JP4058707B2 - Mixed proportional valve - Google Patents

Mixed proportional valve Download PDF

Info

Publication number
JP4058707B2
JP4058707B2 JP32138898A JP32138898A JP4058707B2 JP 4058707 B2 JP4058707 B2 JP 4058707B2 JP 32138898 A JP32138898 A JP 32138898A JP 32138898 A JP32138898 A JP 32138898A JP 4058707 B2 JP4058707 B2 JP 4058707B2
Authority
JP
Japan
Prior art keywords
valve
water
hot water
spindle
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32138898A
Other languages
Japanese (ja)
Other versions
JP2000130615A (en
Inventor
尚 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP32138898A priority Critical patent/JP4058707B2/en
Publication of JP2000130615A publication Critical patent/JP2000130615A/en
Application granted granted Critical
Publication of JP4058707B2 publication Critical patent/JP4058707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯器等の熱交換器から出た湯と水との混合比を調節し、また、出湯量も比例制御することができるようにした混合比例弁に関する。
【0002】
【従来の技術】
給湯器等の熱交換器から出た湯と水とを混合し、適温にして供給する際には、互いに対向する2個の流入口と各流入孔に設けた弁座、及び各流入口間に配置した1個の出口とを備えた弁本体を有する3方弁を用い、相対向する各流入口の弁座にそれぞれ当接する弁を備えた弁体を弁本体内で摺動自在に設け、この弁体の摺動により片側の弁座の開口が減少すると他側の弁座の開口が増加するようにし、この弁体を手動のレバーやコック等により作動することによって、湯と水の混合比を調節して混合水を供給する混合弁が用いられている。
【0003】
上記のような混合弁を用いて、手動でその温度を所定の値に調節することは、湯の温度変化、水量の変化等により困難なため、これを自動的に調節することも行われており、弁本体から出る湯の温度を検出して駆動制御されるモータを用い、モータの回転によって上記弁体を弁本体内で摺動させたものも用いられている。
【0004】
一方、給湯器等の熱交換器には能力の限界が存在し、熱交換器として、あまり大きなものを用いることができないときには、冬等の寒冷時に流入する水道水の温度が低温となっている時、混合弁の湯供給側の弁を最大に解放し、混合する水の量をゼロとしても、なお所定の温度迄上昇しないことがある。この時、湯の温度を上昇させるには、一定の熱量を供給している熱交換器を通る水の量を減少することにより、熱交換器から出る湯の温度を上昇させることができるので、上記の対策として、熱交換器側の流路中に比例弁としての出湯絞り弁を設け、温度に応じて出湯量を変えるようにしている。また、他の対策として、出湯絞り弁の弁として特殊な穴角度のボール弁を用い、湯側の水量調整を可能としたものも提案されている。
【0005】
【発明が解決しようとする課題】
上記従来の装置において、湯と水の混合比を調節する混合弁を設けて温度に応じて混合比を変え、更に熱交換器側の流路中に比例弁としての出湯絞り弁を設け、温度に応じて出湯量を変えるようにしたものにおいては、流路中に混合弁と出湯絞り弁の2個のバルブを使用することになるため、設備費が高価なものとならざるを得ない。また、上記のような特殊な穴角度のボール弁を用い、湯側の流量調整を可能としたものにおいては、このボール弁で絞られる流体の音が大きく、騒音を発生するとともに、湯と水の混合特性や水量特性を変更したいとき、その調整がきわめて困難であるという欠点を有していた。上記欠点を解消するため、流体の管路を並列に複数設けて流量を大きくすることも考えられるが、その際には機構が複雑になり、その設備費も高価なものとなる。
【0006】
したがって、本発明は、湯と水を混合する混合弁と流出湯量を比例制御する出湯絞り弁の機能を1つの装置により行うことができるようにし、簡単な構成で安価な装置とすることができる混合比例弁を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するため、駆動装置により回転及び軸方向に摺動自在に設けられ、出湯絞り弁、湯弁及び前記出湯絞り弁と前記湯弁との間に形成したカムを備えたスピンドルと、
混合水出口、湯入口、水入口、前記混合水出口に設けた第1弁座、該第1弁座に対向して前記湯入口に固定した弁保持部に設けた第2弁座及び前記水入口に設けた第3弁座を備えた弁本体と、
前記弁本体に対して摺動自在に支持され一端が前記スピンドルの前記カムに当接するように付勢されたロッド及び弁部を備えた水弁とからなる混合比例弁であって、
前記スピンドルの回転に伴う前記カムの回転により前記水弁が前記第3弁座に密着する閉側に移動し、同時に前記スピンドルの軸方向の移動により前記湯弁が前記第2弁座から離れる開側に移動して湯と水の混合比を変えると共に、前記水弁が全閉し前記湯弁が全開後に前記出湯絞り弁が前記第1弁座に近接することで閉動作を開始し、前記スピンドルの前記軸方向の更なる移動により出湯量を減少するように、前記出湯絞り弁及び前記カムを設定したものである。
【0008】
【作用】
本発明は、上記のように構成したので、駆動装置によりスピンドルが回転するとカムが回転し、それによりカムに当接する水弁が開閉すると共に、同時にスピンドルが軸方向に摺動することにより湯弁が連動して開閉し、更に、出湯絞り弁も連動して開閉させることができる。スピンドルの上記作動により、最初水と湯の混合比を変えて湯の温度制御を行い、水の量がゼロとなった後には出湯絞り弁により出湯量を比例的に変え、出湯温度を制御させる作動を行うことができるようになり、湯と水の混合比の調整弁と、出湯流量の比例制御を行う出湯絞り弁との機能を、1つの装置により簡単な構成で達成することができ、安価な混合比例弁装置とすることができる。
【0009】
【発明の実施の形態】
本発明の実施例を図面に沿って説明する。図1は本発明の実施例の断面図であり、弁本体1には図中下方で曲折されて横方向を向いている混合水出口2と、混合水出口2の開口方向と反対方向に開口している水入口3と、弁本体の上方に設けられ図1において一部正面図として図示されている湯入口4とを備えている。弁本体1には、また、混合水出口2部分に第1弁座5が、湯入口4部分に第2弁座6が、水入口3部分に第3弁座7が、各々形成されており、第1弁座5と第1弁座に対向して湯入口に固定した弁保持部に設けた第2弁座6は互いに対向しているとともに、第3弁座7は弁本体1の外部に向けて形成されている。弁本体1の上端部にはパルスモータ8をボルトにより固定し、パルスモータ8から下方に延びる弁保持部10は、弁本体1の上端開口から弁本体内に挿入されている。
【0010】
水入口3の側部には管継手9を固定しており、図7の流体回路図にも示すように、管継手9の下端部には水道管と連結される水流入口12が、上端部には温水器の熱交換器42と連結される熱交換器側出口13が、また側部には、前記水入口3と連結され、水流入口12からの水を、熱交換器42をバイパスして混合比例弁18に供給する水バイパス口14を備えている。なお、図1の実施例においては、流量計15が水流入口12の近傍に設けられ、水流を受けて回転する羽根16に設けた永久磁石の回転を、管継手9の外部に固定したリードスイッチ、ホール素子等により検出し、総供給水量を検出している。
【0011】
弁本体1内には、スピンドル11が上下動可能で且つ回転可能に収納されており、スピンドル11の上端部に形成した連結部17は、パルスモータ8の駆動軸と連結している。スピンドル11の連結部17は雄型セレーションが形成され、駆動軸の下端に形成された略同形状の雌型セレーションにより、上下方向に摺動自在に嵌合している。スピンドル11の連結部17の下部外周には雄ねじ部21が形成され、弁保持部10の内周に形成した雌ねじ部22と螺合している。雄ねじ部21と雌ねじ部22のねじのピッチは、図示実施例においては、スピンドルが180度乃至360度回転することにより、スピンドル11の所定の上下動ストロークの全てが行われる程度に設定している。
【0012】
スピンドル11の下端には、前記混合水出口2部分に設けた第1弁座5に対向して、弁からの出湯量を調量する出湯絞り弁23が形成され、スピンドル11の中間部には湯入口4部分に設けた湯調量弁としての湯弁24が形成されており、出湯絞り弁23は下方に、また、湯弁24は上方に各々弁座当接部分が形成されている。スピンドル11の出湯絞り弁23と湯弁24間の軸にはカム25が形成され、このカムは図中実施例のものにおいては最大高さ部分から基円部迄略120度程度に形成されている。
【0013】
弁本体1の水入口3における第3弁座7部分は、図2に一部拡大図として示しているように、中心部にガイド孔26を備えた軸支部27を複数の支持体28によって支持して設けており、支持体28の周囲には水が自由に流通できる流通孔30が形成されている。軸支部27のガイド孔26には、水調量弁としての水弁29のロッド19が摺動自在に支持されており、水弁29はロッド19と一体に形成され、その周囲には弁部31を形成している。
【0014】
水弁29のロッド19の一端は、図1及び図2に示す状態においてスピンドル11に設けたカム25に当接し、また、ロッド19の他端部には逆止弁33を摺動自在に支持している。逆止弁33の背面34と、これに対向する水弁29の背面35間にはスプリング36が縮設され、それにより水弁29は第3弁座7に、また逆止弁33は管継手9の水バイパス孔14に形成した第4弁座37に各々当接する方向に付勢されている。なお、図1及び図2に示す状態においては、スプリング36により逆止弁33は第4弁座37に押しつけられ、水弁29はこれと一体に形成されたロッド19がカム25に押しつけられて、水弁29は第3弁座7から離れている。
【0015】
上記のように構成した混合比例弁18が図1に示す状態においては、スピンドル11は最も上方に移動しており、この時、スピンドル11に形成したカム25は、水弁29のロッド19に対して最も突出した位置の部分で停止している。それにより、スピンドルの出湯絞り弁23は全開となり、湯弁24は第2弁座6に密着して全閉となり、また、ロッド19がカム25によりスプリング36に抗して押され、水弁29の弁部31は第3弁座7から最も離れて全開となっている。この時、混合水出口2に連結した給湯管41の下流において湯の使用状態にないと、混合水出口2から水は流出せず、また、管継手9の内部と弁本体1の内部とは等圧のため、逆止弁33は、スプリング36に押圧されて第4弁座37と密着している。この逆止弁33は、給湯機使用直後、熱交換器の中には、余熱で温度が上昇した高温の湯が存在し、この湯がバイパスを通じて対流し、熱交換器の中の湯温が低下するのを防ぐことができる。
【0016】
図1に示す状態から給湯管41において湯の使用状態となると、水流入孔12から管継手9内に水が流入し、一方は管継手9の熱交換器側出口13から熱交換器42内に流入し、他方は水バイパス孔14からその水道圧によって逆止弁33をスプリング36に抗して解放し、水弁29の周囲を通って流通孔30から弁本体1内に流入する。この状態は図3に示されている。この時、熱交換器側に流入した水は、湯弁24が閉じられているので混合比例弁18内に流入することはなく、したがって、この状態で混合水出口側の図示されない弁が解放されると、全開している水弁29からの水のみが混合比例弁18から流出する。これは、図6において、パルスモータ8の駆動パルスが零で、モータが作動していないAの状態として示されている。
【0017】
次いで、パルスモータ8に駆動パルスを供給すると、モータの駆動軸が回転し、この駆動軸の雌型セレーション20に挿入されているスピンドル11の雄型セレーションを備えた連結部17の連結によりスピンドル11は回転する。セレーション20とスピンドル11の連結部とは回転不能で且つ上下動自由に連結されているので、弁保持部10に形成した雌ねじ部22とスピンドル11の雄ねじ部21との螺合によってスピンドル11は降下し、湯弁24は第2弁座6から離れて弁を徐々に開き始める。また、スピンドル11の回転により水弁29のロッド19に当接するカム25の高さは低くなるので、水弁29は水道圧を背面35に受け、また水流の動圧によって、更にスプリング36の押圧力によりカム25の表面に沿ってスピンドル11側に移動し、水弁29の弁部31は第3弁座7側に移動し、閉弁作用をなす。このような作動はパルスモータへのパルスの増加とともに行われ、混合比例弁流量特性を示す図6において、AからBのように推移する。すなわち、水は水弁29により最初急激に絞られ、その後徐々にその変化は少なくなり、一方、湯は湯弁24により最初徐々に開放し、その後開放の変化は少なくなる。その結果、湯と水の混合した混合水の流量は図中破線で示すように変化するが、熱交換器に与える熱量が一定であるので、熱交換器に流入する水量が減少して湯の温度が上昇しても、その分だけ水の量が多くなるので混合水の温度は変わらず、逆に、熱交換器に流入する水量が増加して湯の温度が低下しても、その分だけ水の量が減少するので混合水の温度は変わらず、いずれにしても混合水の温度は一定となる。
【0018】
図6において、パルスモータ8へのモータ駆動パルスがAからCまでの間にスピンドル11は最大で360度回転することとなるので、図6のように作動する実施例においては、AからBの間をスピンドルが120度以内で作動するように設定している。パルスモータ6への駆動パルスの供給により、スピンドル11は上記のように回転及び降下を行い、図示実施例のものにおいては、上記のようにモータ駆動パルスがBにおいて、カム25は最も低い基円部分に達し、この時水弁29の弁部31は第3弁座7に密着し、水の供給を停止する。一方、湯弁24はこれ以上開放しても流量が増加しない実質的な最大開度に達している。また、出湯絞り弁23は次第に第1弁座5に近づくが、第1弁座5からは充分に遠いので、実質的な弁作動は行われず、閉弁作用は行わない。各弁のこの位置は図4に示され、また、図6においてBの位置として示されている。即ち、図6において、水は水弁全閉により水の流量はゼロとなり、湯は湯弁がこれ以上開放しても流量が増加しない実質的な全開により、水弁と湯弁によっては流量の変化しない領域に入る。
【0019】
更にパルスモータへ駆動パルスを供給すると、水弁29の全閉状態、及び湯弁24の実質的な全開の上記状態は変化せず、それに対して、出湯絞り弁23が第1弁座5に近接するため、混合水出口2から水が混合していない出湯量は次第に低下する。これは図6においてBからCまでの状態であり、パルスモータへの駆動パルス数と混合水の変化は比例関係にあり、比例弁として作用する。最終的には、図5に示すように、出湯絞り弁23は第1弁座5に密着し、混合水出口からの流量は零となる。また、この時カム25は、少なくとも未だ水弁29のロッド19に乗り上げることはなく、したがって図6におけるAからCまでの間は、スピンドル11の回転では360度以内であり、この360度以内の回転の間にスピンドル11は湯弁の全閉状態から出湯絞り弁の全閉状態までの全行程を移動する。
【0020】
水弁29の全開、湯弁24の全閉状態からの上記作動において、図6におけるA−B間は、モータへの駆動パルスを変化しても湯と水の混合水の量には多少の変動はあるものの大きな変化はない。一方、給湯器の使用直後で熱交換器の中に高温の湯が存在し、更に余熱で温度が上昇していると、その温度を検知してパルスモータへのパルスの増減制御が行われ、常時熱交換器の温度に応じた混合状態となるように待機しているので、どのような時に栓を開放して湯を使用しても、混合湯は一定温度を維持することができる。したがって、シャワーの温度が熱くなったり冷たくなったりする「冷水サンドイッチ現象」を解消することができる。したがって、混合水の温度を検出し、その出力に応じてモータへの駆動パルスを制御することにより、混合水の量は大きな変化なしに、混合水の温度を所定の温度に維持することができる。
【0021】
また図6のB−C間は、モータへの駆動パルスの増加に比例して出湯流量は減少し、常時一定の熱量を与えている熱交換器へ供給される水の量が減少するため、熱交換器からの湯の温度は上昇する。このBとC間においては、モータへの駆動パルスを減少すると、当然上記と逆の作用をなし、混合水の温度は低下する。したがって、例えば冬季において、湯の比率を最大にし、すべて湯の状態にしても、なお混合水が充分な温度に達しないときにおいて、本発明では、モータへの駆動パルスを更に増大することにより出湯量は低下するものの、出湯温度は次第に上昇し、所定の希望温度とすることができる。そのため、この間においても、出湯温度を検出し、その出力に応じてモータへの駆動パルスを制御することにより、出湯温度を所定の温度に維持することが可能となる。
【0022】
本発明は上記実施例として示した混合比例弁に限られることはなく、例えば、逆止弁33を用いることがなくても、本発明の基本的な上記作動を行うことができることは当然であり、逆止弁33を設けるに際しても、水弁29の上流側の任意の箇所に各種の形態で設けることができ、また、スピンドル11に設けるカム25の位置は出湯絞り弁23と湯弁24間に限らず任意の位置に設けることができる。更に、スピンドル駆動装置としてパルスモータを用いることなく、直流モータ等任意のモータを使用することができる。
【0023】
【発明の効果】
本発明は、上記のように構成したので、モータによるスピンドル11の回転及び上下動により、最初は水と湯の混合比を変えて温度調節を行い、水弁29の全閉により水の流量がゼロとなった後には、出湯絞り弁23により出湯量を比例的に変えることにより熱交換器への水量調節を行って、出湯温度の調節を行うことができるようになり、湯と水の混合比の調整弁と、出湯量の制御を行う出湯絞り弁23との機能を、1つの装置により簡単な構成で達成することができ、安価な混合比例弁とすることができる。更に、スピンドル11に弁を形成することにより、従来の球形弁等を用いたものと比較して、弁を通る水流による騒音を減少させることができる。
【0024】
また、水入口に逆止弁33を設けたものにおいては、給湯機の使用直後おいて、熱交換器の中には余熱で温度が上昇した高温の湯が存在し、この湯がバイパスを通じて対流し、熱交換器の中の湯温が低下することを防ぐことができる。逆止弁33をロッド19の他端に摺動自在に設けたものにおいては、逆止弁33を水弁29と一体化して全体を小型にすることができる。水弁29と逆止弁33との間にスプリング36を縮設し、水弁29を第3弁座7側に、逆止弁33を第4弁座37側に付勢したものにおいては、1つのスプリング36により水弁29と逆止弁33の両弁を閉弁方向に付勢することができ、部品の共通化により安価なものとすることができるばかりでなく、小型の弁装置とすることができる。
【0025】
弁本体の水入口に管継手を連結し、両者間に水弁29と逆止弁33を配置したものにおいては、弁本体と管継手の分離部分に水弁29や逆止弁33等が配置され、これらの部品のメンテナンスが容易となる。逆止弁33に当接する第4弁座37を管継手に形成したものにおいては、弁本体に集中する弁座を分散することができ、その製造が容易となる。管継手の水入口に流量計15を固定したものにおいては、混合比例弁全体が流量計15を含めてユニット化され、小型化することができ、且つ製造が容易となる。スピンドル11の出湯絞り弁23と湯弁24との間にカム25を形成したものにおいては、出湯絞り弁23と湯弁24とのスペースを有効利用でき、混合比例弁全体を小型化することができる。スピンドル駆動装置としてパルスモータを用いたものにおいては、湯と水の混合比制御、及び出湯絞り弁23の比例制御を正確に行うことができる。
【図面の簡単な説明】
【図1】本発明の実施例の非通水状態を示す断面図である。
【図2】同実施例の一部拡大断面図である。
【図3】本発明の実施例の作動を示す要部断面図であり、湯弁全閉、水弁全開、出湯絞り弁全開の通水状態を示している。
【図4】同湯弁全開、水弁全閉、出湯絞り弁全開の通水状態を示している。
【図5】同湯弁全開、水弁全閉、出湯絞り弁全閉に非通水状態を示している。
【図6】本発明の混合比例弁の流量特性図である。
【図7】本発明の混合比例弁を適用する例の流体回路図である。
【符号の説明】
1 弁本体
2 混合水出口
3 水入口
4 湯入口
5 第1弁座
6 第2弁座
7 第3弁座
8 パルスモータ
9 管継手
10 弁保持部
12 水流入口
13 熱交換器側出口
14 水バイパス口
15 流量計
16 羽根
11 スピンドル
17 連結部
18 混合比例弁
19 ロッド
20 セレーション
21 雄ねじ部
22 雌ねじ部
23 出湯絞り弁
24 湯弁
25 カム
26 ガイド孔
27 軸支部
28 支持体
29 水弁
30 流通孔
31 弁部
32 オリフイス
33 逆止弁
34 背面
35 背面
36 スプリング
37 第4弁座
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mixing proportional valve that adjusts the mixing ratio of hot water and water discharged from a heat exchanger such as a water heater and can also proportionally control the amount of hot water.
[0002]
[Prior art]
When mixing hot water and water from a heat exchanger such as a water heater and supplying them at an appropriate temperature, the two inlets facing each other, the valve seats provided in each inlet hole, and between each inlet A three-way valve having a valve body with a single outlet disposed on the valve body, and a valve body having a valve that abuts against the valve seat of each inflow port facing each other is provided slidably within the valve body When the opening of the valve seat on one side decreases due to the sliding of the valve body, the opening of the valve seat on the other side increases, and by operating this valve body with a manual lever, cock, etc. A mixing valve that adjusts the mixing ratio and supplies mixed water is used.
[0003]
Using the mixing valve as described above, it is difficult to manually adjust the temperature to a predetermined value due to changes in the temperature of the hot water, changes in the amount of water, etc., so this is also automatically adjusted. In addition, a motor that is driven and controlled by detecting the temperature of hot water discharged from the valve body, and the valve body slid within the valve body by the rotation of the motor is also used.
[0004]
On the other hand, there is a limit to the capacity of a heat exchanger such as a water heater, and when a large heat exchanger cannot be used, the temperature of tap water flowing in during cold weather such as winter is low. In some cases, even if the valve on the hot water supply side of the mixing valve is opened to the maximum and the amount of water to be mixed is zero, it may not rise to a predetermined temperature. At this time, in order to increase the temperature of the hot water, the temperature of the hot water coming out of the heat exchanger can be increased by reducing the amount of water passing through the heat exchanger supplying a certain amount of heat. As a countermeasure, a hot water throttle valve as a proportional valve is provided in the flow path on the heat exchanger side so that the amount of hot water is changed according to the temperature. As another countermeasure, a ball valve having a special hole angle is used as a valve for a hot water throttle valve, and the amount of water on the hot water side can be adjusted.
[0005]
[Problems to be solved by the invention]
In the above-mentioned conventional apparatus, a mixing valve for adjusting the mixing ratio of hot water and water is provided to change the mixing ratio according to the temperature, and a tapping valve as a proportional valve is provided in the flow path on the heat exchanger side, In the case of changing the amount of hot water according to the condition, two valves, a mixing valve and a hot water throttle valve, are used in the flow path, so that the equipment cost must be expensive. In addition, when a ball valve with a special hole angle as described above is used and the flow rate on the hot water side can be adjusted, the sound of the fluid squeezed by this ball valve is loud and generates noise. When it is desired to change the mixing characteristics and water quantity characteristics, the adjustment is extremely difficult. In order to eliminate the above-mentioned drawbacks, it is conceivable to increase the flow rate by providing a plurality of fluid conduits in parallel. However, in this case, the mechanism becomes complicated and the equipment cost becomes expensive.
[0006]
Therefore, the present invention can perform the functions of a mixing valve for mixing hot water and water and a tapping throttle valve for proportionally controlling the amount of hot water outflow by a single device, and can be an inexpensive device with a simple configuration. An object is to provide a mixing proportional valve.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is provided with a hot water throttle valve, a hot water valve, and a cam formed between the hot water throttle valve and the hot water valve. Spindle
A mixed water outlet, a hot water inlet, a water inlet, a first valve seat provided at the mixed water outlet, a second valve seat provided at a valve holding portion fixed to the hot water inlet opposite the first valve seat, and the water A valve body provided with a third valve seat provided at the inlet;
A mixing proportional valve comprising a rod and a water valve provided with a valve portion, which is slidably supported with respect to the valve body and is urged so that one end abuts against the cam of the spindle,
As the spindle rotates, the water valve moves to the close side, which is in close contact with the third valve seat, and at the same time, the spindle moves in the axial direction so that the hot water valve separates from the second valve seat. And the mixing ratio of the hot water and water is changed, the water valve is fully closed and the hot water valve is fully opened, and then the hot water throttle valve is close to the first valve seat to start the closing operation , The hot water throttle valve and the cam are set so that the amount of hot water discharged is reduced by further movement of the spindle in the axial direction.
[0008]
[Action]
Since the present invention is configured as described above, when the spindle is rotated by the driving device, the cam rotates, thereby opening and closing the water valve in contact with the cam, and at the same time, the spindle slides in the axial direction. Can be opened and closed in conjunction with each other, and the tapping valve can also be opened and closed in conjunction with it. By the above operation of the spindle, the temperature of the hot water is controlled by first changing the mixing ratio of water and hot water. After the amount of water becomes zero, the hot water temperature is controlled proportionally by the hot water throttle valve to control the hot water temperature. The function of the adjustment valve for the mixing ratio of hot water and water and the function of the hot water throttle valve for proportional control of the hot water flow rate can be achieved with a single device, An inexpensive mixing proportional valve device can be obtained.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of an embodiment of the present invention. A valve body 1 has a mixed water outlet 2 bent in the lower part of the figure and facing in the lateral direction, and an opening in a direction opposite to the opening direction of the mixed water outlet 2 And a hot water inlet 4 provided above the valve body and partially shown as a front view in FIG. The valve body 1 is also formed with a first valve seat 5 at the mixed water outlet 2 portion, a second valve seat 6 at the hot water inlet 4 portion, and a third valve seat 7 at the water inlet 3 portion. The second valve seat 6 provided in the valve holding portion fixed to the hot water inlet facing the first valve seat 5 and the first valve seat is opposed to each other, and the third valve seat 7 is disposed outside the valve body 1. It is formed towards. A pulse motor 8 is fixed to the upper end portion of the valve body 1 with a bolt, and a valve holding portion 10 extending downward from the pulse motor 8 is inserted into the valve body from the upper end opening of the valve body 1.
[0010]
A pipe joint 9 is fixed to the side of the water inlet 3, and as shown in the fluid circuit diagram of FIG. 7, a water inlet 12 connected to the water pipe is provided at the lower end of the pipe joint 9. The heat exchanger side outlet 13 connected to the heat exchanger 42 of the water heater is connected to the water inlet 3 on the side, and the water from the water inlet 12 bypasses the heat exchanger 42. And a water bypass port 14 for supplying to the mixing proportional valve 18. In the embodiment of FIG. 1, a reed switch in which a flow meter 15 is provided in the vicinity of the water inlet 12 and the rotation of the permanent magnet provided on the blade 16 that rotates by receiving the water flow is fixed to the outside of the pipe joint 9. The total water supply is detected by detecting with a hall element or the like.
[0011]
A spindle 11 is accommodated in the valve body 1 so as to be movable up and down and rotatable. A connecting portion 17 formed at the upper end of the spindle 11 is connected to a drive shaft of the pulse motor 8. The connecting portion 17 of the spindle 11 is formed with a male serration, and is fitted so as to be slidable in the vertical direction by a female serration having substantially the same shape formed at the lower end of the drive shaft. A male screw portion 21 is formed on the outer periphery of the lower portion of the connecting portion 17 of the spindle 11 and is screwed with a female screw portion 22 formed on the inner periphery of the valve holding portion 10. In the illustrated embodiment, the pitch of the threads of the male screw portion 21 and the female screw portion 22 is set such that all of the predetermined vertical movement stroke of the spindle 11 is performed by rotating the spindle by 180 degrees to 360 degrees. .
[0012]
At the lower end of the spindle 11, a hot water throttle valve 23 for adjusting the amount of hot water discharged from the valve is formed facing the first valve seat 5 provided at the mixed water outlet 2 portion. A hot water valve 24 as a hot water metering valve provided at the hot water inlet 4 is formed, with the hot water throttle valve 23 formed in the lower part and the hot water valve 24 formed in the upper part with a valve seat contact part. A cam 25 is formed on the shaft between the hot water throttle valve 23 and the hot water valve 24 of the spindle 11, and this cam is formed at about 120 degrees from the maximum height portion to the base circle portion in the embodiment in the figure. Yes.
[0013]
The third valve seat 7 portion at the water inlet 3 of the valve main body 1 supports a shaft support portion 27 having a guide hole 26 at the center by a plurality of support bodies 28 as shown in a partially enlarged view in FIG. A circulation hole 30 through which water can freely flow is formed around the support 28. The guide hole 26 of the shaft support 27, the rod 19 of the water valve 29 as the water metering valve is supported slidably, water valve 29 is formed integrally with the rod 19, at its periphery the valve unit 31 is formed.
[0014]
One end of the rod 19 of the water valve 29 abuts on a cam 25 provided on the spindle 11 in the state shown in FIGS. 1 and 2, and a check valve 33 is slidably supported on the other end of the rod 19. is doing. A spring 36 is contracted between the back surface 34 of the check valve 33 and the back surface 35 of the water valve 29 opposite thereto, whereby the water valve 29 is connected to the third valve seat 7 and the check valve 33 is connected to the pipe joint. 9 are urged in the direction of contacting the fourth valve seats 37 formed in the water bypass holes 14. In the state shown in FIGS. 1 and 2, the check valve 33 is pressed against the fourth valve seat 37 by the spring 36, and the water valve 29 is pressed against the cam 25 by the rod 19 formed integrally therewith. The water valve 29 is separated from the third valve seat 7.
[0015]
In the state shown in FIG. 1 where the mixing proportional valve 18 configured as described above is shown, the spindle 11 is moved upward, and at this time, the cam 25 formed on the spindle 11 moves relative to the rod 19 of the water valve 29. It stops at the most protruding position. As a result, the hot water throttle valve 23 of the spindle is fully opened, the hot water valve 24 is brought into close contact with the second valve seat 6 and fully closed, and the rod 19 is pushed against the spring 36 by the cam 25, so that the water valve 29 The valve portion 31 is farthest away from the third valve seat 7 and is fully open. At this time, if hot water is not used downstream of the hot water supply pipe 41 connected to the mixed water outlet 2, water does not flow out from the mixed water outlet 2, and the inside of the pipe joint 9 and the inside of the valve body 1 are Due to the equal pressure, the check valve 33 is pressed by the spring 36 and is in close contact with the fourth valve seat 37. As for this check valve 33, immediately after using the water heater, there is hot water whose temperature has risen due to residual heat in the heat exchanger, and this hot water is convected through the bypass so that the hot water temperature in the heat exchanger is reduced. It can be prevented from lowering.
[0016]
When the hot water is used in the hot water supply pipe 41 from the state shown in FIG. 1, water flows into the pipe joint 9 from the water inflow hole 12, and one is in the heat exchanger 42 from the heat exchanger side outlet 13 of the pipe joint 9. The other is released from the water bypass hole 14 against the spring 36 by the water pressure, and flows into the valve body 1 from the circulation hole 30 through the periphery of the water valve 29. This state is shown in FIG. At this time, the water flowing into the heat exchanger side does not flow into the mixing proportional valve 18 because the hot water valve 24 is closed. Therefore, a valve (not shown) on the mixed water outlet side is released in this state. Then, only the water from the fully opened water valve 29 flows out from the mixing proportional valve 18. This is shown in FIG. 6 as state A where the drive pulse of the pulse motor 8 is zero and the motor is not operating.
[0017]
Next, when a drive pulse is supplied to the pulse motor 8, the drive shaft of the motor rotates, and the spindle 11 is connected by connecting the connecting portion 17 having the male serration of the spindle 11 inserted in the female serration 20 of the drive shaft. Rotates. Since the serration 20 and the connecting portion of the spindle 11 are non-rotatable and freely connected in the vertical direction, the spindle 11 is lowered by screwing between the female screw portion 22 formed in the valve holding portion 10 and the male screw portion 21 of the spindle 11. Then, the hot water valve 24 moves away from the second valve seat 6 and gradually opens the valve. Further, since the height of the cam 25 contacting the rod 19 of the water valve 29 is lowered by the rotation of the spindle 11, the water valve 29 receives the water pressure on the back surface 35, and further presses the spring 36 by the dynamic pressure of the water flow. The pressure moves to the spindle 11 side along the surface of the cam 25, and the valve portion 31 of the water valve 29 moves to the third valve seat 7 side to perform the valve closing action. Such an operation is performed as the number of pulses to the pulse motor increases, and changes from A to B in FIG. That is, the water is first rapidly squeezed by the water valve 29, and then the change gradually decreases, while the hot water is gradually opened by the hot water valve 24, and the change in the opening is then reduced. As a result, the flow rate of the mixed water mixed with hot water and water changes as shown by the broken line in the figure, but since the amount of heat given to the heat exchanger is constant, the amount of water flowing into the heat exchanger decreases, Even if the temperature rises, the amount of water increases accordingly, so the temperature of the mixed water does not change.Conversely, even if the amount of water flowing into the heat exchanger increases and the temperature of the hot water decreases, the amount of water increases. Since the amount of water decreases only, the temperature of the mixed water does not change, and in any case, the temperature of the mixed water becomes constant.
[0018]
In FIG. 6, since the spindle 11 rotates up to 360 degrees while the motor drive pulse to the pulse motor 8 is from A to C, in the embodiment operating as shown in FIG. The interval is set so that the spindle operates within 120 degrees. By supplying the drive pulse to the pulse motor 6, the spindle 11 rotates and descends as described above. In the embodiment shown in the drawing, the cam 25 is the lowest base circle when the motor drive pulse is B as described above. At this time, the valve portion 31 of the water valve 29 comes into close contact with the third valve seat 7 and stops supplying water. On the other hand, the hot water valve 24 has reached a substantially maximum opening degree at which the flow rate does not increase even if it is opened further. The hot water throttle valve 23 gradually approaches the first valve seat 5, but is sufficiently far from the first valve seat 5, so that the substantial valve operation is not performed and the valve closing operation is not performed. This position of each valve is shown in FIG. 4 and is shown as position B in FIG. That is, in FIG. 6, the flow rate of water becomes zero when the water valve is fully closed, and the flow rate of hot water does not increase even when the hot water valve is opened further. Enter an area that does not change .
[0019]
Further, when a drive pulse is supplied to the pulse motor, the above-mentioned state of the fully closed state of the water valve 29 and the substantially fully open state of the hot water valve 24 does not change, whereas the hot water throttle valve 23 is moved to the first valve seat 5. Because of the proximity, the amount of hot water not mixed with water from the mixed water outlet 2 gradually decreases. This is a state from B to C in FIG. 6, and the number of drive pulses to the pulse motor and the change of the mixed water are in a proportional relationship, and act as a proportional valve. Eventually, as shown in FIG. 5, the tapping throttle valve 23 is in close contact with the first valve seat 5, and the flow rate from the mixed water outlet becomes zero. At this time, the cam 25 has not yet climbed on at least the rod 19 of the water valve 29. Therefore, during the period from A to C in FIG. 6, the rotation of the spindle 11 is within 360 degrees. During the rotation, the spindle 11 moves through the entire stroke from the fully closed state of the hot water valve to the fully closed state of the hot water throttle valve.
[0020]
In the above-described operation from the fully open state of the water valve 29 and the fully closed state of the hot water valve 24 , the amount of mixed water of hot water and water is somewhat between AB in FIG. 6 even if the drive pulse to the motor is changed. There are fluctuations but no major changes. On the other hand, if hot water is present in the heat exchanger immediately after use of the water heater, and the temperature rises due to residual heat, the temperature is detected and the pulse motor is controlled to increase or decrease, Since it always stands by so that it may become a mixed state according to the temperature of a heat exchanger, even if it opens a stopper and uses hot water at any time, mixed hot water can maintain fixed temperature. Therefore, the “cold water sandwich phenomenon” in which the temperature of the shower becomes hot or cold can be solved. Therefore, by detecting the temperature of the mixed water and controlling the drive pulse to the motor according to the output, the temperature of the mixed water can be maintained at a predetermined temperature without a large change in the amount of the mixed water. .
[0021]
Also, between B and C in FIG. 6, the discharge flow rate decreases in proportion to the increase in the drive pulse to the motor, and the amount of water supplied to the heat exchanger that always gives a constant amount of heat decreases. The temperature of hot water from the heat exchanger rises. Between B and C, if the drive pulse to the motor is decreased, the action of course is reversed, and the temperature of the mixed water is lowered. Therefore, for example, in the winter, when the ratio of hot water is maximized and all the hot water is in the state, the mixed water still does not reach a sufficient temperature. Although the amount of hot water decreases, the temperature of the hot water gradually rises to a predetermined desired temperature. Therefore, even during this time, it is possible to maintain the hot water temperature at a predetermined temperature by detecting the hot water temperature and controlling the drive pulse to the motor according to the output.
[0022]
The present invention is not limited to the mixing proportional valve shown in the above embodiment, and it is natural that the basic operation of the present invention can be performed without using the check valve 33, for example. Also, when the check valve 33 is provided, it can be provided in various forms at any location upstream of the water valve 29, and the position of the cam 25 provided on the spindle 11 is between the hot water throttle valve 23 and the hot water valve 24. However, the present invention can be provided at any position. Furthermore, any motor such as a direct current motor can be used without using a pulse motor as the spindle driving device.
[0023]
【The invention's effect】
Since the present invention is configured as described above, the temperature is first adjusted by changing the mixing ratio of water and hot water by the rotation and vertical movement of the spindle 11 by the motor, and the water flow rate is reduced by fully closing the water valve 29. After reaching zero , the amount of hot water can be adjusted by changing the amount of hot water proportionally with the hot water throttle valve 23 , and the temperature of the hot water can be adjusted. The functions of the ratio adjusting valve and the hot water throttle valve 23 for controlling the amount of hot water can be achieved by a single device with a simple configuration, and an inexpensive mixing proportional valve can be obtained. Furthermore, by forming a valve on the spindle 11 , noise due to water flow through the valve can be reduced as compared with a conventional spherical valve or the like.
[0024]
In the case where the check valve 33 is provided at the water inlet 3 , immediately after using the water heater, there is hot water whose temperature has increased due to residual heat in the heat exchanger. It is possible to prevent the temperature of the hot water in the heat exchanger from being lowered by convection. In the case where the check valve 33 is slidably provided at the other end of the rod 19 , the check valve 33 can be integrated with the water valve 29 to reduce the size as a whole. In the case where the spring 36 is contracted between the water valve 29 and the check valve 33 and the water valve 29 is biased toward the third valve seat 7 side and the check valve 33 is biased toward the fourth valve seat 37 side, The single spring 36 can urge both the water valve 29 and the check valve 33 in the closing direction, and not only can the components be made inexpensive but also a small valve device. can do.
[0025]
The pipe joint 9 is connected to the water inlet 3 of the valve body 1, in that arranged water valve 29 and the check valve 33 therebetween, the water valve 29 and a check on the separate part of the valve body 1 and the pipe joint 9 A valve 33 and the like are arranged, and maintenance of these parts becomes easy. In the case where the fourth valve seat 37 that is in contact with the check valve 33 is formed in the pipe joint 9 , the valve seat concentrated on the valve body 1 can be dispersed, and the manufacture thereof becomes easy. In the case where the flow meter 15 is fixed to the water inlet 3 of the pipe joint 9, the entire mixing proportional valve is unitized including the flow meter 15 , which can be downsized and can be easily manufactured. In that form the cam 25 between the pouring throttle valve 23 and the hot water valve 24 of the spindle 11 can effectively utilize the space between the hot water throttle valve 23 and the hot water valve 24, the whole mixture proportional valve be downsized it can. In the case where the pulse motor 8 is used as the spindle driving device, the mixing ratio control of hot water and water and the proportional control of the tapping throttle valve 23 can be accurately performed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a non-water passage state of an embodiment of the present invention.
FIG. 2 is a partially enlarged sectional view of the embodiment.
FIG. 3 is a cross-sectional view of an essential part showing the operation of the embodiment of the present invention, showing a water flow state in which a hot water valve is fully closed, a water valve is fully opened, and a tapping valve is fully opened.
FIG. 4 shows the water flow state when the hot water valve is fully open, the water valve is fully closed, and the tapping valve is fully open.
FIG. 5 shows a non-water-passing state when the hot water valve is fully open, the water valve is fully closed, and the tapping throttle valve is fully closed.
FIG. 6 is a flow characteristic diagram of the mixing proportional valve of the present invention.
FIG. 7 is a fluid circuit diagram of an example to which the mixing proportional valve of the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve body 2 Mixed water outlet 3 Water inlet 4 Hot water inlet 5 1st valve seat 6 2nd valve seat 7 3rd valve seat 8 Pulse motor 9 Fitting 10 Valve holding part 12 Water inlet 13 Heat exchanger side outlet 14 Water bypass Port 15 Flow meter 16 Blade 11 Spindle 17 Connection portion 18 Proportional proportional valve 19 Rod 20 Serration 21 Male screw portion 22 Female screw portion 23 Hot water throttle valve 24 Hot water valve 25 Cam 26 Guide hole 27 Shaft support portion 28 Support body 29 Water valve 30 Flow hole 31 Valve portion 32 Orifice 33 Check valve 34 Back surface 35 Back surface 36 Spring 37 Fourth valve seat

Claims (5)

駆動装置により回転及び軸方向に摺動自在に設けられ、出湯絞り弁、湯弁及び前記出湯絞り弁と前記湯弁との間に形成したカムを備えたスピンドルと、
混合水出口、湯入口、水入口、前記混合水出口に設けた第1弁座、該第1弁座に対向して前記湯入口に固定した弁保持部に設けた第2弁座及び前記水入口に設けた第3弁座を備えた弁本体と、
前記弁本体に対して摺動自在に支持され一端が前記スピンドルの前記カムに当接するように付勢されたロッド及び弁部を備えた水弁とからなる混合比例弁であって、
前記スピンドルの回転に伴う前記カムの回転により前記水弁が前記第3弁座に密着する閉側に移動し、同時に前記スピンドルの軸方向の移動により前記湯弁が前記第2弁座から離れる開側に移動して湯と水の混合比を変えると共に、前記水弁が全閉し前記湯弁が全開後に前記出湯絞り弁が前記第1弁座に近接することで閉動作を開始し、前記スピンドルの前記軸方向の更なる移動により出湯量を減少するように、前記出湯絞り弁及び前記カムを設定してなることを特徴とする混合比例弁。
A spindle provided with a tapping valve, a hot water valve, and a cam formed between the hot water throttle valve and the hot water valve;
A mixed water outlet, a hot water inlet, a water inlet, a first valve seat provided at the mixed water outlet, a second valve seat provided at a valve holding portion fixed to the hot water inlet opposite the first valve seat, and the water A valve body provided with a third valve seat provided at the inlet;
A mixing proportional valve comprising a rod and a water valve provided with a valve portion, which is slidably supported with respect to the valve body and is urged so that one end abuts against the cam of the spindle,
As the spindle rotates, the water valve moves to the close side, which is in close contact with the third valve seat, and at the same time, the spindle moves in the axial direction so that the hot water valve separates from the second valve seat. And the mixing ratio of the hot water and water is changed, the water valve is fully closed and the hot water valve is fully opened, and then the hot water throttle valve is close to the first valve seat to start the closing operation , A mixing proportional valve characterized in that the tapping valve and the cam are set so that the amount of tapping is reduced by further movement of the spindle in the axial direction.
前記水入口に逆止弁を設けてなることを特徴とする請求項1記載の混合比例弁。The mixing proportional valve according to claim 1, wherein a check valve is provided at the water inlet. 前記逆止弁を前記ロッドの他端に摺動自在に設けてなることを特徴とする請求項2記載の混合比例弁。Mixing the proportional valve according to claim 2, characterized by being provided slidably said check valve to the other end of the rod. 前記弁本体の前記水入口に前記第3弁座に対向して設けた第4弁座を備えた管継手を連結し、両者間に前記水弁と前記逆止弁を配置してなることを特徴とする請求項乃至請求項のいずれかに記載の混合比例弁。Connecting the pipe joint provided with a fourth valve seat provided to face the third valve seat to the water inlet of said valve body, that formed by placing the check valve and the water valve therebetween mixing the proportional valve according to any one of claims 2 to 3, characterized. 前記水弁と前記逆止弁との間にスプリングを縮設し、前記水弁を前記第3弁座側に、前記逆止弁を前記第4弁座側に付勢してなることを特徴とする請求項記載の混合比例弁。And it provided under compression spring between said water valve the check valve, the water valve in the third valve seat side, characterized in that biases the check valve to said fourth valve seat side The mixing proportional valve according to claim 4 .
JP32138898A 1998-10-28 1998-10-28 Mixed proportional valve Expired - Fee Related JP4058707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32138898A JP4058707B2 (en) 1998-10-28 1998-10-28 Mixed proportional valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32138898A JP4058707B2 (en) 1998-10-28 1998-10-28 Mixed proportional valve

Publications (2)

Publication Number Publication Date
JP2000130615A JP2000130615A (en) 2000-05-12
JP4058707B2 true JP4058707B2 (en) 2008-03-12

Family

ID=18132003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32138898A Expired - Fee Related JP4058707B2 (en) 1998-10-28 1998-10-28 Mixed proportional valve

Country Status (1)

Country Link
JP (1) JP4058707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903488B1 (en) 2016-11-21 2018-10-02 주식회사 기하정밀 Valve apparatus for separating air-conditioning pipe and air-conditioning equipment
KR20230094712A (en) * 2021-12-21 2023-06-28 린나이코리아 주식회사 Venturi equipment with cam damper

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007510863A (en) * 2003-10-17 2007-04-26 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Diverter valve assembly
KR101688692B1 (en) * 2014-11-03 2017-01-02 이종천 Separable type valve apparatus and air conditioner
CN114413032B (en) * 2022-01-24 2022-11-04 宁波方太厨具有限公司 Water mixing valve and zero-cold-water heater circulating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101903488B1 (en) 2016-11-21 2018-10-02 주식회사 기하정밀 Valve apparatus for separating air-conditioning pipe and air-conditioning equipment
KR20230094712A (en) * 2021-12-21 2023-06-28 린나이코리아 주식회사 Venturi equipment with cam damper
KR102588202B1 (en) * 2021-12-21 2023-10-13 린나이코리아 주식회사 Venturi equipment with cam damper

Also Published As

Publication number Publication date
JP2000130615A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
CN102282519B (en) Electronically controllable mixing device for tap water
JP3112951B2 (en) Thermostatic faucet mixing valve
JP4058707B2 (en) Mixed proportional valve
JP3034051B2 (en) Flow control port for thermostatic mixing faucet
EP0010946A1 (en) A water faucet
JP3812614B2 (en) Mixed proportional valve
KR101152513B1 (en) Faucet for cold and warm water having an automatic temperature control function
US7147203B2 (en) Fluid control
CN203272885U (en) Constant-temperature water faucet
DE4308770A1 (en) Control apparatus of a hot water supply
EP1876305A1 (en) Mixing faucet with switching from automatic to manual control
JP4046459B2 (en) Hot water mixing valve
JP2874322B2 (en) Hot water mixing faucet
CN210344499U (en) Double-control valve core
CN210372133U (en) Double-control thermostatic valve core
TWM536715U (en) Manual water release mechanism of sensing faucet
CN110145506A (en) A kind of throttle valve
JP2551086Y2 (en) Hot water mixer tap
CN110285255A (en) A kind of dual control spool
CN208886038U (en) It is a kind of can trace regulation shutoff valve
JP2864605B2 (en) Fluid control valve device
JP2937305B2 (en) Mixing valve with overall flow control function
JP2557848Y2 (en) Hot water mixer tap
JPS6231234B2 (en)
JPS5821151B2 (en) Hot water mixer faucet with built-in switching valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees