1で駆動する。他方のLEDドライバ回路16−2は、波長λ2の発光ダイオード6−2を発振回路17−1で決まる周波数f2で駆動する。周波数f1と周波数f2は互いに異なる。   The light emitting circuit 8 of the detector 2 includes two LED drive circuits 16-1 and 16-2 for driving the light emitting diodes 6-1 and 6-2, respectively. One LED driver circuit 16-1 drives the light emitting diode 6-1 having the wavelength λ1 at the frequency f1 determined by the oscillation circuit 17-1. The other LED driver circuit 16-2 drives the light emitting diode 6-2 having the wavelength λ2 at the frequency f2 determined by the oscillation circuit 17-1. The frequency f1 and the frequency f2 are different from each other.

検出器2の受光回路9は、アンプ回路19に接続された2個のバンドパスフィルタ(BPF)回路37−1,37−2を備えている。BPF回路37−1は周波数f1を含むが周波数f2を含まない帯域の信号を通過させる。また、BPF回路37−2は周波数f2を含むが周波数f1を含まない帯域の信号を通過させる。これらのBPF回路37−1,37−2には検波回路38−1,38−2がそれぞれ接続されている。また、検波回路38−1,38−2はそれぞれ演算回路23のA/D回路22−1,22−2に接続されている。BPF回路37−1,37−2及び検波回路38−1,38−2は弁別回路を構成している。   The light receiving circuit 9 of the detector 2 includes two band pass filter (BPF) circuits 37-1 and 37-2 connected to the amplifier circuit 19. The BPF circuit 37-1 passes a signal in a band including the frequency f1 but not including the frequency f2. The BPF circuit 37-2 passes a signal in a band that includes the frequency f2 but does not include the frequency f1. Detection circuits 38-1 and 38-2 are connected to these BPF circuits 37-1 and 37-2, respectively. The detection circuits 38-1 and 38-2 are connected to the A / D circuits 22-1 and 22-2 of the arithmetic circuit 23, respectively. The BPF circuits 37-1 and 37-2 and the detection circuits 38-1 and 38-2 constitute a discrimination circuit.

LEDドライブ回路16−1で駆動される発光ダイオード6−1は周波数f1で点滅し、この点滅光(波長λ1)は発光用光ファイバ11−1及び発光部13−1を経て被測定液体1に照射される。同時に、LEDドライブ回路16−2で駆動される発光ダイオード6−2が周波数f2で点滅し、この点滅光(波長λ2)は発光用光ファイバ11−2及び発光部13−2を経て被測定液体1に照射される。被測定液体1に同時に照射された2種類の光(周波数f1で点滅する発光波長λ1の光と周波数f2で点滅する発光波長λ2の光)の散乱光は、受光部14及び受光用光ファイバ12を経てフォトダイオード7に入射する。フォトダイオード7で入射光から変換された電流はアンプ回路19で増幅され、かつ電圧に変換されて2個のBPF回路37−1,37−2に出力される。   The light emitting diode 6-1 driven by the LED drive circuit 16-1 blinks at the frequency f1, and this blinking light (wavelength λ1) passes through the light emitting optical fiber 11-1 and the light emitting unit 13-1 to the liquid 1 to be measured. Irradiated. At the same time, the light-emitting diode 6-2 driven by the LED drive circuit 16-2 blinks at the frequency f2, and this blinking light (wavelength λ2) passes through the light-emitting optical fiber 11-2 and the light-emitting portion 13-2 to be measured liquid. 1 is irradiated. Scattered light of two types of light (light having a light emission wavelength λ1 blinking at a frequency f1 and light having a light emission wavelength λ2 blinking at a frequency f2) simultaneously irradiated onto the liquid 1 to be measured is a light receiving unit 14 and a light receiving optical fiber 12. Then, the light enters the photodiode 7. The current converted from the incident light by the photodiode 7 is amplified by the amplifier circuit 19, converted into a voltage, and output to the two BPF circuits 37-1 and 37-2.

BPF回路37−1で周波数成分f1の信号を弁別することにより、発光ダイオード6−1からの照射光(波長λ1)による散乱光の信号成分のみが検波回路38−1で検波され、変換器3のA/D回路22−1に出力される。同様に、BPF回路37−2で周波数成分f2の信号を弁別することにより、発光ダイオード6−2からの照射光(波長λ2)による散乱光の信号成分のみが検波回路38−2で検波され、変換器3のA/D回路22−2に出力される。変換器3の演算回路23には、A/D回路22−1から発光ダイオード6−1(波長λ1の照射光)に対応する散乱光強度P1を示す直流信号が入力され、A/D回路22−2から発光ダイオード6−2(波長λ2の照射光)に対応する散乱光強度P2を示す直流信号が入力される。換言すれば演算回路23には2種類の散乱光強度P1,P2が別個に入力される。従って、演算回路23はこれら2種類の散乱光強度P1,P2を使用して液体濃度を算出することができる。   By discriminating the signal of the frequency component f1 by the BPF circuit 37-1, only the signal component of the scattered light due to the irradiation light (wavelength λ1) from the light emitting diode 6-1 is detected by the detection circuit 38-1, and the converter 3 To the A / D circuit 22-1. Similarly, by discriminating the signal of the frequency component f2 by the BPF circuit 37-2, only the signal component of the scattered light due to the irradiation light (wavelength λ2) from the light emitting diode 6-2 is detected by the detection circuit 38-2. It is output to the A / D circuit 22-2 of the converter 3. A DC signal indicating scattered light intensity P1 corresponding to the light emitting diode 6-1 (irradiation light having the wavelength λ1) is input from the A / D circuit 22-1 to the arithmetic circuit 23 of the converter 3, and the A / D circuit 22 is supplied. -2 is input with a DC signal indicating the scattered light intensity P2 corresponding to the light emitting diode 6-2 (irradiated light having the wavelength λ2). In other words, two types of scattered light intensities P1 and P2 are separately input to the arithmetic circuit 23. Therefore, the arithmetic circuit 23 can calculate the liquid concentration using these two types of scattered light intensities P1 and P2.

第2実施形態のその他の構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the second embodiment are the same as those of the first embodiment.

(第3実施形態)
図11及び図12に示す本発明の第3実施形態では、2種類の照射光の散乱光を互いに干渉することなく受光するために、発光部及び受光部を十分な間隔をあけて配置している。
(Third embodiment)
In the third embodiment of the present invention shown in FIGS. 11 and 12, the light emitting part and the light receiving part are arranged with a sufficient interval in order to receive the scattered light of the two types of irradiation light without interfering with each other. Yes.

検出器2は2個のフォトダイオード7−1,7−2を備えている。図11(A)に示すように、各フォトダイオード7−1,7−2に接続された受光用光ファイバ12−1,12−2の末端側の端面である受光部14−1,14−2は、互いに十分な間隔をあけて配置されている。また、受光部14−1の周囲を取り囲んで発光ダイオード6−1の発光部13−1が配置され、受光部14−2の周囲を取り囲んで発光ダイオード6−2の発光部13−2が配置されている。   The detector 2 includes two photodiodes 7-1 and 7-2. As shown in FIG. 11A, the light receiving sections 14-1 and 14-, which are end faces on the terminal side of the light receiving optical fibers 12-1 and 12-2 connected to the photodiodes 7-1 and 7-2, respectively. 2 are arranged at a sufficient distance from each other. Further, the light emitting unit 13-1 of the light emitting diode 6-1 is disposed surrounding the light receiving unit 14-1, and the light emitting unit 13-2 of the light emitting diode 6-2 is disposed surrounding the light receiving unit 14-2. Has been.

発光回路8は第2実施形態(図10)と同様であり、LEDドライブ回路16−1,16−2が発振回路17−1,17−2で決まる異なる周波数f1,f2で対応する発光ダイオード6−1,6−2を駆動する。   The light emitting circuit 8 is the same as that of the second embodiment (FIG. 10), and the LED drive circuits 16-1 and 16-2 correspond to the light emitting diodes 6 corresponding to different frequencies f1 and f2 determined by the oscillation circuits 17-1 and 17-2. −1, 6-2 are driven.

受光回路9は、フォトダイオード7−1から出力された信号を処理するアンプ回路19−1、BPF回路37−1、及び検波回路38−1と、フォトダイオード7−2から出力された信号を処理するアンプ回路19−2、BPF回路37−2、及び検波回路38−2とが別個に設けられている。   The light receiving circuit 9 processes the signal output from the photodiode 7-1, the amplifier circuit 19-1 that processes the signal output from the photodiode 7-1, the BPF circuit 37-1, the detection circuit 38-1. The amplifier circuit 19-2, the BPF circuit 37-2, and the detection circuit 38-2 are provided separately.

発光ダイオード6−1,6−2は対応するLEDドライブ回路16−1,16−2で駆動されることで、互いに異なる周波数f1,f2で同時に点滅し、各点滅光は対応する発光部13−1,13−2から被測定液体1に照射される。発光ダイオード6−1の発光部13−1から照射された光(波長λ1)の散乱光は、発光部13−1に近接して配置された受光部14−1を経てフォトダイオード7−1に入射する。また、発光ダイオード6−2の発光部13−2から照射された光(波長λ2)の散乱光は、発光部13−2に近接して配置された受光部14−2を経てフォトダイオード7−2に入射する。   The light emitting diodes 6-1 and 6-2 are driven by the corresponding LED drive circuits 16-1 and 16-2 so as to blink simultaneously at mutually different frequencies f 1 and f 2. The liquid 1 to be measured is irradiated from 1 and 13-2. The scattered light of the light (wavelength λ1) emitted from the light emitting unit 13-1 of the light emitting diode 6-1 passes through the light receiving unit 14-1 disposed in the vicinity of the light emitting unit 13-1, and then enters the photodiode 7-1. Incident. Further, the scattered light of the light (wavelength λ2) emitted from the light emitting unit 13-2 of the light emitting diode 6-2 passes through the light receiving unit 14-2 disposed in the vicinity of the light emitting unit 13-2, and then the photodiode 7−. 2 is incident.

フォトダイオード7−1で入射光から変換された電流はアンプ回路19−1で増幅され、かつ電圧に変換されてBPF回路37−1に出力される。BPF回路37−1で周波数成分f1の信号を弁別することにより、発光ダイオード6−1からの照射光(波長λ1)による散乱光の信号成分(散乱光強度P1に対応する。)のみが検波回路38−1で検波され、変換器3のA/D回路22−1に出力される。同様に、BPF回路37−2で周波数成分f2の信号を弁別することにより、発光ダイオード6−2からの照射光(波長λ1)による散乱光の信号成分(散乱光強度P2に対応する)のみが検波回路38−2で検波され、変換器3のA/D回路22−2に出力される。従って、演算回路23には2種類の散乱光強度P1,P2がA/D回路22−1,22−2から別個に入力され、これら2種類の散乱光強度P1,P2を使用して液体濃度を算出することができる。   The current converted from the incident light by the photodiode 7-1 is amplified by the amplifier circuit 19-1, converted into a voltage, and output to the BPF circuit 37-1. By discriminating the signal of the frequency component f1 by the BPF circuit 37-1, only the signal component of the scattered light (corresponding to the scattered light intensity P1) due to the irradiation light (wavelength λ1) from the light emitting diode 6-1 is detected. 38-1 is detected and output to the A / D circuit 22-1. Similarly, by discriminating the signal of the frequency component f2 by the BPF circuit 37-2, only the signal component of the scattered light (corresponding to the scattered light intensity P2) due to the irradiation light (wavelength λ1) from the light emitting diode 6-2 is obtained. The signal is detected by the detection circuit 38-2 and output to the A / D circuit 22-2 of the converter 3. Accordingly, two types of scattered light intensities P1 and P2 are separately input from the A / D circuits 22-1 and 22-2 to the arithmetic circuit 23, and the liquid concentration is determined using these two types of scattered light intensities P1 and P2. Can be calculated.

第3実施形態のその他の構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the third embodiment are the same as those of the first embodiment.

(第4実施形態)
図13及び図14に示す本発明の第4実施形態では、第1実施形態の検出器2(図3参照)にさらに発光ダイオードを追加している。すなわち、検出器2は発光ダイオード6−1,6−2に加え、発光ダイオード6−3〜6−N(N≧3)を備えている。発光ダイオード6−1〜6−Nの発光波長λ1〜λNは互いに異なり、第i番目と第i+1番目の発光ダイオードの発光波長にはλi>λi+1なる関係がある。LEDドライブ回路16は発振回路17で決まる周波数fで発光ダイオード6−1〜6−Nのいずれか1個を駆動する。LED切替回路18は、LEDドライブ回路16で駆動される発光ダイオード6−1〜6−Nを順次切り替える。従って、変換器3の演算回路23にはA/D回路22を介して発光ダイオード6−1〜6−N(波長λ1〜λNの照射光)に対応する散乱光強度P1〜PNが順次入力される。発光ダイオード6−1〜6−Nのうち現在駆動されているものを示す信号が発光LED識別回路21から入力されるので、演算回路23は現在A/D回路22から入力されている散乱光強度P1〜PNがいずれの発光ダイオード6−1〜6−N(いずれの周波数λ1〜λN)に対応するかを認識することができる。
(Fourth embodiment)
In 4th Embodiment of this invention shown in FIG.13 and FIG.14, the light emitting diode is further added to the detector 2 (refer FIG. 3) of 1st Embodiment. That is, the detector 2 includes light emitting diodes 6-3 to 6-N (N ≧ 3) in addition to the light emitting diodes 6-1 and 6-2. The light emitting wavelengths λ1 to λN of the light emitting diodes 6-1 to 6-N are different from each other, and the light emitting wavelengths of the i th and i + 1 th light emitting diodes have a relationship of λi> λi + 1. The LED drive circuit 16 drives any one of the light emitting diodes 6-1 to 6 -N at a frequency f determined by the oscillation circuit 17. The LED switching circuit 18 sequentially switches the light emitting diodes 6-1 to 6 -N driven by the LED drive circuit 16. Accordingly, the scattered light intensities P1 to PN corresponding to the light emitting diodes 6-1 to 6-N (irradiated light of wavelengths λ1 to λN) are sequentially input to the arithmetic circuit 23 of the converter 3 via the A / D circuit 22. The Since a signal indicating the currently driven one of the light emitting diodes 6-1 to 6 -N is input from the light emitting LED identification circuit 21, the arithmetic circuit 23 has the scattered light intensity currently input from the A / D circuit 22. It can be recognized which light-emitting diodes 6-1 to 6-N (which frequencies λ1 to λN) correspond to P1 to PN.

図14を参照すると、演算回路23のゲイン算出部31は複数のゲイン補正曲線35を記憶している。各ゲイン補正曲線35は、強度比Rの算出に使用される散乱光強度P1〜PNの組み合わせに対応している。すなわち、散乱強度P1,P2から算出した強度比RとゲインGの関係を示すゲイン補正曲線35以外に、例えば散乱強度P3,P4等から算出した強度比RとゲインGの関係を示すゲイン補正曲線35がゲイン算出部31に記憶されている。また、濃度算出部33は強度比Rの算出に使用される散乱光強度P1〜PNの組み合わせに対応して複数の濃度校正曲線36が記憶されている。   Referring to FIG. 14, the gain calculation unit 31 of the arithmetic circuit 23 stores a plurality of gain correction curves 35. Each gain correction curve 35 corresponds to a combination of scattered light intensities P1 to PN used for calculating the intensity ratio R. That is, in addition to the gain correction curve 35 indicating the relationship between the intensity ratio R calculated from the scattering intensities P1 and P2 and the gain G, for example, the gain correction curve indicating the relationship between the intensity ratio R calculated from the scattering intensities P3 and P4 and the gain G, for example. 35 is stored in the gain calculation unit 31. Further, the concentration calculation unit 33 stores a plurality of concentration calibration curves 36 corresponding to the combinations of scattered light intensities P1 to PN used for calculating the intensity ratio R.

演算回路23は検出器2から入力される複数の散乱光強度P1〜PNを記憶する記憶部41を備えている。また、演算回路23は後述するように液体濃度算出に使用する散乱光強度P1〜PNの組み合わせを選択する選択部42を備えている。   The arithmetic circuit 23 includes a storage unit 41 that stores a plurality of scattered light intensities P <b> 1 to PN input from the detector 2. The arithmetic circuit 23 includes a selection unit 42 that selects a combination of scattered light intensities P1 to PN used for liquid concentration calculation, as will be described later.

検出器2から演算回路23に入力されたすべての散乱光強度P1〜PNが記憶部41に記憶される。また、散乱光強度P1,P2がゲイン算出部31に入力される。ゲイン算出部31は、散乱光強度P1,P2から強度比Rを算出し、この算出した強度比Rと複数のゲイン補正曲線35のうち散乱光強度P1,P2に対応するものとからゲインGを算出する。算出されゲインGは乗算器32で散乱光強度P1に乗算され、その積(P1×G)は濃度算出部33に出力される。濃度算出部33は、積(P1×G)と複数の濃度校正曲線36のうち散乱光強度P1,P2に対応するものとから、液体濃度Cを算出する。この濃度Cは選択部42に出力される。   All scattered light intensities P <b> 1 to PN inputted from the detector 2 to the arithmetic circuit 23 are stored in the storage unit 41. Further, the scattered light intensities P <b> 1 and P <b> 2 are input to the gain calculation unit 31. The gain calculation unit 31 calculates the intensity ratio R from the scattered light intensities P1 and P2, and calculates the gain G from the calculated intensity ratio R and the gain correction curve 35 corresponding to the scattered light intensities P1 and P2. calculate. The calculated gain G is multiplied by the scattered light intensity P 1 by the multiplier 32, and the product (P 1 × G) is output to the concentration calculation unit 33. The concentration calculation unit 33 calculates the liquid concentration C from the product (P1 × G) and the one corresponding to the scattered light intensities P1 and P2 among the plurality of concentration calibration curves 36. The concentration C is output to the selection unit 42.

選択部42は、散乱光強度P1〜PNのうち入力され液体濃度Cを含む濃度領域での液体濃度算出に最も適した2種類の散乱光強度を選択する。さらに、選択部42は選択した散乱光強度を使用してゲイン算出部31、乗算器32、及び濃度算出部33に液体濃度を再計算させる。例えば、選択部42が散乱光強度P2,P3を選択した場合、記憶部41からゲイン算出部31に散乱光強度P2,P3が入力され、乗算器32に散乱光強度P2が入力される。ゲイン算出部31は散乱光強度P2,P3の強度比Rを算出し、算出した強度比Rと散乱光強度P2,P3に対応するゲイン補正曲線35からゲインGを算出する。算出されたゲインGは乗算器32で散乱光強度P2に乗算され、その積(P2×G)が濃度算出部33に出力される。濃度算出部33は入力された積(P2×G)と散乱光強度P2,P3に対応する濃度校正曲線36とから液体濃度Cを算出する。この再計算され液体濃度Cが演算回路23から出力される。   The selection unit 42 selects two types of scattered light intensities most suitable for liquid concentration calculation in the concentration region including the liquid concentration C that is input from among the scattered light intensities P1 to PN. Further, the selection unit 42 causes the gain calculation unit 31, the multiplier 32, and the concentration calculation unit 33 to recalculate the liquid concentration using the selected scattered light intensity. For example, when the selection unit 42 selects the scattered light intensities P2 and P3, the scattered light intensities P2 and P3 are input from the storage unit 41 to the gain calculation unit 31, and the scattered light intensity P2 is input to the multiplier 32. The gain calculation unit 31 calculates the intensity ratio R of the scattered light intensities P2 and P3, and calculates the gain G from the calculated intensity ratio R and the gain correction curve 35 corresponding to the scattered light intensities P2 and P3. The calculated gain G is multiplied by the scattered light intensity P 2 by the multiplier 32, and the product (P 2 × G) is output to the concentration calculation unit 33. The concentration calculation unit 33 calculates the liquid concentration C from the input product (P2 × G) and the concentration calibration curve 36 corresponding to the scattered light intensities P2 and P3. The recalculated liquid concentration C is output from the arithmetic circuit 23.

以上のように第4実施形態では、散乱光強度P1,P2を使用した液体濃度Cを算出し、その液体濃度Cを含む濃度領域での液体濃度算出に最も適した2種類の散乱光強度を使用して液体濃度を再計算する。従って、より高精度での液体濃度測定が可能である。   As described above, in the fourth embodiment, the liquid concentration C using the scattered light intensities P1 and P2 is calculated, and the two types of scattered light intensities most suitable for calculating the liquid concentration in the concentration region including the liquid concentration C are obtained. Use to recalculate liquid concentration. Therefore, the liquid concentration can be measured with higher accuracy.

第4実施形態のその他の構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the fourth embodiment are the same as those of the first embodiment.

(第5実施形態)
図15に示す本発明の第5実施形態では、第2実施形態の検出器2(図10参照)に発光ダイオード6−3〜6−N(発光波長λ3〜λN)を追加し、各発光ダイオード6−3〜6−N毎にLEDドライブ回路16−3〜16−Nと発振回路17−3〜17−N(発振周波数f3〜fN)を設けている。また、受光回路9には発光ダイオード6−3〜6−Nに対応するBPF回路37−3〜37−Nと検波回路38−3〜38−Nを追加している。さらに、変換器3にはそれぞれ検波回路38−3〜38−Nに対応するA/D回路22−3〜22−Nを追加している。
(Fifth embodiment)
In the fifth embodiment of the present invention shown in FIG. 15, light emitting diodes 6-3 to 6-N (light emission wavelengths λ3 to λN) are added to the detector 2 (see FIG. 10) of the second embodiment, and each light emitting diode. LED drive circuits 16-3 to 16-N and oscillation circuits 17-3 to 17-N (oscillation frequencies f3 to fN) are provided for each of 6-3 to 6-N. Further, BPF circuits 37-3 to 37 -N and detection circuits 38-3 to 38 -N corresponding to the light emitting diodes 6-3 to 6 -N are added to the light receiving circuit 9. Further, A / D circuits 23-3 to 22-N corresponding to the detection circuits 38-3 to 38-N are added to the converter 3, respectively.

各発光ダイオード6−1〜6−Nは対応するLEDドライブ回路16−1〜16−Nにより駆動されて互いに異なる周波数f1〜fNで点滅する。発光ダイオード6−1〜6−Nから被測定液体1に照射された光の散乱光はフォトダイオード7に入射し、光電変化で得られる電気信号がアンプ回路19を経てBPF回路37−1〜37−Nに出力される。各BPF回路37−1〜37−Nでそれぞれ周波数成分f1〜fNの信号を弁別することにより、対応する発光ダイオード6−1〜6−N(対応する波長λ1〜λN)による散乱光の信号成分のみが各検波回路38−1〜38−Nで検波され、A/D回路22−1〜22−2を経て演算回路23に出力される。従って、演算回路23には散乱光強度P1〜PNが別個に入力される。演算回路23の構成(図14参照)及び演算回路23の実行する処理は第4実施形態と同様である。   Each of the light emitting diodes 6-1 to 6-N is driven by the corresponding LED drive circuit 16-1 to 16-N and blinks at different frequencies f1 to fN. Light scattered from the light emitting diodes 6-1 to 6 -N to the liquid 1 to be measured is incident on the photodiode 7, and an electric signal obtained by photoelectric change passes through the amplifier circuit 19 and the BPF circuits 37-1 to 37-37. -N is output. By discriminating the signals of the frequency components f1 to fN by the BPF circuits 37-1 to 37-N, respectively, the signal components of the scattered light by the corresponding light emitting diodes 6-1 to 6-N (corresponding wavelengths λ1 to λN). Only the detection circuits 38-1 to 38-N detect the signal, and output to the arithmetic circuit 23 through the A / D circuits 22-1 to 22-2. Therefore, the scattered light intensities P1 to PN are separately input to the arithmetic circuit 23. The configuration of the arithmetic circuit 23 (see FIG. 14) and the processing executed by the arithmetic circuit 23 are the same as in the fourth embodiment.

(第6実施形態)
図16に示す本発明の第6実施形態では、第3実施形態の検出器2(図12参照)に発光ダイオード6−3〜6−N(発光波長λ3〜λN)を追加し、かつそれに対応してフォトダイオード7−3〜7−Nを追加している。各発光ダイオード6−3〜6−N毎にLEDドライブ回路16−3〜16−Nと発振回路17−3〜17−N(発振周波数f3〜fN)を設けている。また、受光回路9には発光ダイオード6−3〜6−Nに対応するBPF回路37−3〜37−Nと検波回路38−3〜38−Nを追加している。さらに、変換器3にはそれぞれ検波回路38−3〜38−Nに対応するA/D回路22−3〜22−Nを追加している。
(Sixth embodiment)
In the sixth embodiment of the present invention shown in FIG. 16, light-emitting diodes 6-3 to 6-N (light emission wavelengths λ3 to λN) are added to the detector 2 (see FIG. 12) of the third embodiment, and corresponding thereto. Then, photodiodes 7-3 to 7-N are added. LED drive circuits 16-3 to 16-N and oscillation circuits 17-3 to 17-N (oscillation frequencies f3 to fN) are provided for the respective light emitting diodes 6-3 to 6-N. Further, BPF circuits 37-3 to 37 -N and detection circuits 38-3 to 38 -N corresponding to the light emitting diodes 6-3 to 6 -N are added to the light receiving circuit 9. Further, A / D circuits 23-3 to 22-N corresponding to the detection circuits 38-3 to 38-N are added to the converter 3, respectively.

各発光ダイオード6−1〜6−Nは対応するLEDドライブ回路16−1〜16−Nにより駆動されて互いに異なる周波数f1〜fNで点滅する。発光ダイオード6−1〜6−Nから被測定液体1に照射された光の散乱光は、対応するフォトダイオード7−1〜7−Nに入射し、光電変換で得られた電気信号が対応するアンプ回路19−1〜19−N、BPF回路37−1〜37−N、及びA/D回路22−1〜22−Nを介して演算回路23に出力される。従って、演算回路23には散乱光強度P1〜PNが別個に入力される。演算回路23の構成(図14参照)及び演算回路23の実行する処理は第4実施形態と同様である。   Each of the light emitting diodes 6-1 to 6-N is driven by the corresponding LED drive circuit 16-1 to 16-N and blinks at different frequencies f1 to fN. The scattered light of the light irradiated from the light emitting diodes 6-1 to 6-N to the liquid 1 to be measured is incident on the corresponding photodiodes 7-1 to 7-N, and the electric signals obtained by photoelectric conversion correspond to the scattered light. The data is output to the arithmetic circuit 23 via the amplifier circuits 19-1 to 19-N, the BPF circuits 37-1 to 37-N, and the A / D circuits 22-1 to 22-N. Therefore, the scattered light intensities P1 to PN are separately input to the arithmetic circuit 23. The configuration of the arithmetic circuit 23 (see FIG. 14) and the processing executed by the arithmetic circuit 23 are the same as in the fourth embodiment.

(第7実施形態)
図17に示す本発明の第7実施形態では、検出器2の受光回路8は、第1実施形態と同様(図3参照)と同様に、LEDドライブ回路16、発振回路17、及びLED切替回路18を備え、発光ダイオード6−1(波長λ1)と発光ダイオード6−2(波長λ2)とを順次点滅させる。検出器2の受光回路9は、それぞれアンプ回路19に接続された2個の同期検波回路20−1,20−2を備えている。各同期検波回路20−1,20−2は発振回路17で決まる周波数でアンプ回路19からの出力を検波する。また、各同期検波回路20−1,20−2には、LED切替回路18からの信号が入力される。さらに、各同期検波回路20−1,20−2には平滑化回路50−1,50−2が接続されている。信号切替回路51は、所定のタイミングで2つの平滑化回路50−1,50−2を順次変換器3のA/D回路22に接続する。信号切替回路51の信号は変換器3の信号識別回路52にも出力される。
(Seventh embodiment)
In the seventh embodiment of the present invention shown in FIG. 17, the light receiving circuit 8 of the detector 2 is similar to the first embodiment (see FIG. 3) in the LED drive circuit 16, the oscillation circuit 17, and the LED switching circuit. 18, the light emitting diode 6-1 (wavelength λ1) and the light emitting diode 6-2 (wavelength λ2) are sequentially blinked. The light receiving circuit 9 of the detector 2 includes two synchronous detection circuits 20-1 and 20-2 each connected to an amplifier circuit 19. Each of the synchronous detection circuits 20-1 and 20-2 detects the output from the amplifier circuit 19 at a frequency determined by the oscillation circuit 17. In addition, a signal from the LED switching circuit 18 is input to each of the synchronous detection circuits 20-1 and 20-2. Further, smoothing circuits 50-1 and 50-2 are connected to the respective synchronous detection circuits 20-1 and 20-2. The signal switching circuit 51 sequentially connects the two smoothing circuits 50-1 and 50-2 to the A / D circuit 22 of the converter 3 at a predetermined timing. The signal of the signal switching circuit 51 is also output to the signal identification circuit 52 of the converter 3.

発光ダイオード6−1,6−2の出射光の散乱光強度P1,P2は、フォトダイオード19によって光電変換され、同期検波回路20−1,20−2に出力される。LED切替回路18から入力される信号に基づいて、2つの同期検波回路20−1,20−2のうち一方が駆動される。例えば、一方の発光ダイオード6−1が駆動されているときは、アンプ回路19からの出力(散乱光強度P1)を周期検波回路20−1が検波し、散乱光強度P1に対応する電圧信号が平滑化回路50−1に保持される。逆に、他方の発光ダイオード6−2が駆動されているときは、アンプ回路19からの出力(散乱光強度P2)を同期検波回路20−2が検波し、散乱光強度P2に対応する電圧信号が平滑化回路50−2に保持される。信号切替回路51は2つの平滑化回路50−1,50−2を順次A/D回路22に接続して散乱光強度P1,P2を演算回路23に出力させる。   The scattered light intensities P1 and P2 of the light emitted from the light emitting diodes 6-1 and 6-2 are photoelectrically converted by the photodiode 19 and output to the synchronous detection circuits 20-1 and 20-2. Based on the signal input from the LED switching circuit 18, one of the two synchronous detection circuits 20-1 and 20-2 is driven. For example, when one of the light emitting diodes 6-1 is driven, the periodic detection circuit 20-1 detects the output (scattered light intensity P1) from the amplifier circuit 19, and a voltage signal corresponding to the scattered light intensity P1 is generated. It is held in the smoothing circuit 50-1. Conversely, when the other light emitting diode 6-2 is being driven, the synchronous detection circuit 20-2 detects the output (scattered light intensity P2) from the amplifier circuit 19, and a voltage signal corresponding to the scattered light intensity P2. Is held in the smoothing circuit 50-2. The signal switching circuit 51 sequentially connects the two smoothing circuits 50-1 and 50-2 to the A / D circuit 22 and outputs the scattered light intensities P 1 and P 2 to the arithmetic circuit 23.

信号識別回路52は、信号切替回路51から入力される信号に基づいて、2個の平滑化回路50−1,50−2のうち現在A/D回路22に接続されているものを識別し、その識別結果を示す信号を演算回路23に出力する。従って、演算回路23は現在A/D回路22から出力されている散乱光強度P1,P2がいずれの発光ダイオード6−1,6−2(いずれの波長λ1,λ2)に対応するかを認識することができる。従って、演算回路23はこれらの散乱光強度P1,P2を使用して液体濃度を算出することができる。   Based on the signal input from the signal switching circuit 51, the signal identification circuit 52 identifies one of the two smoothing circuits 50-1 and 50-2 that is currently connected to the A / D circuit 22, A signal indicating the identification result is output to the arithmetic circuit 23. Therefore, the arithmetic circuit 23 recognizes which light-emitting diodes 6-1 and 6-2 (which wavelengths λ1 and λ2) correspond to the scattered light intensities P1 and P2 currently output from the A / D circuit 22. be able to. Therefore, the arithmetic circuit 23 can calculate the liquid concentration using these scattered light intensities P1 and P2.

第7実施形態のその他の構成及び作用は、第1実施形態と同様である。   Other configurations and operations of the seventh embodiment are the same as those of the first embodiment.

(第8実施形態)
図18に示す本発明の第8実施形態では、第7実施形態の検出器2(図17参照)に発光ダイオード6−1,6−2に加え、発光ダイオード6−3〜6−N(N≧3)を追加し、かつそれに応じて同期検波回路20−3〜20−Nと平滑化回路50−3〜50−Nを追加している。LEDドライブ回路16、発振回路17、及びLED切替回路18により発光ダイオード6−1〜6−Nが順次駆動されると、対応する同期検波回路20−1〜20−Nにより散乱光強度P1〜PNが同期検波され、平滑化回路50−1〜50−Nに保持される。信号切替回路51により平滑化回路50−1〜50−Nが順次A/D回路22に接続され、散乱光強度P1〜PNが演算回路23に順次出力される。信号識別回路52から入力される信号により、演算回路23は現在A/D回路22から入力されている散乱光強度P1〜PNがいずれの発光ダイオード6−1〜6−Nに対応するか認識することができる。演算回路23の実行する処理は第4実施形態と同様である。
(Eighth embodiment)
In the eighth embodiment of the present invention shown in FIG. 18, in addition to the light emitting diodes 6-1 and 6-2, the light emitting diodes 6-3 to 6-N (N ≧ 3) is added, and synchronous detection circuits 20-3 to 20-N and smoothing circuits 50-3 to 50-N are added accordingly. When the light emitting diodes 6-1 to 6-N are sequentially driven by the LED drive circuit 16, the oscillation circuit 17, and the LED switching circuit 18, the scattered light intensities P1 to PN are generated by the corresponding synchronous detection circuits 20-1 to 20-N. Are synchronously detected and held in the smoothing circuits 50-1 to 50-N. The smoothing circuits 50-1 to 50 -N are sequentially connected to the A / D circuit 22 by the signal switching circuit 51, and the scattered light intensities P 1 to PN are sequentially output to the arithmetic circuit 23. Based on the signal input from the signal identification circuit 52, the arithmetic circuit 23 recognizes to which light emitting diodes 6-1 to 6-N the scattered light intensities P1 to PN currently input from the A / D circuit 22 correspond. be able to. The processing executed by the arithmetic circuit 23 is the same as that in the fourth embodiment.

(第9実施形態)
第1実施形態から第8実施形態の液体濃度測定装置を光透過率式に変更することができる。例えば、第1実施形態の装置を光透過率式に変更する場合には、図19に示すように、検出器2のセンサ部4bの先端で発光ダイオード6−1,6−2とフォトダイオード7を互いに対向させればよい。なお、図20に示すように、透過光強度(ゲインGと透過光強度の積)と液体濃度との関係は負特性となる。
(Ninth embodiment)
The liquid concentration measuring apparatus according to the first to eighth embodiments can be changed to the light transmittance type. For example, when the apparatus of the first embodiment is changed to the light transmittance type, the light emitting diodes 6-1 and 6-2 and the photodiode 7 are formed at the tip of the sensor unit 4b of the detector 2 as shown in FIG. Should be opposed to each other. As shown in FIG. 20, the relationship between the transmitted light intensity (product of gain G and transmitted light intensity) and the liquid concentration is a negative characteristic.

本発明は、前記実施形態に限定されず、種々の変形が可能である。例えば、発光ダイオードに代えて他の種類の光源を発光素子として使用することができる。また、フォトダイオードに代えて、フォトトランジスタ、光電素子等の他の受光素子を使用することができる。   The present invention is not limited to the above embodiment, and various modifications can be made. For example, another type of light source can be used as the light emitting element instead of the light emitting diode. Moreover, it can replace with a photodiode and can use other light receiving elements, such as a phototransistor and a photoelectric element.

強度比R(P1/P2)に代えて、散乱光強度の差(P1−P2)等の2種類の散乱光強度の差異の程度を示す評価値を使用することができる。また、ゲインGを散乱光強度P1に乗算する代わりに、強度比等の評価値から算出される他の補正値を使用して散乱光強度P1に対する液体色の影響を補正してもよい。   Instead of the intensity ratio R (P1 / P2), an evaluation value indicating the degree of difference between the two types of scattered light intensities such as the difference in scattered light intensity (P1-P2) can be used. Further, instead of multiplying the scattered light intensity P1 by the gain G, the influence of the liquid color on the scattered light intensity P1 may be corrected using another correction value calculated from an evaluation value such as an intensity ratio.

本発明の第1実施形態の液体濃度測定装置を示す概略断面図。1 is a schematic cross-sectional view showing a liquid concentration measuring apparatus according to a first embodiment of the present invention. (A)は第1実施形態における検出器の先端部分を示す正面図、(B)は(A)のII−II線での断面図。(A) is a front view which shows the front-end | tip part of the detector in 1st Embodiment, (B) is sectional drawing in the II-II line of (A). 第1実施形態における検出器及び変換器を示すブロック図。The block diagram which shows the detector and converter in 1st Embodiment. 第1実施形態における演算部を示すブロック図。The block diagram which shows the calculating part in 1st Embodiment. 強度比とゲインの関係を示す線図(ゲイン補正曲線)。The diagram (gain correction curve) which shows the relationship between an intensity ratio and a gain. 液体濃度と散乱光強度の関係を示す線図。The diagram which shows the relationship between a liquid concentration and scattered light intensity | strength. 強度比と散乱光強度の関係を示す線図。The diagram which shows the relationship between intensity ratio and scattered light intensity. ゲインと散乱光強度の積に対する液体濃度の関係を示す線図(濃度校正曲線)。A diagram (concentration calibration curve) showing the relationship of liquid concentration to the product of gain and scattered light intensity. 検出器の変形例を示し、(A)は検出器の先端部分を示す正面図、(B)は(A)のIX−IX線での断面図。The modification of a detector is shown, (A) is a front view which shows the front-end | tip part of a detector, (B) is sectional drawing in the IX-IX line of (A). 本発明の第2実施形態の液体濃度測定装置が備える検出器及び変換器を示すブロック図。The block diagram which shows the detector and converter with which the liquid concentration measuring apparatus of 2nd Embodiment of this invention is provided. 本発明の第3実施形態の液体濃度測定装置が備える検出器を示し、(A)は検出器の先端部分を示す正面図、(B)は(A)のXI−XI線での断面図。The detector with which the liquid concentration measuring apparatus of 3rd Embodiment of this invention is provided is shown, (A) is a front view which shows the front-end | tip part of a detector, (B) is sectional drawing in the XI-XI line of (A). 本発明の第3実施形態の液体濃度測定装置が備える検出器及び変換器を示すブロック図。The block diagram which shows the detector and converter with which the liquid concentration measuring apparatus of 3rd Embodiment of this invention is provided. 本発明の第4実施形態の液体濃度測定装置が備える検出器及び変換器を示すブロック図。The block diagram which shows the detector and converter with which the liquid concentration measuring apparatus of 4th Embodiment of this invention is provided. 第4実施形態における変換器を示すブロック図。The block diagram which shows the converter in 4th Embodiment. 本発明の第5実施形態の液体濃度測定装置が備える検出器及び変換器を示すブロック図。The block diagram which shows the detector and converter with which the liquid concentration measuring apparatus of 5th Embodiment of this invention is provided. 本発明の第6実施形態の液体濃度測定装置が備える検出器及び変換器を示すブロック図。The block diagram which shows the detector and converter with which the liquid concentration measuring apparatus of 6th Embodiment of this invention is provided. 本発明の第7実施形態の液体濃度測定装置が備える検出器及び変換器を示すブロック図。The block diagram which shows the detector and converter with which the liquid concentration measuring apparatus of 7th Embodiment of this invention is provided. 本発明の第8実施形態の液体濃度測定装置が備える検出器及び変換器を示すブロック図。The block diagram which shows the detector and converter with which the liquid concentration measuring apparatus of 8th Embodiment of this invention is provided. 本発明の第9実施形態の液体濃度測定装置を示す概略断面図。The schematic sectional drawing which shows the liquid concentration measuring apparatus of 9th Embodiment of this invention. ゲインと透過光強度の積に対する液体濃度の関係を示す線図(濃度校正曲線)。A diagram (concentration calibration curve) showing the relationship of liquid concentration to the product of gain and transmitted light intensity.

符号の説明Explanation of symbols

1 被測定液体
2 検出器
3 変換器
4 ケーシング
4a ケーシング本体
4b センサ部
6 発光ダイオード
7 フォトダイオード
8 発光回路
9 受光回路
11 発光用光ファイバ
12 受光用光ファイバ
13 発光部
14 受光部
16 LEDドライブ回路
17 発振回路
18 LED切替回路
19 アンプ回路
20 同期検波回路
21 発光LED識別回路
22 A/D回路
23 演算回路
24 D/A回路
25 LCD表示器
26 設定スイッチ回路
27 V/I変換回路
31 ゲイン算出部
32 乗算器
33 濃度算出部
37 バンドパスフィルタ回路
38 検波回路
41 記憶部
42 選択部
DESCRIPTION OF SYMBOLS 1 Liquid to be measured 2 Detector 3 Converter 4 Casing 4a Casing body 4b Sensor part 6 Light emitting diode 7 Photodiode 8 Light emitting circuit 9 Light receiving circuit 11 Light emitting optical fiber 12 Light receiving optical fiber 13 Light emitting part 14 Light receiving part 16 LED drive circuit DESCRIPTION OF SYMBOLS 17 Oscillation circuit 18 LED switching circuit 19 Amplifier circuit 20 Synchronous detection circuit 21 Light emission LED identification circuit 22 A / D circuit 23 Arithmetic circuit 24 D / A circuit 25 LCD display 26 Setting switch circuit 27 V / I conversion circuit 31 Gain calculation part 32 Multiplier 33 Density Calculation Unit 37 Band Pass Filter Circuit 38 Detection Circuit 41 Storage Unit 42 Selection Unit

Claims (5)

被測定液体に対してそれぞれ波長の異なる照射光を照射する複数の発光素子と、
前記複数の発光素子の1つを選択して駆動する駆動回路と、
前記駆動回路が駆動する発光素子を順次切り替える発光素子切替回路と、
前記発光素子から前記被測定液体に照射された照射光の散乱光又は透過光の強度である測定光強度を検出する単一の受光素子と、
前記発光素子切替回路から入力される信号に基づいて前記駆動回路によって現在駆動されている発光素子を識別し、この識別結果を示す信号を出力する発光素子識別回路と、
前記受光素子から入力される前記測定光強度と、前記発光素子識別回路から入力される前記信号とから前記被測定液体の液体濃度を算出する演算回路と
を備え
前記演算回路は、
前記波長の異なる照射光間の前記測定光強度の差異の程度を表す評価量を算出し、かつ算出した前記評価量から前記被測定液体の液体色の前記測定光強度に対する影響を補正するゲイン値を算出するゲイン算出部と、
前記ゲイン算出部により算出されたゲイン値と、前記測定光強度との積を算出する乗算器と、
前記乗算器によって算出された前記積と、予め記憶された濃度校正曲線とにより液体濃度を算出する濃度算出部と
を備える液体濃度測定装置。
A plurality of light emitting elements that irradiate the liquid under measurement with irradiation light having different wavelengths,
A drive circuit for selecting and driving one of the plurality of light emitting elements;
A light emitting element switching circuit for sequentially switching light emitting elements driven by the drive circuit;
And a single light receiving element for detecting the measurement light intensity is an intensity of scattered light or transmitted light of the illumination light from the light emitting element is irradiated the the liquid to be measured,
A light emitting element identifying circuit for identifying a light emitting element currently driven by the drive circuit based on a signal input from the light emitting element switching circuit and outputting a signal indicating the identification result;
An arithmetic circuit that calculates the liquid concentration of the liquid to be measured from the measurement light intensity input from the light receiving element and the signal input from the light emitting element identification circuit ;
The arithmetic circuit is:
A gain value for calculating an evaluation amount indicating the degree of difference in the measurement light intensity between irradiation lights having different wavelengths, and correcting an influence of the liquid color of the liquid to be measured on the measurement light intensity from the calculated evaluation amount A gain calculation unit for calculating
A multiplier for calculating a product of the gain value calculated by the gain calculation unit and the measurement light intensity;
A concentration calculator that calculates a liquid concentration from the product calculated by the multiplier and a concentration calibration curve stored in advance;
A liquid concentration measuring device comprising:
被測定液体に対してそれぞれ波長の異なる照射光を照射する複数の発光素子と、
それぞれ対応する前記発光素子を互いに異なる周波数で同時に点滅させる複数の駆動回路と、
前記複数の発光素子から前記被測定液体に照射された光の透過光又は散乱光の強度である測定光強度を検出する単一の受光素子と、
それぞれ前記受光素子から前記測定光強度が入力され、対応する発光素子から前記被測定液に照射された光による測定光強度を、前記各発光素子の点滅周波数の相違を用いて弁別する複数の弁別回路と、
前記各弁別回路より入力される測定光強度から前記被測定液体の液体濃度を算出する演算回路と
を備え
前記演算回路は、
前記波長の異なる照射光間の前記測定光強度の差異の程度を表す評価量を算出し、かつ算出した前記評価量から前記被測定液体の液体色の前記測定光強度に対する影響を補正するゲイン値を算出するゲイン算出部と、
前記ゲイン算出部により算出されたゲイン値と、前記測定光強度との積を算出する乗算器と、
前記乗算器によって算出された前記積と、予め記憶された濃度校正曲線とにより液体濃度を算出する濃度算出部と
を備える液体濃度測定装置。
A plurality of light emitting elements that irradiate the liquid under measurement with irradiation light having different wavelengths, and
A plurality of drive circuits for simultaneously flashing the corresponding light emitting elements at different frequencies, and
A single light receiving element for detecting a measurement light intensity which is an intensity of transmitted light or scattered light of light irradiated on the liquid to be measured from the plurality of light emitting elements;
A plurality of discriminations for discriminating the measurement light intensity by the light irradiated to the liquid to be measured from the corresponding light emitting element by using the difference in the blinking frequency of each light emitting element, each of which receives the measurement light intensity from the light receiving element. Circuit,
An arithmetic circuit for calculating the liquid concentration of the liquid to be measured from the measurement light intensity input from each discrimination circuit , and
The arithmetic circuit is:
A gain value for calculating an evaluation amount indicating the degree of difference in the measurement light intensity between irradiation lights having different wavelengths, and correcting an influence of the liquid color of the liquid to be measured on the measurement light intensity from the calculated evaluation amount A gain calculation unit for calculating
A multiplier for calculating a product of the gain value calculated by the gain calculation unit and the measurement light intensity;
A concentration calculator that calculates a liquid concentration from the product calculated by the multiplier and a concentration calibration curve stored in advance;
A liquid concentration measuring device comprising:
前記弁別回路は、
対応する発光素子の点滅周波数を含む帯域の測定光強度を通過させるバンドパスフィルタ回路と、
対応するバンドパスフィルタ回路から出力された信号を検波して前記演算回路に出力する検波回路とを備える、請求項2に記載の液体濃度測定装置。
The discrimination circuit is:
A band-pass filter circuit that allows measurement light intensity in a band including a blinking frequency of a corresponding light-emitting element to pass;
The liquid concentration measuring device according to claim 2, further comprising: a detection circuit that detects a signal output from a corresponding bandpass filter circuit and outputs the signal to the arithmetic circuit.
被測定液体に対してそれぞれ波長の異なる光を照射し、その発光部が互いに間隔をあけて配置された複数の発光素子と、
それぞれ対応する前記発光素子を互いに異なる周波数で点滅させる複数の駆動回路と、
受光部が対応する前記発光素子の発光部に近接してそれぞれ配置され、対応する発光素子から照射された光の透過光又は散乱光の強度である測定光強度を検出する複数の受光素子と、
前記各受光素子から入力される測定光強度から前記被測定液体の液体濃度を算出する演算回路と
を備え
前記演算回路は、
前記波長の異なる照射光間の前記測定光強度の差異の程度を表す評価量を算出し、かつ算出した前記評価量から前記被測定液体の液体色の前記測定光強度に対する影響を補正するゲイン値を算出するゲイン算出部と、
前記ゲイン算出部により算出されたゲイン値と、前記測定光強度との積を算出する乗算器と、
前記乗算器によって算出された前記積と、予め記憶された濃度校正曲線とにより液体濃度を算出する濃度算出部と
を備える液体濃度測定装置。
A plurality of light emitting elements, each of which emits light having a different wavelength to the liquid to be measured, and whose light emitting portions are spaced from each other;
A plurality of drive circuits for causing the corresponding light emitting elements to blink at different frequencies;
A plurality of light receiving elements, each of which is disposed in proximity to a light emitting part of the corresponding light emitting element, and detects a measurement light intensity that is transmitted light or scattered light intensity emitted from the corresponding light emitting element;
An arithmetic circuit that calculates the liquid concentration of the liquid to be measured from the measurement light intensity input from each of the light receiving elements , and
The arithmetic circuit is:
A gain value for calculating an evaluation amount indicating the degree of difference in the measurement light intensity between irradiation lights having different wavelengths, and correcting an influence of the liquid color of the liquid to be measured on the measurement light intensity from the calculated evaluation amount A gain calculation unit for calculating
A multiplier for calculating a product of the gain value calculated by the gain calculation unit and the measurement light intensity;
A concentration calculator that calculates a liquid concentration from the product calculated by the multiplier and a concentration calibration curve stored in advance;
A liquid concentration measuring device comprising:
被測定液体に対してそれぞれ波長の異なる光を照射する複数の発光素子と、
前記複数の発光素子の1つを選択して駆動する駆動回路と、
前記駆動回路が駆動する発光素子を順次切り替える発光素子切替回路と、
前記発光素子から前記被測定液体に照射された光の散乱光又は透過光の強度である測定光強度を検出する受光素子と、
それぞれ前記受光素子から前記測定光強度が入力され、前記発光素子切替回路から入力される信号で駆動されて対応する発光素子から前記被測定液体に照射された光による測定光強度を検波する複数の同期検波回路と、
それぞれ前記各同期検波回路毎に設けられ、対応する同期検波回路から出力された前記測定光強度を保持する複数の平滑化回路と、
前記複数の平滑化回路のうち前記測定光強度を出力するものを順次切り替える信号切替回路と、
前記信号切替回路から入力される信号に基づいて、前記複数の平滑化回路のうち現在測定光強度を出力しているものを識別し、この識別結果を示す信号を出力する信号識別回路と、
前記平滑化回路から入力される前記測定光強度と、前記信号識別回路から入力される前記信号とから前記被測定液体の液体濃度を算出する演算回路と
を備え
前記演算回路は、
前記波長の異なる照射光間の前記測定光強度の差異の程度を表す評価量を算出し、かつ算出した前記評価量から前記被測定液体の液体色の前記測定光強度に対する影響を補正するゲイン値を算出するゲイン算出部と、
前記ゲイン算出部により算出されたゲイン値と、前記測定光強度との積を算出する乗算器と、
前記乗算器によって算出された前記積と、予め記憶された濃度校正曲線とにより液体濃度を算出する濃度算出部と
を備える液体濃度測定装置。
A plurality of light emitting elements that irradiate light of different wavelengths to the liquid to be measured;
A drive circuit for selecting and driving one of the plurality of light emitting elements;
A light emitting element switching circuit for sequentially switching light emitting elements driven by the drive circuit;
A light receiving element for detecting a measurement light intensity which is an intensity of scattered light or transmitted light of the light emitted from the light emitting element to the liquid to be measured;
Each of the measurement light intensities is input from the light receiving element, and is driven by a signal input from the light emitting element switching circuit, and detects a plurality of measurement light intensities by light irradiated on the liquid to be measured from the corresponding light emitting elements. A synchronous detection circuit;
A plurality of smoothing circuits provided for each of the synchronous detection circuits, respectively, for holding the measurement light intensity output from the corresponding synchronous detection circuit;
A signal switching circuit for sequentially switching one of the plurality of smoothing circuits that outputs the measurement light intensity;
Based on a signal input from the signal switching circuit, a signal identifying circuit that identifies a current output of the measured light intensity among the plurality of smoothing circuits, and outputs a signal indicating the identification result;
An arithmetic circuit that calculates the liquid concentration of the liquid to be measured from the measurement light intensity input from the smoothing circuit and the signal input from the signal identification circuit ;
The arithmetic circuit is:
A gain value for calculating an evaluation amount indicating the degree of difference in the measurement light intensity between irradiation lights having different wavelengths, and correcting an influence of the liquid color of the liquid to be measured on the measurement light intensity from the calculated evaluation amount A gain calculation unit for calculating
A multiplier for calculating a product of the gain value calculated by the gain calculation unit and the measurement light intensity;
A concentration calculator that calculates a liquid concentration from the product calculated by the multiplier and a concentration calibration curve stored in advance;
A liquid concentration measuring device comprising:
JP2003366546A 2003-10-27 2003-10-27 Liquid concentration measuring device Expired - Lifetime JP4087776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003366546A JP4087776B2 (en) 2003-10-27 2003-10-27 Liquid concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003366546A JP4087776B2 (en) 2003-10-27 2003-10-27 Liquid concentration measuring device

Publications (2)

Publication Number Publication Date
JP2005127980A JP2005127980A (en) 2005-05-19
JP4087776B2 true JP4087776B2 (en) 2008-05-21

Family

ID=34644862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003366546A Expired - Lifetime JP4087776B2 (en) 2003-10-27 2003-10-27 Liquid concentration measuring device

Country Status (1)

Country Link
JP (1) JP4087776B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4616079B2 (en) * 2005-05-30 2011-01-19 株式会社日立ハイテクノロジーズ Sample analyzer
JP4663586B2 (en) * 2006-06-08 2011-04-06 Jfeアドバンテック株式会社 Liquid concentration measuring device
WO2017010261A1 (en) * 2015-07-10 2017-01-19 ソニー株式会社 Inspection device, inspection method, and program
US10753860B2 (en) * 2015-07-10 2020-08-25 Sony Corporation Inspection apparatus, inspection method, and program

Also Published As

Publication number Publication date
JP2005127980A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
KR101385786B1 (en) Measuring system and measuring method, in particular for determining blood glucose
TWI391646B (en) Interchangeable tip-open cell fluorometer and a method of fluorometrically detecting fluorophores present in a sample
NO339373B1 (en) A method and apparatus for measuring the phase change affordability in a light signal
US7564046B1 (en) Method and apparatus for measuring active fluorescence
AU2009301879A1 (en) Smoke detector
US9632031B2 (en) System for in vitro detection and/or quantification by fluorometry
JP2009507501A (en) Equipment for performing real-time PCR reactions
KR20180041688A (en) Multi-excitation-multi-emission fluorescence spectrometer for multi-parameter water quality monitoring
JP2008513770A (en) Examination of eggs for the presence of blood
JP6220065B2 (en) Biological light measurement device and method
KR101748367B1 (en) System for monitering Water Quality
GB2404013A (en) Measuring fluorescence lifetime
RU2016124812A (en) Determination of hemoglobin and photoplethysmography using spectral modulation
JP4087776B2 (en) Liquid concentration measuring device
JP2008020380A (en) Absorbance measuring instrument
JPH07120393A (en) Fluorescence detection method
JP3996885B2 (en) Liquid concentration measuring apparatus and liquid concentration measuring method
JP4902582B2 (en) Fluorescence detection device
KR101748364B1 (en) System for monitering Water Quality comprising Portable Water Analysis Device
JP2008026036A (en) Inclusion measuring device
JPH03170866A (en) Method and apparatus for measuring degree of saturation of oxygen
RU2468355C1 (en) Measuring device for determining at least one blood sample parameter
JPH07294429A (en) Turbidity meter and turbid chromaticity meter
JP6910175B2 (en) Light measuring device and toothbrush equipped with it
JPH1137930A (en) Absorptiometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4087776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

EXPY Cancellation because of completion of term