JP4087522B2 - Mixing valve device - Google Patents

Mixing valve device Download PDF

Info

Publication number
JP4087522B2
JP4087522B2 JP00265699A JP265699A JP4087522B2 JP 4087522 B2 JP4087522 B2 JP 4087522B2 JP 00265699 A JP00265699 A JP 00265699A JP 265699 A JP265699 A JP 265699A JP 4087522 B2 JP4087522 B2 JP 4087522B2
Authority
JP
Japan
Prior art keywords
valve
cold water
steam
temperature
steam valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00265699A
Other languages
Japanese (ja)
Other versions
JP2000199572A (en
Inventor
昭治 海原
Original Assignee
株式会社ミヤワキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミヤワキ filed Critical 株式会社ミヤワキ
Priority to JP00265699A priority Critical patent/JP4087522B2/en
Publication of JP2000199572A publication Critical patent/JP2000199572A/en
Application granted granted Critical
Publication of JP4087522B2 publication Critical patent/JP4087522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気と冷水を混合室に導入して混合することにより温水を作る混合弁装置に関するものである。
【0002】
【従来の技術】
この種の従来の混合弁装置は図6に示すような構成になっている。すなわち、装置本体1には相対向する位置に冷水入口2と蒸気入口3とがそれぞれ開口している。冷水入口2には、冷水配管(図示せず)を通じて矢印Aのように冷水が導入される。導入された冷水は、円筒状弁座部材4の周面に設けられた複数個の冷水流入孔7を通って混合室8内に流入する一方、図示しない内部通路とパイロット弁とを通じて上蓋9とその下側のダイヤフラム10との間の感圧室21に流入して、後述の蒸気弁12および冷水弁20を駆動するための駆動圧力として作用する。
【0003】
蒸気入口3には、蒸気配管(図示せず)を通じて矢印Bのように蒸気(または高温水)が流入し、この蒸気は、弁座部材4に設けられた蒸気導入口11および蒸気弁12を経て混合室8内に導入され、冷水と混合される。この蒸気と冷水とを混合して作られた温水は、図示しない温水吐出弁(蛇口)が開かれたときに、温水流出口18から図示しない温水配管を通じて導出される。
【0004】
蒸気弁12は、前記弁座部材4に形成された弁座13と、弁体14と、リターンスプリング17とを有している。図7は、蒸気弁12の全開状態を示しており、この状態からダイヤフラム10により弁棒19を介して弁体14が図の上方に移動して弁座13に着座すると、蒸気弁12が全閉状態となる。
【0005】
ダイヤフラム10は、上方の感圧室21から作用する冷水の駆動圧力と下方から作用する温水の圧力および復帰ばね30のばね力との差が下向きの作動力である場合に、弁棒19を介して弁体14を押し下げ、逆に上向きの作動力である場合には、弁棒19を持ち上げるとともにリターンスプリング17が弁体14を上昇させる。また、弁棒19には放射状のステー5を介して円筒状の冷水弁20が取り付けられており、この冷水弁20は蒸気弁12と一体的に移動して各冷水流入孔7を開閉する。したがって、ダイヤフラム10が弁棒19を押し下げたときには、蒸気弁12が開いて蒸気流入量が増大する。蒸気弁12が全開に近づくと、冷水弁20により冷水流入孔7の開口面積が減少するように絞られて冷水流入量が減少し、逆に、弁棒19が上昇したときには、蒸気流入量が減少し、かつ冷水流入量が増大する。
【0006】
一方、前記パイロット弁は、混合室8で作られる温水の温度を常時感知して、感知した温水温度が設定温度よりも高温になったときに、感圧室21への冷水の流入量を抑制する。それにより、ダイヤフラム10が蒸気弁12を閉弁方向に、かつ冷水弁20を開弁方向にそれぞれ作動させる。逆に、設定温度よりも低温になったときに、冷水の流入量を増大させ、ダイヤフラム10が蒸気弁12を開弁方向に、かつ冷水弁20を閉弁方向にそれぞれ作動させる。すなわち、パイロット弁は、感圧室21に作用する冷水の駆動圧力を温水設定温度に応じて調整し、それにより設定温度の温水が作られる。
【0007】
また、前記温水温度を可変設定するために、前記パイロット弁の開度は、温度調節ハンドルの操作で可変調節できるようにされている。すなわち、温度調節ハンドルの操作でパイロット弁の開度を大きくすると、感圧室21への冷水の流入量が増大して、蒸気弁12が開弁方向に、かつ冷水弁20が閉弁方向にそれぞれ調節され、温水温度が高温となる。逆に、温度調節ハンドルの操作でパイロット弁の開度を小さくすると、感圧室21への冷水の流入量が減少して、蒸気弁12が閉弁方向に、かつ冷水弁20が開弁方向にそれぞれ調節され、温水温度が低温となる。
【0008】
【発明が解決しようとする課題】
ところで、前記混合弁装置では、前記パイロット弁が開弁状態のときに、例えば温調用のバイメタルのような感温駆動体に異物がかみ込むなどして、開弁状態のまま制御不良に陥った場合、感圧室21に作用する駆動圧力が冷水圧力まで上昇して、蒸気弁12の開度が最大に、かつ冷水弁20の開度が最小になるため、温水流出口18から導出される温水の温度が過度に上昇するという問題点がある。
【0009】
また、パイロット弁が正常であっても、温度調節ハンドルの操作を誤って、温水温度が所望の上限温度以上の値になるように設定した場合には、やはり感圧室21に作用する駆動圧力が上昇するので、温水温度が上限温度のときよりも、蒸気弁12の開度が大きく、かつ冷水弁20の開度が小さくなり、温水流出口18から熱水が吹き出すことになるという問題点がある。
【0010】
本発明は、このような課題を解消し、パイロット弁が開弁状態で制御不能に陥ったり、温度調節ハンドルの操作を誤って、温水温度が所望の上限温度以上の値になるように設定した場合でも、温水温度が上限温度を越えてしまうのを防止できる安全性の高い混合弁装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明の混合弁装置は、蒸気が流入する蒸気入口と、冷水が流入する冷水入口と、前記蒸気と冷水を混合して温水を作る混合室と、前記混合室へ蒸気を導入する導入口の開度を調節する蒸気弁と、冷水の一部を導入して、その圧力により前記蒸気弁を駆動する蒸気弁駆動部材と、前記冷水入口から流入した冷水を前記混合室へ導入する冷水流入孔と、前記蒸気弁駆動部材と連動して移動し、蒸気弁の開度の増大に応じて冷却水流入孔の開度を絞る冷水弁と、温度調節部材の操作に応じて蒸気弁駆動用の冷水圧力を調整することにより蒸気弁を駆動するパイロット弁と、温水に接触してその温度変化に応じてパイロット弁の開度を変化させる感温駆動体と、前記蒸気弁駆動部材に設けられて、前記冷水弁によって前記冷水流入孔の開度が設定された上限温度に対応した開度よりも小さくなったとき、前記蒸気弁の通路面積を絞って、温水の温度を低下させる絞り弁を備えている。
【0012】
この混合弁装置によれば、パイロット弁が開弁状態のまま制御不良に陥った場合、蒸気弁駆動部材への冷水の導入量が増大し、冷水流入孔の開度が冷水弁により上限温度に対応した開度よりも小さく絞られるが、このとき蒸気弁の通路も絞り弁により小さく絞られるため、混合室で作られる温水の温度が低下し、温水温度が上限温度を越えてしまうのを防止できる。
【0013】
また、温度調節部材の操作を誤って、パイロット弁の開度を上限温度に対応する開度より大きく設定した場合にも、蒸気弁駆動部材への冷水の導入量が増大し、冷水弁により絞られる冷水流入孔の開度が上限温度に対応した開度よりも小さくなるが、このときも蒸気弁の通路は絞り弁により小さく絞られるため、混合室で作られる温水の温度が低下し、温水温度が上限温度を越えてしまうのを防止できる。
【0014】
前記発明においては、前記蒸気弁駆動部材は、パイロット弁を経て冷水が導入される感圧室と混合室とを仕切るダイヤフラムと、このダイヤフラムに固定されて先端部で蒸気弁を押圧するロッドとを有するものとし、前記ロッドに円錐形の前記絞り弁を設けることが好ましい。このようにすれば、蒸気弁12からの蒸気が、円錐形のロッドに沿って通常の流れを妨げられることなく、混合室内に導入される。また、蒸気弁駆動部材に連動して、絞り弁により蒸気弁の通路を絞る機構を簡単に構成できる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
図1は本発明の一実施形態に係る混合弁装置を示す縦断面図で、図7と同一もしくは同等のものには同一の符合を付してその説明を省略する。
【0016】
図7と相違する構成は、ボール状の弁体14を押し下げる弁棒(ロッド)19の下部に、蒸気弁(メイン弁)12の通路を絞る絞り弁22を一体形成によって設けたことにある。この絞り弁22は下方に向かって小径となる円錐形状とされ、弁座部材4の前記絞り弁22に対応する第2の弁座面23も、下方に向かって小径となるテーパ面とされている。なお、弁座部材4に設ける複数の冷水流入孔7は、上下に変位して配設されている。また、従来と同様に、弁座部材4には、弁座部材4を装置本体1に固定するためのねじ部28や、冷水弁20を摺動させるための冷水弁摺動部29が設けられている。
【0017】
図1の感圧室21内の冷水の駆動圧力と吐出圧力(混合室8内の温水圧力)との差に応じて弁棒19を介して蒸気弁12を駆動するダイヤフラム10は、その周縁部を上蓋9と装置本体1の上端部とで挟持固定されているとともに、復帰用スプリング30により上方へ付勢されている。前記弁棒19の感圧室21内に臨む上端部には、感圧室21内に流入する冷水の一部を混合室8側に逃がすための、オリフィス15aを有する逃がし通路15が形成されている。前記ダイヤフラム10と弁棒19とにより、蒸気弁12を駆動する蒸気弁駆動部材24が構成される。
【0018】
感圧室21に作用する冷水の駆動圧力は、図1のIII-III 線断面図である図3に示すパイロット弁31により、設定温水温度に応じて調節される。図1の冷水入口2からの冷水は、図3のスクリーン26で塵埃を除去されたのちに、パイロット用の第1ないし第3通路32a,32b,32cを通じてパイロット弁31内に導入される。第3通路32cの奥部では、ボールからなる弁体33がばね34により弁座37の方向に付勢されて、固定スリーブ38内に挿通された感温制御ロッド39の先端ピン40に押し付けられている。弁体33と弁座37との隙間により形成された冷水通路41は、温度調節ハンドル(温度調節部材)42の回転操作により、通路面積を調節できるようになっている。すなわち、温度調節ハンドル42の回転により、これに固定され、かつ固定スリーブ38にねじ部36で螺合されたアジャスト部材35を回転させ、このアジャスト部材35に形成された弁座37を、アジャスト部材35の軸方向に合致した矢印X−Y方向に移動させることにより、前記隙間で形成された冷水通路41の通路面積を調節できるようになっており、それにより温水の温度を所望に設定できる。
【0019】
弁座37の左側の空間から固定スリーブ38を貫通した連通路43が図1の感圧室21に連通しており、第1ないし第3通路32a,32b,32cを通じて流入した冷水が冷水通路41および連通路43を通って感圧室21内に流入する。一方、感圧室21内の冷水は、ダイヤフラム10が押し上げられるときに、図4に示すように、逆止弁53を押し開いて冷水入口2(図1)側に戻される。また、固定スリーブ38における左側の内部空間47が、固定スリーブ38の周壁に開口した通孔44を通じて、図1の混合室8内に連通し、さらに、図1の温水流出口18に連通している。
【0020】
図3の感温制御ロッド39の外周には、前記内部空間47に位置して環状のバイメタルからなる感温駆動体48が配列され、かつロッド39がばね49によりY方向に付勢されて、自動温調機構が構成されている。すなわち、バイメタル48は、高膨張合金層と低膨張合金層とを貼り合わせたものを1組として、複数組が軸方向に沿って配置されており、通孔44から内部空間47に流入する温水の温度を常時感知している。バイメタル48は、高温を感知したときに図4に示す膨らんだ皿ばね状となり、かつ低温のときに図3に示す平板状となり、その変形に伴う力が、ロッド39に固定されたリング状の受け部材55を介して、ロッド39に作用する。
【0021】
パイロット弁31の弁体33は、前記バイメタル48の変形に連動して軸方向X−Yに移動する感温制御ロッド39により、ばね34の付勢力に抗して軸方向X−Yに移動される。これによって、弁体33と弁座37との隙間からなる冷水通路41の大きさが調整されて、感圧室21に入る冷水の圧力、つまり蒸気弁駆動圧力が、温水流出口18の温水温度に応じて調節される。それに応じて蒸気弁12および冷水弁20の作動が制御されて、温水が設定温度に保持される。
【0022】
なお、固定スリーブ38の端部にはガイドケース51が螺合され、このガイドケース51が感温制御ロッド39における後端部39aを、挿通孔52を介して進退自在に支持している。
【0023】
図5は、蒸気弁12・冷水弁20の下動変位量(蒸気弁駆動部材24の下動変位量)と、蒸気弁12の通路面積、および冷水流入孔7の開口面積との関係を示すグラフであり、図中の実線は蒸気弁12の通路面積の変化を表し、破線は冷水流入孔7の開口面積の変化を表している。
【0024】
同図において、蒸気弁12の通路面積のピーク値に対応する蒸気弁12および冷水弁20の下動位置Pでは、図1の混合室8で作られる温水温度が所定の上限温度となるように蒸気弁12の通路や冷水流入孔7が形成されており、この下動位置Pに達するまでは蒸気弁12の通路面積が増大して、より多くの蒸気を混合室8内に導入し、下動位置Pを越えて蒸気弁12および冷水弁20が一体的に下動すると、それに応じて絞り弁22が蒸気弁12の通路を塞ぎ、最終的に蒸気弁12の通路が閉じられる。また、冷水流入孔7も、蒸気弁12および冷水弁20が前記下動位置Pに近付くあたりから、図2(A)に示すように冷水弁20で次第に塞がれ始め、それ以上の下動により、冷水流入孔7の開口面積が次第に小さくなって温水温度が上昇していくように、冷水弁20と冷水流入孔7との高さ関係が設定されている。
【0025】
つぎに、上記混合弁装置の作動について説明する。図1の温水吐出口18に接続された外部の温水吐出弁(蛇口)が温水使用のために開けられると、混合室8の圧力が低下する。一方、冷水入口2から図3のパイロット弁31に導入された冷水が、冷水通路41から連通路43を通って感圧室21内に流入している。この感圧室21内の冷水の圧力、つまり駆動圧力が、復帰ばね30のばね力と混合室8の圧力との合計よりも大きくなると、ダイヤフラム10が下動し、ロッド19により弁体14が押し下げられて第1の弁座面13から離れ、蒸気弁12が開かれる。これにより、蒸気が蒸気導入口11から混合室8内に流入するとともに、冷水が冷却流入孔7から混合室8内に流入し、この蒸気と冷水とが混合室8で混合して作られた温水が、温水流出口18から温水配管により外部に取り出される。前記ロッド19の下動により、蒸気弁12の通路面積が増大して蒸気の混合室8への流入量が増加する一方で、冷水弁20が下動して冷水流入孔7を徐々に塞ぎ、その開口面積を小さくしていくので、冷水の混合室8への流入量が減少していく。これにより、混合室8内の温水温度が上昇していく。
【0026】
この温水の温度は、通孔44を通じてバイメタル48が常時感知しており、温度調節ハンドル42により設定された設定温度よりも高温になると、バイメタル48は図4に示すように、軸方向の幅が大きくなる形状に変形して感温制御ロッド39を図4のX方向に移動させる。これにより、弁体33で調整される冷水通路41が狭くなって図1の感圧室21内への冷水の流入を抑制し、ダイヤフラム10を上動させて蒸気弁12の開度を絞るようにして蒸気の混合室8への流入量を減少させ、温水の温度を低下させる。つぎに、外部の温水吐出弁を閉じて温水の吐出を止めると、混合室8内の圧力が高くなる。ここで、冷水圧力が蒸気圧力に対して同等または低い場合、混合室8の圧力上昇によってダイヤフラム10は押し上げられ、蒸気弁12が閉弁方向に作動する。図2(A)は、前記温度調節ハンドル42により、温水温度が先述した上限温度になるように設定したときの蒸気弁12、冷水弁20および絞り弁22の状態を示す。
【0027】
ところで、前記混合弁装置において、図3に示すパイロット弁31における固定スリーブ38の内部空間47に配置されているバイメタル48のロッド挿通孔48aと感温制御ロッド39の外周面との間に、たとえばゴミなどが付着するなどして、バイメタル48が感温制御ロッド39にかみ付いた状態となる結果、温水温度が高温となっても図4に示すように皿ばね状に変形できなくなった場合、すなわちパイロット弁31が開弁状態で制御不能に陥った場合には、冷水入口2(図1)からの冷水がパイロット弁31を経て感圧室21内に流入し続けるので、これに伴うダイヤフラム10の下動により、図1の蒸気弁12および冷水弁20は、温水温度が上限温度となる先述した下動位置Pよりも下方(図5の右方)へ変位することになる。すなわち、冷水流入孔7の開度が、設定された上限温度に対応した開度よりも小さくなる。ところが、これに伴い、蒸気弁12の通路も、絞り弁22によって、図2(B)に示すように、前記下動位置Pのときよりも急速に絞られて塞がれるために、混合室8への蒸気の流入が遮断され、温水は熱水にまで温度上昇することなく、冷水温度付近まで低下する。
【0028】
また、混合弁装置の使用者が、図3に示す温度調節ハンドル42による温水温度の設定操作を誤って、パイロット弁31における弁座37の位置を、上限温度に対応する位置よりも高温側、すなわち、図3のX方向に移動させた場合には、温水温度が高温となってバイメタル48が図4に示す皿ばね状に変形しても、パイロット弁31の開弁状態が続くので、冷水がパイロット弁31を経て感圧室21内に流入し続ける。その結果、これに伴うダイヤフラム10の下動により、蒸気弁12および冷水弁20は、温水温度が上限温度となる先述した下動位置Pよりも下方へ変位して、冷水流入孔7の開度が、上限温度に対応した開度よりも小さくなる。しかし、この場合も、蒸気弁12の通路が、絞り弁22によって、前記下動位置Pのときよりも急速に絞られて塞がれるために、混合室8への蒸気の流入が遮断され、温水は熱水にまで温度上昇することなく、冷水温度付近まで低下する。
【0029】
なお、この実施形態では、前記のごとくダイヤフラム10に固定されて先端部で蒸気弁12を押圧する弁棒19に、円錐形の絞り弁22を設けているので、絞り弁22により蒸気弁12の通路を絞る機構を簡単に構成できる。特に、絞り弁22を弁棒に一体形成した場合、部品点数の増加を招かない。
【0030】
【発明の効果】
以上のように、本発明によれば、冷水弁によって冷水流入孔の開度が、設定された上限温度に対応した開度よりも小さくなったとき、蒸気弁の通路面積を絞り弁で絞って、温水の温度を低下させるようにしたので、パイロット弁が開弁状態のまま制御不良に陥って、蒸気弁駆動部材への冷水の導入量が増大しても、温水温度が上限温度を越えてしまうのを防止できる。
また、温度調節部材の操作を誤って、パイロット弁の開度を上限温度に対応する開度より大きく設定した場合も、蒸気弁駆動部材への冷水の導入量が増大するが、この場合も、蒸気弁の通路は絞り弁により小さく絞られるため、温水温度が上限温度を越えてしまうのを防止できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る混合弁装置を示す縦断面図である。
【図2】(A)および(B)は、同上装置における絞り弁の動作を示す要部の縦断面図である。
【図3】同上装置におけるパイロット弁の開弁状態を示す、図1のIII-III 線に沿った断面図である。
【図4】同上装置におけるパイロット弁の開弁状態を示す断面図である。
【図5】同上装置における蒸気弁の変位量と蒸気弁の通路面積および冷水流入孔の開度との関係を示す特性図である。
【図6】従来装置の縦断面図である。
【符号の説明】
2…冷水入口、3…蒸気入口、7…冷水流入孔、8…混合室、10…ダイヤフラム、11…蒸気導入口、12…蒸気弁、19…弁棒(ロッド)、20…冷水弁、22…絞り弁、24…蒸気弁駆動部材、31…パイロット弁、42…温度調節ハンドル(温度調節部材)、48…バイメタル(感温駆動体)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mixing valve device for producing hot water by introducing and mixing steam and cold water into a mixing chamber.
[0002]
[Prior art]
This type of conventional mixing valve device is configured as shown in FIG. That is, the apparatus main body 1 has a cold water inlet 2 and a steam inlet 3 opened at opposite positions. Cold water is introduced into the cold water inlet 2 as shown by an arrow A through a cold water pipe (not shown). The introduced cold water flows into the mixing chamber 8 through a plurality of cold water inflow holes 7 provided on the peripheral surface of the cylindrical valve seat member 4, while the upper lid 9 passes through an internal passage and a pilot valve (not shown). It flows into the pressure sensing chamber 21 between the lower diaphragm 10 and acts as a driving pressure for driving a steam valve 12 and a cold water valve 20 described later.
[0003]
Steam (or high temperature water) flows into the steam inlet 3 as shown by an arrow B through a steam pipe (not shown), and this steam passes through the steam inlet 11 and the steam valve 12 provided in the valve seat member 4. Then, it is introduced into the mixing chamber 8 and mixed with cold water. The hot water produced by mixing the steam and the cold water is led out from the hot water outlet 18 through a hot water pipe (not shown) when a hot water discharge valve (faucet) (not shown) is opened.
[0004]
The steam valve 12 includes a valve seat 13 formed on the valve seat member 4, a valve body 14, and a return spring 17. FIG. 7 shows the fully opened state of the steam valve 12. From this state, when the valve element 14 is moved upward through the valve rod 19 by the diaphragm 10 and is seated on the valve seat 13, the steam valve 12 is fully opened. Closed.
[0005]
When the difference between the driving pressure of the cold water acting from the upper pressure sensing chamber 21 and the pressure of the hot water acting from the lower side and the spring force of the return spring 30 is a downward operating force, the diaphragm 10 is connected via the valve rod 19. When the valve body 14 is pushed down and the operating force is upward, the valve rod 19 is lifted and the return spring 17 raises the valve body 14. In addition, a cylindrical cold water valve 20 is attached to the valve rod 19 via a radial stay 5, and the cold water valve 20 moves integrally with the steam valve 12 to open and close each cold water inflow hole 7. Therefore, when the diaphragm 10 pushes down the valve rod 19, the steam valve 12 opens and the steam inflow amount increases. When the steam valve 12 approaches full open, the chilled water valve 20 is throttled so that the opening area of the chilled water inflow hole 7 decreases, and the amount of chilled water inflow decreases. Conversely, when the valve rod 19 rises, It decreases and the cold water inflow increases.
[0006]
On the other hand, the pilot valve constantly senses the temperature of the hot water produced in the mixing chamber 8 and suppresses the amount of cold water flowing into the pressure sensing chamber 21 when the sensed hot water temperature becomes higher than the set temperature. To do. Thereby, the diaphragm 10 operates the steam valve 12 in the valve closing direction and the cold water valve 20 in the valve opening direction, respectively. Conversely, when the temperature becomes lower than the set temperature, the inflow amount of the cold water is increased, and the diaphragm 10 operates the steam valve 12 in the valve opening direction and the cold water valve 20 in the valve closing direction, respectively. In other words, the pilot valve adjusts the driving pressure of the cold water acting on the pressure sensing chamber 21 according to the hot water set temperature, thereby producing hot water at the set temperature.
[0007]
In order to variably set the hot water temperature, the opening degree of the pilot valve can be variably adjusted by operating a temperature adjustment handle. That is, when the opening degree of the pilot valve is increased by operating the temperature control handle, the amount of cold water flowing into the pressure sensing chamber 21 increases, so that the steam valve 12 is opened and the cold water valve 20 is closed. Each is adjusted and the hot water temperature becomes high. Conversely, if the opening degree of the pilot valve is decreased by operating the temperature control handle, the amount of cold water flowing into the pressure sensing chamber 21 decreases, the steam valve 12 is in the valve closing direction, and the cold water valve 20 is in the valve opening direction. The hot water temperature becomes low temperature.
[0008]
[Problems to be solved by the invention]
By the way, in the mixing valve device, when the pilot valve is in the open state, for example, a foreign object bites into a temperature-sensitive driving body such as a temperature-controlling bimetal, resulting in poor control in the open state. In this case, the driving pressure acting on the pressure sensing chamber 21 rises to the cold water pressure, the opening degree of the steam valve 12 is maximized, and the opening degree of the cold water valve 20 is minimized. There is a problem that the temperature of hot water rises excessively.
[0009]
In addition, even if the pilot valve is normal, if the operation of the temperature adjustment handle is mistaken and the hot water temperature is set to a value equal to or higher than the desired upper limit temperature, the driving pressure acting on the pressure sensing chamber 21 is also applied. Therefore, the opening of the steam valve 12 is larger and the opening of the cold water valve 20 is smaller than when the hot water temperature is the upper limit temperature, and hot water is blown out from the hot water outlet 18. There is.
[0010]
The present invention solves such a problem, and the pilot valve is set to be uncontrollable when the valve is open, or the temperature adjustment handle is mistakenly operated so that the hot water temperature becomes a value equal to or higher than a desired upper limit temperature. Even in such a case, an object is to provide a highly safe mixing valve device capable of preventing the hot water temperature from exceeding the upper limit temperature.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the mixing valve device of the present invention includes a steam inlet into which steam flows, a cold water inlet into which cold water flows, a mixing chamber that mixes the steam and cold water to produce hot water, and the mixing chamber. A steam valve for adjusting the opening of the inlet for introducing steam to the steam, a steam valve driving member for driving part of the cold water by introducing a part of the cold water, and the cold water flowing in from the cold water inlet Operation of the cold water inlet hole to be introduced into the mixing chamber, the cold water valve that moves in conjunction with the steam valve driving member, and narrows the opening degree of the cooling water inlet hole as the opening degree of the steam valve increases, and the operation of the temperature adjustment member A pilot valve that drives the steam valve by adjusting the cold water pressure for driving the steam valve according to the temperature sensor, a temperature-sensitive driver that contacts the hot water and changes the opening of the pilot valve according to the temperature change, and Provided in the steam valve drive member, the front by the cold water valve When the opening degree of the cold water inlet hole is smaller than the opening degree corresponding to the set upper limit temperature, squeezed a passage area of the steam valve, and a throttle valve to reduce the temperature of the hot water.
[0012]
According to this mixing valve device, when the pilot valve falls into a control failure while being opened, the amount of cold water introduced into the steam valve drive member increases, and the opening of the cold water inlet hole is brought to the upper limit temperature by the cold water valve. Although the throttle is throttled smaller than the corresponding opening, the steam valve passage is also throttled by the throttle valve at this time, preventing the temperature of the hot water produced in the mixing chamber from dropping and the hot water temperature from exceeding the upper limit temperature. it can.
[0013]
In addition, even if the temperature adjustment member is operated incorrectly and the pilot valve opening is set to be larger than the opening corresponding to the upper limit temperature, the amount of cold water introduced into the steam valve drive member increases and is throttled by the cold water valve. The opening of the chilled water inflow hole is smaller than the opening corresponding to the upper limit temperature, but the steam valve passage is still narrowed by the throttle valve at this time, so the temperature of the hot water produced in the mixing chamber decreases, It is possible to prevent the temperature from exceeding the upper limit temperature.
[0014]
In the present invention, the steam valve driving member includes a diaphragm that partitions a pressure-sensitive chamber into which cold water is introduced via a pilot valve and a mixing chamber, and a rod that is fixed to the diaphragm and presses the steam valve at a tip portion. It is preferable to provide the conical throttle valve on the rod. In this way, the steam from the steam valve 12 is introduced into the mixing chamber without disturbing the normal flow along the conical rod. Further, a mechanism for restricting the passage of the steam valve by the throttle valve can be easily configured in conjunction with the steam valve driving member.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a mixing valve device according to an embodiment of the present invention. Components identical or equivalent to those in FIG.
[0016]
The difference from FIG. 7 is that a throttle valve 22 for restricting the passage of the steam valve (main valve) 12 is provided integrally with a lower part of a valve rod (rod) 19 that pushes down the ball-shaped valve element 14. The throttle valve 22 has a conical shape with a smaller diameter downward, and the second valve seat surface 23 corresponding to the throttle valve 22 of the valve seat member 4 also has a tapered surface with a smaller diameter downward. Yes. In addition, the some cold water inflow hole 7 provided in the valve seat member 4 is displaced and arrange | positioned up and down. Further, as in the prior art, the valve seat member 4 is provided with a screw portion 28 for fixing the valve seat member 4 to the apparatus body 1 and a cold water valve sliding portion 29 for sliding the cold water valve 20. ing.
[0017]
The diaphragm 10 that drives the steam valve 12 via the valve rod 19 according to the difference between the driving pressure of the cold water in the pressure sensitive chamber 21 and the discharge pressure (the hot water pressure in the mixing chamber 8) in FIG. Is clamped and fixed between the upper lid 9 and the upper end portion of the apparatus main body 1 and is urged upward by a return spring 30. A relief passage 15 having an orifice 15 a is formed at the upper end of the valve rod 19 facing the pressure sensing chamber 21 to allow a part of the cold water flowing into the pressure sensing chamber 21 to escape to the mixing chamber 8 side. Yes. The diaphragm 10 and the valve rod 19 constitute a steam valve driving member 24 that drives the steam valve 12.
[0018]
The driving pressure of the cold water acting on the pressure sensing chamber 21 is adjusted according to the set hot water temperature by the pilot valve 31 shown in FIG. 3 which is a sectional view taken along the line III-III in FIG. The cold water from the cold water inlet 2 of FIG. 1 is introduced into the pilot valve 31 through the first to third passages 32a, 32b, and 32c for the pilot after the dust is removed by the screen 26 of FIG. In the inner part of the third passage 32c, the valve body 33 made of a ball is urged in the direction of the valve seat 37 by the spring 34 and is pressed against the tip pin 40 of the temperature-sensitive control rod 39 inserted into the fixed sleeve 38. ing. The cold water passage 41 formed by the gap between the valve body 33 and the valve seat 37 can adjust the passage area by rotating the temperature adjustment handle (temperature adjustment member) 42. That is, the adjustment member 35 fixed to the temperature adjusting handle 42 and screwed to the fixing sleeve 38 by the threaded portion 36 is rotated by rotating the temperature adjusting handle 42, and the valve seat 37 formed on the adjusting member 35 is adjusted. The passage area of the chilled water passage 41 formed by the gap can be adjusted by moving in the direction of the arrow XY that coincides with the axial direction of 35, whereby the temperature of the hot water can be set as desired.
[0019]
A communication passage 43 penetrating the fixed sleeve 38 from the space on the left side of the valve seat 37 communicates with the pressure sensing chamber 21 in FIG. 1, and cold water flowing in through the first to third passages 32a, 32b, and 32c And flows into the pressure sensing chamber 21 through the communication passage 43. On the other hand, when the diaphragm 10 is pushed up, the cold water in the pressure sensitive chamber 21 pushes back the check valve 53 and returns to the cold water inlet 2 (FIG. 1) side as shown in FIG. Further, the inner space 47 on the left side of the fixed sleeve 38 communicates with the mixing chamber 8 in FIG. 1 through the through hole 44 opened in the peripheral wall of the fixed sleeve 38, and further communicates with the hot water outlet 18 in FIG. Yes.
[0020]
A temperature-sensitive driving body 48 made of an annular bimetal is arranged on the outer periphery of the temperature-sensitive control rod 39 in FIG. 3 and is urged in the Y direction by a spring 49. An automatic temperature control mechanism is configured. That is, the bimetal 48 includes a combination of a high expansion alloy layer and a low expansion alloy layer, and a plurality of sets are arranged along the axial direction, and hot water flowing into the internal space 47 from the through hole 44. Is constantly sensing the temperature. The bimetal 48 has a bulging disc spring shape as shown in FIG. 4 when a high temperature is sensed, and a flat plate shape as shown in FIG. 3 when the temperature is low, and the force accompanying the deformation is a ring shape fixed to the rod 39. It acts on the rod 39 via the receiving member 55.
[0021]
The valve element 33 of the pilot valve 31 is moved in the axial direction XY against the biasing force of the spring 34 by a temperature-sensitive control rod 39 that moves in the axial direction XY in conjunction with the deformation of the bimetal 48. The As a result, the size of the cold water passage 41 formed by the gap between the valve element 33 and the valve seat 37 is adjusted, and the pressure of the cold water entering the pressure sensing chamber 21, that is, the steam valve driving pressure is the hot water temperature of the hot water outlet 18. Is adjusted according to. Accordingly, the operations of the steam valve 12 and the cold water valve 20 are controlled, and the hot water is held at the set temperature.
[0022]
A guide case 51 is screwed to the end portion of the fixed sleeve 38, and the guide case 51 supports the rear end portion 39a of the temperature-sensitive control rod 39 through the insertion hole 52 so as to advance and retract.
[0023]
FIG. 5 shows the relationship between the downward displacement amount of the steam valve 12 and the cold water valve 20 (downward displacement amount of the steam valve drive member 24), the passage area of the steam valve 12, and the opening area of the cold water inflow hole 7. In the graph, a solid line represents a change in the passage area of the steam valve 12, and a broken line represents a change in the opening area of the cold water inflow hole 7.
[0024]
In the figure, at the downward movement position P of the steam valve 12 and the cold water valve 20 corresponding to the peak value of the passage area of the steam valve 12, the hot water temperature produced in the mixing chamber 8 of FIG. 1 becomes a predetermined upper limit temperature. The passage of the steam valve 12 and the cold water inflow hole 7 are formed, and the passage area of the steam valve 12 increases until the lower movement position P is reached, and more steam is introduced into the mixing chamber 8, When the steam valve 12 and the chilled water valve 20 move downward integrally beyond the moving position P, the throttle valve 22 blocks the passage of the steam valve 12 accordingly, and finally the passage of the steam valve 12 is closed. Further, the cold water inflow hole 7 begins to be gradually blocked by the cold water valve 20 as the steam valve 12 and the cold water valve 20 approach the downward movement position P as shown in FIG. Therefore, the height relationship between the cold water valve 20 and the cold water inflow hole 7 is set so that the opening area of the cold water inflow hole 7 gradually decreases and the hot water temperature rises.
[0025]
Next, the operation of the mixing valve device will be described. When the external hot water discharge valve (faucet) connected to the hot water discharge port 18 of FIG. 1 is opened for use of hot water, the pressure in the mixing chamber 8 decreases. On the other hand, the cold water introduced into the pilot valve 31 of FIG. 3 from the cold water inlet 2 flows into the pressure sensing chamber 21 from the cold water passage 41 through the communication passage 43. When the pressure of the cold water in the pressure sensing chamber 21, that is, the driving pressure becomes larger than the sum of the spring force of the return spring 30 and the pressure of the mixing chamber 8, the diaphragm 10 moves downward, and the valve element 14 is moved by the rod 19. The steam valve 12 is opened by being pushed away from the first valve seat surface 13. As a result, steam flows from the steam inlet 11 into the mixing chamber 8, and cold water flows from the cooling inlet 7 into the mixing chamber 8, and this steam and cold water are mixed in the mixing chamber 8. Hot water is taken out from the hot water outlet 18 through hot water piping. The downward movement of the rod 19 increases the passage area of the steam valve 12 and increases the amount of steam flowing into the mixing chamber 8, while the chilled water valve 20 moves down and gradually closes the chilled water inflow hole 7, Since the opening area is reduced, the amount of cold water flowing into the mixing chamber 8 decreases. Thereby, the warm water temperature in the mixing chamber 8 rises.
[0026]
The temperature of the hot water is constantly detected by the bimetal 48 through the through hole 44. When the temperature of the hot metal becomes higher than the set temperature set by the temperature adjustment handle 42, the bimetal 48 has an axial width as shown in FIG. The temperature-sensitive control rod 39 is moved in the X direction in FIG. Thereby, the cold water passage 41 adjusted by the valve body 33 is narrowed to suppress the inflow of cold water into the pressure sensing chamber 21 of FIG. 1, and the diaphragm 10 is moved up so that the opening degree of the steam valve 12 is reduced. Thus, the amount of steam flowing into the mixing chamber 8 is reduced, and the temperature of the hot water is lowered. Next, when the external hot water discharge valve is closed to stop the hot water discharge, the pressure in the mixing chamber 8 increases. Here, when the cold water pressure is equal to or lower than the steam pressure, the diaphragm 10 is pushed up by the pressure increase in the mixing chamber 8, and the steam valve 12 operates in the valve closing direction. FIG. 2A shows the state of the steam valve 12, the cold water valve 20, and the throttle valve 22 when the hot water temperature is set to the above-described upper limit temperature by the temperature adjustment handle 42.
[0027]
Incidentally, in the mixing valve device, for example, between the rod insertion hole 48a of the bimetal 48 disposed in the internal space 47 of the fixed sleeve 38 in the pilot valve 31 shown in FIG. When the bimetal 48 is engaged with the temperature-sensitive control rod 39 as a result of dust or the like adhering to it, as shown in FIG. That is, when the pilot valve 31 is in an open state and becomes uncontrollable, the cold water from the cold water inlet 2 (FIG. 1) continues to flow into the pressure sensing chamber 21 through the pilot valve 31, and the diaphragm 10 associated therewith. As a result of the downward movement, the steam valve 12 and the cold water valve 20 in FIG. 1 are displaced downward (to the right in FIG. 5) from the previously described downward movement position P where the hot water temperature becomes the upper limit temperature. That is, the opening degree of the cold water inflow hole 7 is smaller than the opening degree corresponding to the set upper limit temperature. However, as a result, the passage of the steam valve 12 is also squeezed and closed more rapidly than the lower movement position P by the throttle valve 22 as shown in FIG. The inflow of steam to 8 is cut off, and the hot water does not rise in temperature to hot water but falls to near the cold water temperature.
[0028]
In addition, the user of the mixing valve device mistakenly performs the setting operation of the hot water temperature by the temperature adjustment handle 42 shown in FIG. 3, and the position of the valve seat 37 in the pilot valve 31 is higher than the position corresponding to the upper limit temperature That is, when moved in the X direction in FIG. 3, even if the hot water temperature becomes high and the bimetal 48 is deformed into the disc spring shape shown in FIG. Continues to flow into the pressure sensing chamber 21 through the pilot valve 31. As a result, the downward movement of the diaphragm 10 causes the steam valve 12 and the chilled water valve 20 to be displaced downward from the above-described downward movement position P where the hot water temperature becomes the upper limit temperature, and the opening degree of the chilled water inflow hole 7. However, it is smaller than the opening corresponding to the upper limit temperature. However, in this case as well, the passage of the steam valve 12 is more rapidly throttled and blocked by the throttle valve 22 than at the lower movement position P, so that the flow of steam into the mixing chamber 8 is blocked. Hot water falls to near the cold water temperature without rising to hot water.
[0029]
In this embodiment, the conical throttle valve 22 is provided on the valve rod 19 that is fixed to the diaphragm 10 and presses the steam valve 12 at the tip as described above. A mechanism for narrowing the passage can be easily configured. In particular, when the throttle valve 22 is formed integrally with the valve stem, the number of parts does not increase.
[0030]
【The invention's effect】
As described above, according to the present invention, when the opening of the chilled water inflow hole is smaller than the opening corresponding to the set upper limit temperature by the chilled water valve, the passage area of the steam valve is throttled by the throttle valve. Since the temperature of the hot water is lowered, even if the pilot valve falls into a poor control state and the amount of cold water introduced into the steam valve drive member increases, the hot water temperature exceeds the upper limit temperature. Can be prevented.
In addition, even if the operation of the temperature adjustment member is mistaken and the opening degree of the pilot valve is set to be larger than the opening degree corresponding to the upper limit temperature, the amount of cold water introduced into the steam valve driving member increases. Since the passage of the steam valve is narrowed by the throttle valve, the hot water temperature can be prevented from exceeding the upper limit temperature.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a mixing valve device according to an embodiment of the present invention.
FIGS. 2A and 2B are longitudinal sectional views of the main part showing the operation of the throttle valve in the apparatus.
3 is a cross-sectional view taken along the line III-III in FIG. 1, showing the open state of the pilot valve in the apparatus.
FIG. 4 is a cross-sectional view showing an open state of a pilot valve in the apparatus.
FIG. 5 is a characteristic diagram showing the relationship between the displacement amount of the steam valve, the passage area of the steam valve, and the opening degree of the cold water inlet hole in the apparatus.
FIG. 6 is a longitudinal sectional view of a conventional device.
[Explanation of symbols]
2 ... Cold water inlet, 3 ... Steam inlet, 7 ... Cold water inlet, 8 ... Mixing chamber, 10 ... Diaphragm, 11 ... Steam inlet, 12 ... Steam valve, 19 ... Valve rod (rod), 20 ... Cold water valve, 22 ... Throttle valve, 24 ... Steam valve drive member, 31 ... Pilot valve, 42 ... Temperature adjustment handle (temperature adjustment member), 48 ... Bimetal (temperature-sensitive drive body)

Claims (2)

蒸気が流入する蒸気入口と、
冷水が流入する冷水入口と、
前記蒸気と冷水を混合して温水を作る混合室と、
前記混合室へ蒸気を導入する導入口の開度を調節する蒸気弁と、
冷水の一部を導入して、その圧力により前記蒸気弁を駆動する蒸気弁駆動部材と、
前記冷水入口から流入した冷水を前記混合室へ導入する冷水流入孔と、
前記蒸気弁駆動部材と連動して移動し、蒸気弁の開度の増大に応じて冷却水流入孔の開度を絞る冷水弁と、
温度調節部材の操作に応じて蒸気弁駆動用の冷水圧力を調整することにより蒸気弁を駆動するパイロット弁と、
温水に接触してその温度変化に応じてパイロット弁の開度を変化させる感温駆動体と、
前記蒸気弁駆動部材に設けられて、前記冷水弁によって前記冷水流入孔の開度が設定された上限温度に対応した開度よりも小さくなったとき、前記蒸気弁の通路面積を絞って、温水の温度を低下させる絞り弁を備えた混合弁装置。
A steam inlet through which steam flows,
A cold water inlet through which cold water flows,
A mixing chamber that mixes the steam and cold water to produce hot water;
A steam valve for adjusting the opening of the inlet for introducing steam into the mixing chamber;
A steam valve driving member that introduces part of the cold water and drives the steam valve by its pressure;
A cold water inflow hole for introducing cold water flowing in from the cold water inlet into the mixing chamber;
A chilled water valve that moves in conjunction with the steam valve drive member and squeezes the opening of the cooling water inflow hole in accordance with an increase in the opening of the steam valve;
A pilot valve that drives the steam valve by adjusting the cold water pressure for driving the steam valve according to the operation of the temperature adjustment member;
A temperature-sensitive driver that contacts the hot water and changes the opening of the pilot valve according to the temperature change; and
Provided in the steam valve driving member, when the opening of the cold water inlet hole is smaller than the opening corresponding to the set upper limit temperature by the cold water valve, the passage area of the steam valve is reduced to A mixing valve device provided with a throttle valve for lowering the temperature.
請求項1において、前記蒸気弁駆動部材は、パイロット弁を経て冷水が導入される感圧室と前記混合室とを仕切るダイヤフラムと、このダイヤフラムに固定されて先端部で蒸気弁を押圧するロッドとを有し、
前記ロッドに円錐形の前記絞り弁が設けられている混合弁装置。
2. The steam valve driving member according to claim 1, wherein the steam valve driving member includes a diaphragm that partitions the pressure sensing chamber into which the cold water is introduced via a pilot valve and the mixing chamber, and a rod that is fixed to the diaphragm and presses the steam valve at a tip portion. Have
A mixing valve apparatus in which the rod is provided with the conical throttle valve.
JP00265699A 1999-01-08 1999-01-08 Mixing valve device Expired - Lifetime JP4087522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00265699A JP4087522B2 (en) 1999-01-08 1999-01-08 Mixing valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00265699A JP4087522B2 (en) 1999-01-08 1999-01-08 Mixing valve device

Publications (2)

Publication Number Publication Date
JP2000199572A JP2000199572A (en) 2000-07-18
JP4087522B2 true JP4087522B2 (en) 2008-05-21

Family

ID=11535397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00265699A Expired - Lifetime JP4087522B2 (en) 1999-01-08 1999-01-08 Mixing valve device

Country Status (1)

Country Link
JP (1) JP4087522B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065860A (en) * 2001-08-29 2003-03-05 Ito Koki Kk Temperature sensor for liquefied gas vaporizing device
US11412900B2 (en) 2016-04-11 2022-08-16 Gpcp Ip Holdings Llc Sheet product dispenser with motor operation sensing

Also Published As

Publication number Publication date
JP2000199572A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
CA1326845C (en) Safety-stop valve particularly to be used between mixer and shower to prevent scalding
KR20020061600A (en) Slow opening gas valve
CN101535914A (en) Thermostatic valve for regulating a mass flow
US5259554A (en) Temperature responsive, pilot operated line valve with shape memory alloy actuator
KR950001119B1 (en) Mixing valve device
JP4087522B2 (en) Mixing valve device
US5397053A (en) Temperature responsive, pilot operated line valve with shape memory alloy actuator
WO2017110213A1 (en) Fluid control valve device for hot water combination faucet
JPH11287337A (en) Mixing proportional valve
WO1979000212A1 (en) Valve with a helical spring as valvemember
CA2567150A1 (en) Hot water-water mixing faucet
US4556168A (en) Rapid response water heating and delivery system
CN108071926A (en) A kind of master subtracts oil cooler bypass flap
JPH07248067A (en) Relief valve
JP3569118B2 (en) Water heater
JP4058707B2 (en) Mixed proportional valve
JP3207731B2 (en) Relief valve
JP4566657B2 (en) Hot water mixing valve
JPH09303584A (en) Mixing valve device
JPH02249013A (en) Precontrl type reducing valve
JP2584250B2 (en) Mixing valve device
JP2003227571A (en) Poppet valve
JP2715611B2 (en) Fluid control valve device
WO2005038316A1 (en) A regulator insert with hydraulic damping in outlet
JPH0560390A (en) Hot water storage type hot water supplying apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term