JP4085867B2 - Worm support device and electric power steering device - Google Patents

Worm support device and electric power steering device Download PDF

Info

Publication number
JP4085867B2
JP4085867B2 JP2003096001A JP2003096001A JP4085867B2 JP 4085867 B2 JP4085867 B2 JP 4085867B2 JP 2003096001 A JP2003096001 A JP 2003096001A JP 2003096001 A JP2003096001 A JP 2003096001A JP 4085867 B2 JP4085867 B2 JP 4085867B2
Authority
JP
Japan
Prior art keywords
worm
deep groove
ball bearing
steering
inner ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003096001A
Other languages
Japanese (ja)
Other versions
JP2004301263A (en
Inventor
渉 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2003096001A priority Critical patent/JP4085867B2/en
Publication of JP2004301263A publication Critical patent/JP2004301263A/en
Application granted granted Critical
Publication of JP4085867B2 publication Critical patent/JP4085867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • F16C33/783Details of the sealing or parts thereof, e.g. geometry, material of the mounting region
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/784Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race
    • F16C33/7843Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a groove in the inner surface of the outer race and extending toward the inner race with a single annular sealing disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • F16C2380/27Motor coupled with a gear, e.g. worm gears

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a steering load in a steering range in which a driving source for assisting steering is not operated by means of a deep groove ball bearing for supporting a worm which is turned by the driving source without adding a special mechanism, and further to suppress the play of the worm in the radial direction. <P>SOLUTION: The worm 2 is turned by means of an electric motor 1 for assisting the steering. The end of the worm 2 on the opposed side to the driving source is supported by the deep groove ball bearing 7 on a housing. The deep groove ball bearing 7 has an inner race 71 having a raceway groove 71a having a radius of curvature of 52.5 to 75% of the diameter of a ball and/or has an outer race 72 having a raceway groove 72a having a radius of curvature of 53.5 to 85% of the diameter of the ball. The end of the worm 2 on the side of the driving source is supported by means of a bearing member 6 so as to relatively move in the longitudinal direction. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は駆動源によって回転されるウォームの支持装置及び操舵補助力の発生源として電動モータを用いてなる電動パワーステアリング装置に関する。
【0002】
【従来の技術】
車両用の電動パワーステアリング装置としては、例えば操舵輪に繋がる入力軸及び該入力軸にトーションバーを介して同軸的に繋がる出力軸の相対角変位量によって前記入力軸に加わる操舵トルクを検出し、検出したトルクに基づいて操舵補助用の電動モータを駆動し、該電動モータの回転力をウォームギヤを介して舵取機構に伝動することにより操舵輪の回転に応じた舵取機構の動作を前記電動モータの回転により補助し、舵取りのための運転者の労力負担を軽減するように構成されている(例えば、特許文献1。)。
【0003】
ウォームギヤは前記電動モータの駆動軸に連動連結されたウォームと、該ウォームに噛合するウォームホイールとを備え、該ウォームホイールが前記出力軸に嵌合固定されている。
【0004】
ウォームはその両端部を2つの深溝型玉軸受で支持し、ウォームの回転性を高めてあるが、深溝型玉軸受には複数の玉を介して嵌合された内輪及び外輪間にアキシアル内部隙間があるため、深溝型玉軸受に軸長方向の予圧を加えて前記アキシアル内部隙間をなくしている。例えば、ウォームの電動モータ側軸部を支持する深溝型玉軸受の外輪の一側面に当接するねじ環を設けて深溝型玉軸受の外輪及び内輪を軸長方向へ相対移動させるか、又はウォームの電動モータ側軸部端部と電動モータの出力軸端部との間にウォームを反電動モータ側へ付勢するコイルバネを設けて深溝型玉軸受の外輪及び内輪を軸長方向へ相対移動させることにより深溝型玉軸受のアキシアル内部隙間を小さくしている。
【0005】
ところで、以上のように構成された電動パワーステアリング装置のウォームは、両端部を支持する深溝型玉軸受に対して軸長方向への移動ができないように支持されているため、前記操舵輪が操舵中立位置から左又は右方向へ操舵されることにより、操舵初期から前記電動モータが回転し、操舵補助が行われるように構成された場合、車両の高速走行時に操舵角が例えば1°程度に小さいときにおいても操舵補助が行われることになり、操舵フィーリングの低下を来すことになる。このため、一般には操舵角が1°程度に小さいときは電動モータが駆動されず、適度の操舵角を超えたときに電動モータが駆動されるように構成されている。
【0006】
【特許文献1】
特開2002−21943号公報
【0007】
【発明が解決しようとする課題】
ところが、このように適度の操舵角を超えるまでの間電動モータが駆動されないように構成された場合、電動モータが駆動されない操舵領域、即ち、操舵中立位置の近傍領域での操舵時、操舵輪の操舵力が前記入力軸、トーションバー、出力軸、ウォームホイール及びウォームを介して電動モータの駆動軸に伝動され、該駆動軸が回転されることになる。この結果、電動モータの駆動軸を回転させるための負荷がウォーム、ウォームホイール、出力軸、トーションバー及び入力軸を介して操舵輪に加わり、操舵負荷が大きくなる。
【0008】
ところで、電動モータが駆動されない操舵領域での操舵負荷を低減するには、例えば特開平11−43062号公報に記載されているように、電動モータの駆動軸に結合されたウォームを軸長方向に離隔する2個の深溝型玉軸受がウォームの軸長方向への移動を可能に支持し、この2個の深溝型玉軸受の内輪と前記ウォームとの間に2個の皿ばね及びばね受部を設け、各皿ばねの弾性復元力により各内輪を外輪に対して軸長方向へ付勢し、深溝型玉軸受のアキシアル内部隙間をなくするとともに、ウォームの軸長方向両方への移動を抑制するように構成することにより達成することが可能である。
【0009】
この構成にあっては、電動モータが駆動されない操舵領域で操舵されることによって操舵輪の操舵力がウォームホイールからウォームに伝動されたとき、該ウォームに加わる軸長方向への分力によってウォームが皿ばねの弾性復元力に打ち勝って軸長方向へ移動し、ウォームの回転角は小さくなり、ウォームから電動モータの駆動軸への伝動は緩和される。
【0010】
しかしながら、特開平11−43062号公報に記載されているように構成された場合、深溝型玉軸受のアキシアル内部隙間をなくするために2個の皿ばねと、2つのばね受部とを必要とし、構造が複雑となるし、また、特別の機構が付加されるため、ウォーム部分が大形化することになる。
【0011】
本発明は斯かる事情に鑑みてなされたものであり、操舵補助用の駆動源が駆動されない操舵領域での操舵負荷を、特別の機構を付加することなく前記駆動源によって回転されるウォームを支持する深溝型玉軸受により低減することができ、しかも、ウォームのラジアル方向へのガタつきを抑制することができるウォーム支持装置及び電動パワーステアリング装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
第1発明に係るウォーム支持装置は、駆動源によって回転されるウォームの少なくとも反駆動源側の端部を、第1及び第2の支持孔を有する支持部材の前記第2の支持孔に深溝型玉軸受により支持し、前記ウォームの駆動源側の端部を軸受部材により前記第1の支持孔に支持したウォーム支持装置において、前記深溝型玉軸受は内輪の軌道溝の曲率半径を玉の直径の52.5〜75%及び/又は外輪の軌道溝の曲率半径を玉の直径の53.5〜85%としてあり、前記支持部材は前記深溝型玉軸受及び軸受部材の線膨張係数よりも大きい線膨張係数を有する材料により形成してあり、前記深溝型玉軸受の内輪はウォームの反駆動源側の端部に圧入され、該深溝型玉軸受の外輪は前記第2の支持孔に遊嵌されており、前記軸受部材は前記ウォーム又は前記支持部材に対して軸長方向へ相対移動が可能であることを特徴とする。
【0014】
発明に係るウォーム支持装置は、前記深溝型玉軸受はアキシアル内部隙間の値を零以下にしてあることを特徴とする。
【0015】
発明に係る電動パワーステアリング装置は、請求項1又は2に記載されたウォーム支持装置と、前記ウォームに噛合するウォームホイールと、前記ウォームに連動連結された操舵補助用の電動モータである前記駆動源と、該駆動源の駆動に伴う前記ウォームホイールの回転力を舵取機構に伝動する伝動手段とを備えていることを特徴とする。
【0016】
第1発明にあっては、ウォームの反駆動源側の端部を支持する深溝型玉軸受の内輪の軌道溝の曲率半径を玉の直径の52.5〜75%及び/又は外輪の軌道溝の曲率半径を玉の直径の53.5〜85%とし、軸長方向寸法に起因する内輪及び/又は外輪の剛性を、前記曲率半径よりも小さい曲率半径を有する深溝型玉軸受を用いたものに比べて低くし、軌道溝に加わるアキシアル荷重によって軌道溝部分を撓み易くすることができる。この結果、深溝型玉軸受にアキシアル内部隙間を設けることなく、軌道溝に加わるアキシアル荷重によって外輪及び内輪を軸長方向へ相対移動させることができ、駆動源が駆動されない操舵領域での操舵負荷を低減することができ、操舵フィーリングを良好にできる。また、特別の機構を付加することなく構成してあるため、駆動源が駆動されない操舵領域での操舵負荷を低減することができるにも拘らず、構造を簡素にでき、ウォーム部分の小形化を図ることができる。
【0017】
しかも、支持部材は深溝型玉軸受の線膨張係数よりも大きい線膨張係数を有する材料により形成され、この支持部材の支持孔に深溝型玉軸受の外輪が遊嵌され、内輪がウォームの反駆動源側の端部に圧入されているため、支持部材の熱膨張によってアキシアル内部隙間が変化するのを防ぐことができる。また、ウォームの駆動源側の端部を支持する軸受部材は、ウォーム又は支持部材に対して軸長方向へ相対移動が可能であるため、内輪又は外輪を圧入することによって軸受部材をウォーム又は支持部材に嵌合保持することができる。
また、ウォームの駆動源との連動連結部は元来ラジアル方向へのガタつきが発生しないように厳しい寸法公差で加工されているため、ウォームのラジアル方向へのガタつきを低減することができるにも拘らずウォームの駆動源側の端部を支持する軸受部材部分の寸法公差を大きくすることができ、加工性を向上できるとともに、寸法管理を緩くすることができ、ウォーム支持装置及び電動パワーステアリング装置のコストを低減できる。
【0018】
尚、内輪の軌道溝の曲率半径が玉の直径の75%よりも大きい場合、及び外輪の軌道溝の曲率半径が玉の直径の85%よりも大きい場合、軸受の要求寿命が不足することになり、好ましくない。
【0020】
発明にあっては、深溝型玉軸受のアキシアル内部隙間の値が零以下であるため、ウォームの軸長方向へのガタつきを深溝型玉軸受によってなくすることができる。
【0021】
発明にあっては、ウォームの反駆動源側の端部を支持する深溝型玉軸受の内輪の軌道溝の曲率半径を玉の直径の52.5〜75%及び/又は外輪の軌道溝の曲率半径を玉の直径の53.5〜85%とし、軸長方向寸法に起因する内輪及び/又は外輪の剛性を、前記曲率半径よりも小さい曲率半径を有する深溝型玉軸受を用いたものに比べて低くし、軌道溝に加わるアキシアル荷重によって軌道溝部分を撓み易くすることができる。この結果、深溝型玉軸受にアキシアル内部隙間を設けることなく、軌道溝に加わるアキシアル荷重によって外輪及び内輪を軸長方向へ相対移動させることができ、駆動源が駆動されない操舵領域での操舵負荷を低減することができ、操舵フィーリングを良好にできる。また、特別の機構を付加することなく構成してあるため、駆動源が駆動されない操舵領域での操舵負荷を低減することができるにも拘らず、構造を簡素にでき、ウォーム部分の小形化を図ることができる。
【0022】
しかも、ウォームの駆動源との連動連結部は元来ラジアル方向へのガタつきが発生しないように厳しい寸法公差で加工されているため、ウォームのラジアル方向へのガタつきを低減することができるにも拘らずウォームの駆動源側の端部を支持する軸受部材部分の寸法公差を大きくすることができ、加工性を向上できるとともに、寸法管理を緩くすることができ、ウォーム支持装置及び電動パワーステアリング装置のコストを低減できる。
【0023】
【発明の実施の形態】
以下本発明をその実施の形態を示す図面に基づいて詳述する。
図1は本発明に係るウォーム支持装置を備えた電動パワーステアリング装置のウォーム支持装置部分の構成を示す拡大断面図、図2は電動パワーステアリング装置の全体構成を示す断面図である。
【0024】
電動パワーステアリング装置は、駆動源としての操舵補助用の電動モータ1と、該電動モータ1の駆動軸1aに連動連結されたウォーム2及び該ウォーム2に噛合するウォームホイール3を有するウォームギヤAと、該ウォームギヤAを収容して支持するアルミニウム製のハウジング4と、ウォームホイール3に繋がる舵取手段5とを備えている。
【0025】
この舵取手段5は、一端部が舵取りのための操舵輪Bに繋がり、他端部に筒部51aを有する入力軸51と、筒部51a内に挿入されてその一端部が入力軸51の筒部51aに連結され、操舵輪Bに加わる操舵トルクの作用によって捩れるトーションバー52と、他端部がトーションバー52の他端部に連結され、ウォームホイール3に繋がる出力軸53とを備えており、該出力軸53がユニバーサルジョイントを介して例えばラックピニオン式の舵取機構(不図示)に繋がる。尚、出力軸53及びユニバーサルジョイントが、ウォームホイール3の回転力を舵取機構に伝動する伝動手段を構成している。
【0026】
ウォーム支持装置は、複数条の歯を有する歯部2aの両端に軸部2b,2cを有し、ウォームホイール3に噛合するウォーム2と、該ウォーム2の一方の端部である軸部2bをハウジング4に回転自在に支持する転がり軸受からなる軸受部材6と、ウォーム2の他方の端部である軸部2cをハウジング4に回転自在に支持する深溝型玉軸受7とを備えている。
【0027】
ウォーム2の一方の軸部2bは内輪61に遊嵌されており、他方の軸部cは内輪71に圧入されている。
【0028】
ハウジング4はウォーム2を収容し、該ウォーム2の軸部2b,2cを、軸受部材6及び深溝型玉軸受7を介して回転自在に支持した第1収容部4aと、ウォームホイール3を収容し、該ウォームホイール3を出力軸53及び該出力軸53に嵌合された2つの転がり軸受8,9を介して支持した第2収容部4bとを有する。
【0029】
第1収容部4aはウォーム2の軸長方向に長くなっており、その長手方向一端部には軸受部材6の外輪62を圧入により支持する第1の支持孔41と、該支持孔41の一端に連なるモータ取付部42とが設けられており、モータ取付部42に電動モータ1が取付けられている。
【0030】
第1収容部4aの他端部には深溝型玉軸受7の外輪72を遊嵌支持する第2の支持孔43及び該支持孔43の一端に連なり深溝型玉軸受7の外輪72の移動を規制する規制部44が設けられている。支持孔43の他端部は外部に開放されており、開放部に蓋体10が螺着され、外輪72の他端を前記規制部44に押付けている。
【0031】
図3は深溝型玉軸受の一部を拡大した断面図である。
深溝型玉軸受7は、軌道溝71aを有する鋼製の内輪71と、軌道溝72aを有する鋼製の外輪72と、内輪71及び外輪72の軌道溝71a,72a間に配置された複数の玉73と、玉73を等間隔に保持する保持器74と、シール部材75とを備えており、内輪71が軸部2cに圧入され、外輪72が支持孔43に遊嵌されている。内輪71の軌道溝71aの曲率半径R1は玉73の直径dの52.5〜75%、好ましくは60%としてあり、外輪72の軌道溝72aの曲率半径R2は玉73の直径dの53.5〜85%、好ましくは70%としてある。
【0032】
そして、軸部2cを内輪71に圧入する場合に発生する径方向の圧入荷重によってアキシアル内部隙間を零以下の値とし、内輪71及び外輪72の軸長方向への相対移動をなくしてある。即ち、軸部2cを内輪71に圧入することにより、内輪71の内周面に径方向の圧力を加え、この圧力により内輪71を拡径し、アキシアル内部隙間及びラジアル隙間の値を零以下にする。
【0033】
このように軌道溝71a,72aの曲率半径R1,R2を前記した値とし、かつ、内輪71及び外輪72の軌道溝71a,72aの肩の高さh1,h2を、軌道溝71aの曲率半径R1が52.5%よりも小さく、軌道溝72aの曲率半径R2が53.5%よりも小さい深溝型玉軸受の肩の高さと同じにしてある。また、軌道溝71a,72aの曲率半径R1,R2を前記した値とすることにより、厚さ寸法に起因する内輪71及び外輪72の剛性を、軌道溝71aの曲率半径R1が52.5%よりも小さく、軌道溝72aの曲率半径R2が53.5%よりも小さい深溝型玉軸受に比べて若干低くし、軌道溝71a,72aに加わるアキシアル荷重によって軌道溝71a,72a部分を撓み易いようにしてある。即ち、ウォーム2にアキシアル荷重が加わることにより、軸部2cに圧入された内輪71と、支持孔43に遊嵌された外輪72とが軸長方向へ離隔するように付勢されたとき、玉73が内輪71及び外輪72の軌道溝71a,72a部分を弾性的に撓み変形させつつ軸長方向へ転動することになり、内輪71及び外輪72が軸長方向に相対移動して、ウォーム2の軸長方向移動が許容されることになる。
【0034】
軸受部材6は内輪61と、外輪62と、内輪61及び外輪62の軌道溝間に配置された複数の玉63と、玉63を等間隔に保持する保持器(図示せず)とを備えており、内輪61が軸部2bに遊嵌され、外輪62が支持孔41に圧入されており、軸部2bを軸長方向へ移動可能に支持してある。内輪61の軌道溝の曲率半径は玉63の直径の51.5〜52.5%としてあり、外輪72の軌道溝の曲率半径は玉63の直径の52.5〜53%としてある。換言すればJIS(日本工業規格)の規格値としてある。
【0035】
電動モータ1の駆動軸1aとウォーム2の軸部2bとはセレーションを有する雄形継手部11及び雌形継手部12を介して軸長方向への相対移動を可能に連動連結されている。雄形継手部11は軸部2bの周面にセレーションを設けることにより構成されており、雌形継手部12は駆動軸1aに嵌合固定された筒部材13の内側にセレーションを設けることにより構成されており、雄形継手部11及び雌形継手部12がセレーション嵌合されている。尚、雄形継手部11及び雌形継手部12はウォーム2に径方向へのガタつきが発生しない寸法公差で加工されている。
【0036】
ハウジング4内には、トーションバー52の捩れに応じた入力軸51及び出力軸53の相対回転変位量によって操舵輪Bに加わる操舵トルクを検出するトルクセンサ14が内装されており、該トルクセンサ14が検出したトルク等に基づいて電動モータ1が駆動制御されるように構成されている。
【0037】
以上のように構成された電動パワーステアリング装置は、一端の軸部2bが電動モータ1の駆動軸1aに雄形継手部11及び雌形継手部12を介して連動連結されたウォーム2の軸部2bを軸受部材6により軸長方向へ移動可能に支持し、また、軸部2cを深溝型玉軸受7により回転自在に支持してある。
【0038】
図4はウォームの軸長方向への移動量と軌道溝に加わるアキシアル荷重との関係を示す図である。図4において、移動量及びアキシアル荷重が正の場合は、ウォーム2に軸長方向一方(右方)への力が加わり、軸長方向一方(右方)へ移動したことを示しており、移動量及びアキシアル荷重が負の場合は、ウォーム2に軸長方向他方(左方)への力が加わり、軸長方向他方(左方)へ移動したことを示している。
【0039】
深溝型玉軸受7は内輪71の軌道溝71aの曲率半径R1を玉73の直径dの52.5〜75%とし、外輪72の軌道溝72aの曲率半径R2を玉73の直径dの53.5〜85%とし、内輪71及び外輪72の軌道溝71a,72aの肩の高さh1,h2を、曲率半径R1が52.5%よりも小さく、曲率半径R2が53.5%よりも小さい深溝型玉軸受を用いたものの肩の高さと同じにすることにより、厚さ寸法に起因する内輪71及び外輪72の剛性を、曲率半径R1が52.5%よりも小さく、曲率半径R2が53.5%よりも小さい深溝型玉軸受を用いたものに比べて低くし、軌道溝71a,72aに加わるアキシアル荷重によって軌道溝71a,72a部分を撓み易いようにしてあり、さらに、ウォーム2を軸受部材6に対して軸長方向へ移動可能としてあるため、ウォーム2を外輪62,72に対して軸長方向へ移動させることができ、さらに、このウォーム2の軸長方向への移動量を、図4の(a) に示すように軌道溝71aの曲率半径R1が52.5%よりも小さく、軌道溝72aの曲率半径R2が53.5%よりも小さい深溝型玉軸受を用いた場合の移動量(b) に比べて多くすることができる。
【0040】
しかして、電動モータ1が駆動されない操舵領域、即ち、車両の高速走行時の操舵角が例えば1°程度に小さい操舵領域で操舵されることにより、操舵輪Bの操舵力が入力軸51、トーションバー52、出力軸53及びウォームホイール3を介してウォーム2に伝動されたとき、該ウォーム2に加わる軸長方向への分力によってウォーム2は内輪71を押圧しつつ外輪72に対して軸長方向一方(右方)へ移動、又は、内輪71を押圧しつつ外輪72に対して軸長方向他方(左方)へ移動し、ウォーム2の回転角が小さくなり、ウォーム2から電動モータ1の駆動軸1aへの伝動を緩和することができ、電動モータ1が駆動されない操舵領域での操舵負荷を低減でき、操舵フィーリングを良好にできる。尚、ウォーム2が軸長方向一方(右方)及び軸長方向他方(左方)へ移動する場合、軸部2bと軸受部材6とは相対移動する。
【0041】
ところで、軸受部材6及び深溝型玉軸受7を介してウォーム2を支持するハウジング4は、軸受部材6及び深溝型玉軸受7の線膨張係数よりも大きい線膨張係数を有するアルミニウム製であるため、このハウジング4が熱膨張した場合、支持孔41,43が拡径することになる。しかしながら、深溝型玉軸受7の外輪72は支持孔43に遊嵌されているため、支持孔43の拡径によるウォーム2への影響をなくすることができる。また、支持孔41に外輪62が圧入されている軸受部材6は、内輪61が軸部2bに遊嵌されているため、支持孔41の拡径によるウォーム2への影響をなくすることができる。つまり、支持孔41の拡径により、外輪62の圧入荷重が低下し、軸受部材6のアキシアル内部隙間が増加することになるが、このアキシアル内部隙間の増加に影響されない。しかも、ウォーム2の駆動源側の軸部2bを駆動軸1aに連動連結する連結部は雄形軸受部11及び雌形軸受部12の加工公差を小さくしてあり、ウォーム2の径方向へのガタつきを防ぐようにしてあるため、軸受部材6、軸部2b、支持孔43の寸法公差を大きくすることができる。この結果、加工性を向上できるとともに、寸法管理を緩くすることができ、電動パワーステアリング装置のコストを低減できる。
【0042】
尚、以上説明した深溝型玉軸受7の軌道溝71a,72aは一つの曲面である他、複合曲面としてもよい。図5、6は深溝型玉軸受の他の形態を示す一部を拡大した断面図である。図5は軌道溝71a,72aを二つの曲面で形成したものであり、溝幅方向中央部の曲率半径R10よりも溝幅方向両側部の曲率半径R11,R11を大きくしてある。図6は軌道溝71a,72aを三つの曲面で形成したものであり、溝幅方向中央部の曲率半径R10と、溝幅方向中央部及び溝幅方向両側部間の途中部の曲率半径R12,R12と、溝幅方向両側部の曲率半径R11,R11との関係は、R10>R12>R11となるようにしてある。このように複合曲面とすることにより、玉73が軸長方向へ転動したとき、両肩領域を乗り越えることを確実に防ぐことができ、内輪71及び外輪72の軸長方向への相対移動域を制限することができる。
【0043】
また、以上説明した実施の形態の深溝型玉軸受7は、内輪71の軌道溝71aの曲率半径R1を玉73の直径dの52.5〜75%とし、外輪72の軌道溝72aの曲率半径R2を玉73の直径dの53.5〜85%としたが、その他、内輪71又は外輪72の軌道溝の曲率半径だけを前記した値としてもよい。この場合、軌道溝の曲率半径を前記した値にしない内輪71又は外輪72の曲率半径は、例えば内輪71にあっては玉73の直径dの51.5〜52.5%とし、外輪72にあっては玉73の直径dの52.5〜53%とする。
【0044】
また、以上説明した実施の形態では、軸受部材6の外輪62を支持孔43に圧入し、内輪61を軸部2bに遊嵌したが、その他、軸受部材6の外輪62を支持孔43に遊嵌し、内輪61を軸部2bに圧入し、軸受部材6をウォーム2とともに軸長方向へ移動可能にしてもよい。
【0045】
【発明の効果】
以上詳述したように第1発明によれば、深溝型玉軸受にアキシアル内部隙間を設けることなく、軌道溝に加わるアキシアル荷重によって外輪及び内輪を軸長方向へ相対移動させることができる。しかも、特別の機構を付加することなく構成してあるため、構造を簡素にでき、ウォーム部分の小形化を図ることができる。さらに、支持部材の熱膨張によって深溝型玉軸受のアキシアル内部隙間が変化するのを防ぐことができる。
【0047】
発明によれば、ウォームの軸長方向へのガタつきを深溝型玉軸受によってなくすることができる。
【0048】
発明によれば、深溝型玉軸受にアキシアル内部隙間を設けることなく、軌道溝に加わるアキシアル荷重によって外輪及び内輪を軸長方向へ相対移動させることができ、駆動源が駆動されない操舵領域での操舵負荷を低減することができ、操舵フィーリングを良好にできる。しかも、特別の機構を付加することなく構成してあるため、駆動源が駆動されない操舵領域での操舵負荷を低減することができるにも拘らず、構造を簡素にでき、ウォーム部分の小形化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係るウォーム支持装置を備えた電動パワーステアリング装置のウォーム支持装置部分の構成を示す拡大断面図である。
【図2】本発明に係る電動パワーステアリング装置の全体の構成を示す断面図である。
【図3】本発明に係る電動パワーステアリング装置の深溝型玉軸受の一部を拡大した断面図である。
【図4】ウォームの軸長方向への移動量と軌道溝に加わるアキシアル荷重との関係を示す図である。
【図5】深溝型玉軸受の他の形態を示す一部を拡大した断面図である。
【図6】深溝型玉軸受の他の形態を示す一部を拡大した断面図である。
【符号の説明】
1 電動モータ(駆動源)
2 ウォーム
2b 軸部(駆動源側の端部)
2c 軸部(反駆動源側の端部)
3 ウォームホイール
4 ハウジング(支持部材)
6 軸受部材
7 深溝型玉軸受
71 内輪
71a 軌道溝
72 外輪
72a 軌道溝
73 玉
53 出力軸(転動手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a support device for a worm rotated by a drive source and an electric power steering device using an electric motor as a generation source of steering assist force.
[0002]
[Prior art]
As an electric power steering device for a vehicle, for example, a steering torque applied to the input shaft is detected by a relative angular displacement amount of an input shaft connected to a steering wheel and an output shaft connected coaxially to the input shaft via a torsion bar, The steering assisting electric motor is driven based on the detected torque, and the rotational force of the electric motor is transmitted to the steering mechanism via the worm gear, whereby the operation of the steering mechanism in accordance with the rotation of the steered wheels is controlled by the electric motor. It assists by rotation of a motor and is comprised so that the driver | operator's labor burden for steering may be reduced (for example, patent document 1).
[0003]
The worm gear includes a worm coupled to the drive shaft of the electric motor, and a worm wheel meshing with the worm, and the worm wheel is fitted and fixed to the output shaft.
[0004]
Both ends of the worm are supported by two deep groove ball bearings to improve the rotation of the worm, but the deep groove ball bearing has an axial internal clearance between the inner ring and the outer ring fitted via a plurality of balls. Therefore, the axial internal clearance is eliminated by applying a preload in the axial direction to the deep groove ball bearing. For example, a screw ring that contacts one side surface of the outer ring of the deep groove type ball bearing that supports the shaft portion of the worm electric motor side is provided, and the outer ring and the inner ring of the deep groove type ball bearing are moved relative to each other in the axial length direction. A coil spring is provided between the electric motor side shaft end and the output shaft end of the electric motor to urge the worm toward the counter electric motor side, and the outer ring and inner ring of the deep groove ball bearing are moved relative to each other in the axial direction. This reduces the axial internal clearance of the deep groove ball bearing.
[0005]
By the way, the worm of the electric power steering apparatus configured as described above is supported so that it cannot move in the axial length direction with respect to the deep groove type ball bearing that supports both ends. When the electric motor is rotated from the initial stage of steering by steering leftward or rightward from the neutral position and steering assist is performed, the steering angle is small, for example, about 1 ° when the vehicle is traveling at high speed. In some cases, steering assistance is performed, and the steering feeling is lowered. For this reason, in general, the electric motor is not driven when the steering angle is as small as about 1 °, and the electric motor is driven when the steering angle exceeds an appropriate value.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-211943
[Problems to be solved by the invention]
However, when the electric motor is configured not to be driven until the appropriate steering angle is exceeded, the steering wheel is not driven when the steering wheel is steered in the steering region where the electric motor is not driven, that is, the region near the steering neutral position. The steering force is transmitted to the drive shaft of the electric motor through the input shaft, torsion bar, output shaft, worm wheel and worm, and the drive shaft is rotated. As a result, a load for rotating the drive shaft of the electric motor is applied to the steered wheels via the worm, the worm wheel, the output shaft, the torsion bar, and the input shaft, and the steering load increases.
[0008]
By the way, in order to reduce the steering load in the steering region where the electric motor is not driven, for example, as described in Japanese Patent Application Laid-Open No. 11-43062, a worm coupled to the drive shaft of the electric motor is arranged in the axial direction. Two deep groove ball bearings that are separated from each other support the worm so that the worm can move in the axial direction, and two disc springs and spring receiving portions are provided between the inner ring of the two deep groove ball bearings and the worm. The inner ring is urged in the axial direction with respect to the outer ring by the elastic restoring force of each disc spring, eliminating the axial internal clearance of the deep groove ball bearing and suppressing the movement of the worm in both axial directions It is possible to achieve this by configuring as described above.
[0009]
In this configuration, when the steering force of the steered wheels is transmitted from the worm wheel to the worm by being steered in the steering region where the electric motor is not driven, the worm is caused by the component force in the axial direction applied to the worm. Overcoming the elastic restoring force of the disc spring and moving in the axial direction, the rotation angle of the worm is reduced, and transmission from the worm to the drive shaft of the electric motor is alleviated.
[0010]
However, when configured as described in Japanese Patent Laid-Open No. 11-43062, two disc springs and two spring receivers are required to eliminate the axial internal clearance of the deep groove ball bearing. The structure becomes complicated and a special mechanism is added, so that the worm portion is enlarged.
[0011]
The present invention has been made in view of such circumstances, and supports a steering load in a steering region where a driving source for steering assistance is not driven, and supports a worm rotated by the driving source without adding a special mechanism. It is an object of the present invention to provide a worm support device and an electric power steering device that can be reduced by the deep groove type ball bearing and that can suppress backlash of the worm in the radial direction.
[0012]
[Means for Solving the Problems]
In the worm support device according to the first aspect of the present invention, at least the end portion on the side opposite to the drive source of the worm rotated by the drive source is a deep groove type in the second support hole of the support member having the first and second support holes. In the worm support device, which is supported by a ball bearing and the end on the drive source side of the worm is supported in the first support hole by a bearing member , the deep groove type ball bearing has a radius of curvature of a raceway groove of an inner ring. 52.5 to 75% and / or the radius of curvature of the outer ring raceway groove is 53.5 to 85% of the ball diameter, and the support member is larger than the linear expansion coefficient of the deep groove ball bearing and the bearing member. The inner ring of the deep groove type ball bearing is press-fitted into the end of the worm on the side opposite to the driving source, and the outer ring of the deep groove type ball bearing is loosely fitted in the second support hole. The bearing member is Or wherein the that can move relative to the axial direction with respect to the support member.
[0014]
The worm support device according to a second aspect of the present invention is characterized in that the deep groove type ball bearing has an axial internal clearance of zero or less.
[0015]
Electric power steering apparatus according to the third invention, a worm support device according to claim 1 or 2, a worm wheel meshed with the worm, an electric motor for interlocking linked steering assist to the worm the A driving source and a transmission means for transmitting the rotational force of the worm wheel accompanying the driving of the driving source to a steering mechanism are provided.
[0016]
In the first invention, the radius of curvature of the raceway groove of the inner ring of the deep groove type ball bearing supporting the end of the worm on the side opposite to the driving source is 52.5 to 75% of the ball diameter and / or the raceway groove of the outer ring. Using a deep groove type ball bearing having a radius of curvature of 53.5 to 85% of the diameter of the ball and having a radius of curvature smaller than the radius of curvature of the inner ring and / or outer ring due to the axial length dimension. The track groove portion can be easily bent by the axial load applied to the track groove. As a result, the outer ring and the inner ring can be relatively moved in the axial direction by the axial load applied to the raceway groove without providing an axial internal gap in the deep groove type ball bearing, and the steering load in the steering region where the drive source is not driven can be reduced. The steering feeling can be improved. In addition, since it is configured without adding a special mechanism, it is possible to reduce the steering load in the steering region where the drive source is not driven, but the structure can be simplified and the worm portion can be downsized. Can be planned.
[0017]
In addition, the support member is formed of a material having a linear expansion coefficient larger than that of the deep groove type ball bearing, and the outer ring of the deep groove type ball bearing is loosely fitted in the support hole of the support member, and the inner ring is the anti-drive of the worm. Since it is press-fitted into the end portion on the source side, it is possible to prevent the axial internal gap from changing due to the thermal expansion of the support member. In addition, the bearing member that supports the end of the worm on the drive source side can move relative to the worm or the support member in the axial direction, so that the bearing member can be wormed or supported by press-fitting the inner ring or the outer ring. The member can be fitted and held.
In addition, the interlocking connection part with the drive source of the worm is originally processed with strict dimensional tolerance so that the play in the radial direction does not occur, so that the play in the radial direction of the worm can be reduced. Nevertheless, the dimensional tolerance of the bearing member portion that supports the end of the worm on the drive source side can be increased, the workability can be improved, and the dimensional control can be loosened. The worm support device and the electric power steering The cost of the apparatus can be reduced.
[0018]
If the radius of curvature of the inner ring raceway groove is greater than 75% of the ball diameter, and if the radius of curvature of the outer ring raceway groove is greater than 85% of the ball diameter, the required life of the bearing will be insufficient. It is not preferable.
[0020]
In the second invention, since the value of the axial internal clearance of the deep groove type ball bearing is less than or equal to zero, the backlash in the axial length direction of the worm can be eliminated by the deep groove type ball bearing.
[0021]
In the third invention, the radius of curvature of the inner ring raceway groove of the deep groove type ball bearing that supports the end of the worm on the side opposite to the driving source is 52.5 to 75% of the ball diameter and / or the outer ring raceway groove. Using a deep groove type ball bearing having a radius of curvature of 53.5 to 85% of the diameter of the ball and having a radius of curvature smaller than the radius of curvature of the inner ring and / or outer ring due to the axial length dimension. The track groove portion can be easily bent by the axial load applied to the track groove. As a result, the outer ring and the inner ring can be relatively moved in the axial direction by the axial load applied to the raceway groove without providing an axial internal gap in the deep groove type ball bearing, and the steering load in the steering region where the drive source is not driven can be reduced. The steering feeling can be improved. In addition, since it is configured without adding a special mechanism, it is possible to reduce the steering load in the steering region where the drive source is not driven, but the structure can be simplified and the worm portion can be downsized. Can be planned.
[0022]
In addition, the interlocking connecting portion with the drive source of the worm is originally processed with strict dimensional tolerance so that the play in the radial direction does not occur, so that the play in the radial direction of the worm can be reduced. Nevertheless, the dimensional tolerance of the bearing member portion that supports the end of the worm on the drive source side can be increased, the workability can be improved, and the dimensional control can be loosened. The worm support device and the electric power steering The cost of the apparatus can be reduced.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
FIG. 1 is an enlarged cross-sectional view showing a configuration of a worm support device portion of an electric power steering apparatus provided with a worm support device according to the present invention, and FIG. 2 is a cross-sectional view showing an overall configuration of the electric power steering device.
[0024]
The electric power steering apparatus includes a steering assisting electric motor 1 as a drive source, a worm 2 linked to a drive shaft 1a of the electric motor 1, and a worm gear A having a worm wheel 3 meshing with the worm 2. An aluminum housing 4 that accommodates and supports the worm gear A and steering means 5 connected to the worm wheel 3 are provided.
[0025]
The steering means 5 has one end connected to the steering wheel B for steering and an input shaft 51 having a cylindrical portion 51 a at the other end, and is inserted into the cylindrical portion 51 a and one end thereof is the input shaft 51. A torsion bar 52 connected to the cylinder part 51a and twisted by the action of a steering torque applied to the steered wheels B, and an output shaft 53 connected to the other end part of the torsion bar 52 and connected to the worm wheel 3 are provided. The output shaft 53 is connected to, for example, a rack and pinion type steering mechanism (not shown) via a universal joint. The output shaft 53 and the universal joint constitute transmission means for transmitting the rotational force of the worm wheel 3 to the steering mechanism.
[0026]
The worm support device has shaft portions 2b and 2c at both ends of a tooth portion 2a having a plurality of teeth, and includes a worm 2 that meshes with the worm wheel 3 and a shaft portion 2b that is one end portion of the worm 2. A bearing member 6 composed of a rolling bearing that is rotatably supported by the housing 4 and a deep groove ball bearing 7 that rotatably supports the shaft portion 2 c that is the other end of the worm 2 on the housing 4 are provided.
[0027]
One shaft portion 2 b of the worm 2 is loosely fitted to the inner ring 61, and the other shaft portion 2 c is press-fitted to the inner ring 71.
[0028]
The housing 4 accommodates the worm 2, the first accommodating portion 4 a that rotatably supports the shaft portions 2 b and 2 c of the worm 2 via the bearing member 6 and the deep groove type ball bearing 7, and the worm wheel 3. The worm wheel 3 includes an output shaft 53 and a second housing portion 4 b that supports the worm wheel 3 via two rolling bearings 8 and 9 fitted to the output shaft 53.
[0029]
The first accommodating portion 4a is elongated in the axial direction of the worm 2, and a first support hole 41 for supporting the outer ring 62 of the bearing member 6 by press-fitting at one end in the longitudinal direction, and one end of the support hole 41 And the motor mounting portion 42 is provided, and the electric motor 1 is mounted on the motor mounting portion 42.
[0030]
A second support hole 43 that loosely supports the outer ring 72 of the deep groove type ball bearing 7 and the outer ring 72 of the deep groove type ball bearing 7 are connected to one end of the support hole 43 at the other end of the first housing 4a. A restricting portion 44 for restricting is provided. The other end portion of the support hole 43 is open to the outside, and the lid body 10 is screwed into the open portion, and the other end of the outer ring 72 is pressed against the restriction portion 44.
[0031]
FIG. 3 is an enlarged sectional view of a part of the deep groove type ball bearing.
The deep groove type ball bearing 7 includes a steel inner ring 71 having a raceway groove 71 a, a steel outer ring 72 having a raceway groove 72 a, and a plurality of balls disposed between the raceway grooves 71 a and 72 a of the inner ring 71 and the outer ring 72. 73, a retainer 74 that holds the balls 73 at equal intervals, and a seal member 75, an inner ring 71 is press-fitted into the shaft portion 2c, and an outer ring 72 is loosely fitted in the support hole 43. The radius of curvature R1 of the raceway groove 71a of the inner ring 71 is 52.5 to 75%, preferably 60% of the diameter d of the ball 73, and the radius of curvature R2 of the raceway groove 72a of the outer ring 72 is 53. 5 to 85%, preferably 70%.
[0032]
The axial internal clearance is set to a value equal to or less than zero by the radial press-fitting load generated when the shaft portion 2c is press-fitted into the inner ring 71, and the relative movement of the inner ring 71 and the outer ring 72 in the axial length direction is eliminated. That is, by press-fitting the shaft portion 2c into the inner ring 71, radial pressure is applied to the inner peripheral surface of the inner ring 71, and the inner ring 71 is expanded by this pressure, and the values of the axial internal clearance and radial clearance are reduced to zero or less. To do.
[0033]
Thus, the curvature radii R1 and R2 of the raceway grooves 71a and 72a are set to the values described above, and the shoulder heights h1 and h2 of the raceway grooves 71a and 72a of the inner ring 71 and the outer ring 72 are set to the curvature radius R1 of the raceway groove 71a. Is smaller than 52.5%, and the radius of curvature R2 of the raceway groove 72a is the same as the shoulder height of the deep groove type ball bearing smaller than 53.5%. Further, by setting the curvature radii R1 and R2 of the raceway grooves 71a and 72a to the above-described values, the rigidity of the inner ring 71 and the outer ring 72 due to the thickness dimension can be reduced from the curvature radius R1 of the raceway groove 71a of 52.5%. The radius of curvature R2 of the raceway groove 72a is slightly lower than that of the deep groove type ball bearing smaller than 53.5%, and the raceway grooves 71a and 72a are easily bent by the axial load applied to the raceway grooves 71a and 72a. It is. That is, when an axial load is applied to the worm 2, the inner ring 71 press-fitted into the shaft portion 2 c and the outer ring 72 loosely fitted into the support hole 43 are urged so as to be separated in the axial length direction. 73 rolls in the axial length direction while elastically bending and deforming the raceway grooves 71a, 72a of the inner ring 71 and the outer ring 72, and the inner ring 71 and the outer ring 72 move relative to each other in the axial length direction, so that the worm 2 Is allowed to move in the axial direction.
[0034]
The bearing member 6 includes an inner ring 61, an outer ring 62, a plurality of balls 63 disposed between the raceway grooves of the inner ring 61 and the outer ring 62, and a cage (not shown) that holds the balls 63 at equal intervals. The inner ring 61 is loosely fitted to the shaft portion 2b, the outer ring 62 is press-fitted into the support hole 41, and the shaft portion 2b is supported so as to be movable in the axial length direction. The radius of curvature of the raceway groove of the inner ring 61 is 51.5 to 52.5% of the diameter of the ball 63, and the radius of curvature of the raceway groove of the outer ring 72 is 52.5 to 53% of the diameter of the ball 63. In other words, it is a standard value of JIS (Japanese Industrial Standard).
[0035]
The drive shaft 1a of the electric motor 1 and the shaft portion 2b of the worm 2 are linked to each other via a male joint portion 11 and a female joint portion 12 having serrations so as to allow relative movement in the axial direction. The male joint portion 11 is configured by providing serrations on the peripheral surface of the shaft portion 2b, and the female joint portion 12 is configured by providing serrations inside the cylindrical member 13 fitted and fixed to the drive shaft 1a. The male joint 11 and the female joint 12 are serrated. The male joint portion 11 and the female joint portion 12 are machined with a dimensional tolerance that does not cause radial play in the worm 2.
[0036]
A torque sensor 14 for detecting a steering torque applied to the steered wheels B by a relative rotational displacement amount of the input shaft 51 and the output shaft 53 according to the twist of the torsion bar 52 is housed in the housing 4. The electric motor 1 is configured to be driven and controlled based on the torque detected by the motor.
[0037]
In the electric power steering apparatus configured as described above, the shaft portion 2b at one end is coupled to the drive shaft 1a of the electric motor 1 through the male joint portion 11 and the female joint portion 12 in an interlocking manner. 2b is supported by the bearing member 6 so as to be movable in the axial direction, and the shaft portion 2c is rotatably supported by the deep groove type ball bearing 7.
[0038]
FIG. 4 is a diagram showing the relationship between the amount of movement of the worm in the axial length direction and the axial load applied to the raceway groove. In FIG. 4, when the movement amount and the axial load are positive, it indicates that a force is applied to the worm 2 in one axial direction (right) and the worm 2 moves in one axial direction (right). When the amount and the axial load are negative, it indicates that the worm 2 is applied with a force in the other axial direction (left) and moved in the other axial direction (left).
[0039]
In the deep groove type ball bearing 7, the radius of curvature R1 of the raceway groove 71a of the inner ring 71 is 52.5 to 75% of the diameter d of the ball 73, and the radius of curvature R2 of the raceway groove 72a of the outer ring 72 is 53. The shoulder heights h1 and h2 of the raceway grooves 71a and 72a of the inner ring 71 and the outer ring 72 are set to 5 to 85%, the curvature radius R1 is smaller than 52.5%, and the curvature radius R2 is smaller than 53.5%. By using the same depth as the shoulder height of the one using the deep groove type ball bearing, the rigidity of the inner ring 71 and the outer ring 72 due to the thickness dimension is such that the curvature radius R1 is smaller than 52.5% and the curvature radius R2 is 53. It is made lower than that using a deep groove type ball bearing smaller than .5%, and the axial load applied to the raceway grooves 71a and 72a is made to be easily bent, and the worm 2 is used as a bearing. For member 6 Since the worm 2 can be moved in the longitudinal direction, the worm 2 can be moved in the axial length direction with respect to the outer rings 62 and 72. Further, the movement amount of the worm 2 in the axial length direction is shown in FIG. As shown in FIG. 4, the movement amount (b) when a deep groove type ball bearing in which the curvature radius R1 of the raceway groove 71a is smaller than 52.5% and the curvature radius R2 of the raceway groove 72a is less than 53.5% is used. It can be more than that.
[0040]
Thus, the steering force of the steered wheels B is controlled by the input shaft 51, the torsion, and the like in the steering region where the electric motor 1 is not driven, that is, the steering angle when the vehicle is traveling at a high speed is as small as 1 °, for example. When transmitted to the worm 2 via the bar 52, the output shaft 53 and the worm wheel 3, the worm 2 presses the inner ring 71 by the component force in the axial direction applied to the worm 2, and the axial length with respect to the outer ring 72. Move in one direction (right), or while pressing the inner ring 71, move toward the other in the axial length direction (left) with respect to the outer ring 72, the rotation angle of the worm 2 is reduced, and the worm 2 to the electric motor 1 The transmission to the drive shaft 1a can be reduced, the steering load in the steering region where the electric motor 1 is not driven can be reduced, and the steering feeling can be improved. When the worm 2 moves in one axial direction (right) and the other axial direction (left), the shaft 2b and the bearing member 6 move relative to each other.
[0041]
By the way, the housing 4 that supports the worm 2 via the bearing member 6 and the deep groove type ball bearing 7 is made of aluminum having a linear expansion coefficient larger than that of the bearing member 6 and the deep groove type ball bearing 7. When the housing 4 is thermally expanded, the support holes 41 and 43 are expanded in diameter. However, since the outer ring 72 of the deep groove type ball bearing 7 is loosely fitted in the support hole 43, it is possible to eliminate the influence on the worm 2 due to the diameter increase of the support hole 43. Further, in the bearing member 6 in which the outer ring 62 is press-fitted into the support hole 41, the inner ring 61 is loosely fitted to the shaft portion 2b, so that the influence on the worm 2 due to the expansion of the support hole 41 can be eliminated. . That is, due to the diameter increase of the support hole 41, the press-fit load of the outer ring 62 is reduced and the axial internal gap of the bearing member 6 is increased. However, the increase in the axial internal gap is not affected. Moreover, the connecting portion for interlockingly connecting the shaft portion 2b on the drive source side of the worm 2 to the drive shaft 1a reduces the machining tolerance of the male bearing portion 11 and the female bearing portion 12, and the worm 2 in the radial direction is reduced. Since rattling is prevented, the dimensional tolerance of the bearing member 6, the shaft portion 2b, and the support hole 43 can be increased. As a result, workability can be improved, dimensional management can be relaxed, and the cost of the electric power steering apparatus can be reduced.
[0042]
The track grooves 71a and 72a of the deep groove type ball bearing 7 described above may be a single curved surface or a complex curved surface. 5 and 6 are partially enlarged cross-sectional views showing other forms of deep groove ball bearings. In FIG. 5, the raceway grooves 71a and 72a are formed by two curved surfaces, and the curvature radii R11 and R11 on both sides in the groove width direction are made larger than the curvature radius R10 in the center part in the groove width direction. In FIG. 6, the raceway grooves 71a and 72a are formed by three curved surfaces, and the radius of curvature R10 at the central portion in the groove width direction and the radius of curvature R12 at the middle portion between the central portion in the groove width direction and both sides in the groove width direction, The relationship between R12 and the radii of curvature R11 and R11 on both sides in the groove width direction is such that R10>R12> R11. By making the compound curved surface in this way, when the ball 73 rolls in the axial length direction, it can be surely prevented from getting over both shoulder regions, and the relative movement range of the inner ring 71 and the outer ring 72 in the axial length direction can be prevented. Can be limited.
[0043]
In the deep groove ball bearing 7 of the embodiment described above, the radius of curvature R1 of the raceway groove 71a of the inner ring 71 is 52.5 to 75% of the diameter d of the ball 73, and the radius of curvature of the raceway groove 72a of the outer ring 72 is set. R2 is 53.5 to 85% of the diameter d of the ball 73, but only the radius of curvature of the raceway groove of the inner ring 71 or the outer ring 72 may be set as the above-described value. In this case, the radius of curvature of the inner ring 71 or the outer ring 72 where the radius of curvature of the raceway groove is not set to the above-described value is 51.5 to 52.5% of the diameter d of the ball 73 in the inner ring 71, for example. In this case, it is 52.5 to 53% of the diameter d of the ball 73.
[0044]
Further, in the embodiment described above, the outer ring 62 of the bearing member 6 is press-fitted into the support hole 43 and the inner ring 61 is loosely fitted into the shaft portion 2b. In addition, the outer ring 62 of the bearing member 6 is loosely fitted into the support hole 43. The inner ring 61 may be press-fitted into the shaft portion 2b, and the bearing member 6 may be movable together with the worm 2 in the axial length direction.
[0045]
【The invention's effect】
As described above in detail, according to the first invention, the outer ring and the inner ring can be relatively moved in the axial length direction by the axial load applied to the raceway groove without providing an axial internal gap in the deep groove type ball bearing. In addition, since it is configured without adding a special mechanism, the structure can be simplified and the worm portion can be reduced in size. Furthermore, it is possible to prevent the axial internal gap of the deep groove ball bearing from changing due to the thermal expansion of the support member.
[0047]
According to the second invention, the backlash in the axial length direction of the worm can be eliminated by the deep groove type ball bearing.
[0048]
According to the third aspect of the invention, in the steering region where the outer ring and the inner ring can be relatively moved in the axial length direction by the axial load applied to the raceway groove without providing an axial internal gap in the deep groove type ball bearing, the driving source is not driven. The steering load can be reduced, and the steering feeling can be improved. In addition, since it is configured without adding a special mechanism, it is possible to reduce the steering load in the steering region where the drive source is not driven, but the structure can be simplified and the worm portion can be reduced in size. Can be planned.
[Brief description of the drawings]
FIG. 1 is an enlarged cross-sectional view illustrating a configuration of a worm support device portion of an electric power steering apparatus including a worm support device according to the present invention.
FIG. 2 is a cross-sectional view showing the overall configuration of the electric power steering apparatus according to the present invention.
FIG. 3 is an enlarged cross-sectional view of a part of a deep groove type ball bearing of the electric power steering apparatus according to the present invention.
FIG. 4 is a diagram showing the relationship between the amount of movement of the worm in the axial length direction and the axial load applied to the raceway groove.
FIG. 5 is a partially enlarged cross-sectional view showing another embodiment of a deep groove type ball bearing.
FIG. 6 is a partially enlarged sectional view showing another embodiment of a deep groove type ball bearing.
[Explanation of symbols]
1 Electric motor (drive source)
2 Worm 2b Shaft (end on the drive source side)
2c Shaft (end on the opposite drive source side)
3 Worm wheel 4 Housing (support member)
6 Bearing member 7 Deep groove type ball bearing 71 Inner ring 71a Track groove 72 Outer ring 72a Track groove 73 Ball 53 Output shaft (rolling means)

Claims (3)

駆動源によって回転されるウォームの少なくとも反駆動源側の端部を、第1及び第2の支持孔を有する支持部材の前記第2の支持孔に深溝型玉軸受により支持し、前記ウォームの駆動源側の端部を軸受部材により前記第1の支持孔に支持したウォーム支持装置において、前記深溝型玉軸受は内輪の軌道溝の曲率半径を玉の直径の52.5〜75%及び/又は外輪の軌道溝の曲率半径を玉の直径の53.5〜85%としてあり、前記支持部材は前記深溝型玉軸受及び軸受部材の線膨張係数よりも大きい線膨張係数を有する材料により形成してあり、前記深溝型玉軸受の内輪はウォームの反駆動源側の端部に圧入され、該深溝型玉軸受の外輪は前記第2の支持孔に遊嵌されており、前記軸受部材は前記ウォーム又は前記支持部材に対して軸長方向へ相対移動が可能であることを特徴とするウォーム支持装置。The ends of the at least non-drive-source side of the worm which is rotated by a driving source, the second deep groove ball bearing to a support hole of the support member by then Ri支 lifting in having first and second support hole, said In the worm support device in which the end portion on the drive source side of the worm is supported by the first support hole by a bearing member , the deep groove type ball bearing has a radius of curvature of the raceway groove of the inner ring of 52.5 to 75 of the ball diameter. And / or the curvature radius of the outer raceway groove is 53.5 to 85% of the ball diameter, and the support member has a linear expansion coefficient larger than that of the deep groove ball bearing and the bearing member. The inner ring of the deep groove ball bearing is press-fitted into the end of the worm on the side opposite to the driving source, and the outer ring of the deep groove ball bearing is loosely fitted in the second support hole, The member is in the axial length direction with respect to the worm or the support member Warm support and wherein the relative movement is possible. 前記深溝型玉軸受はアキシアル内部隙間の値を零以下にしてある請求項1記載のウォーム支持装置。  The worm support device according to claim 1, wherein the deep groove type ball bearing has a value of an axial internal clearance of zero or less. 請求項1又は2に記載されたウォーム支持装置と、前記ウォームに噛合するウォームホイールと、前記ウォームに連動連結された操舵補助用の電動モータである前記駆動源と、該駆動源の駆動に伴う前記ウォームホイールの回転力を舵取機構に伝動する伝動手段とを備えていることを特徴とする電動パワーステアリング装置。A worm support device according to claim 1 or 2, a worm wheel meshed with the worm, and the drive source is an electric motor for interlocking linked steering assist to the worm, accompanying the driving of said drive source An electric power steering device comprising: a transmission means for transmitting the rotational force of the worm wheel to a steering mechanism.
JP2003096001A 2003-03-31 2003-03-31 Worm support device and electric power steering device Expired - Fee Related JP4085867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096001A JP4085867B2 (en) 2003-03-31 2003-03-31 Worm support device and electric power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096001A JP4085867B2 (en) 2003-03-31 2003-03-31 Worm support device and electric power steering device

Publications (2)

Publication Number Publication Date
JP2004301263A JP2004301263A (en) 2004-10-28
JP4085867B2 true JP4085867B2 (en) 2008-05-14

Family

ID=33408194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096001A Expired - Fee Related JP4085867B2 (en) 2003-03-31 2003-03-31 Worm support device and electric power steering device

Country Status (1)

Country Link
JP (1) JP4085867B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801170B2 (en) * 2011-12-01 2015-10-28 本田技研工業株式会社 Worm gear device manufacturing method
JP6164477B2 (en) 2013-07-25 2017-07-19 株式会社ジェイテクト Electric power steering device
JP2019202596A (en) * 2018-05-22 2019-11-28 日本精工株式会社 Worm reduction gear

Also Published As

Publication number Publication date
JP2004301263A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP3951913B2 (en) Electric power steering device
JP4442421B2 (en) Electric power steering device
JP4107326B2 (en) Electric power steering device
US7568550B2 (en) Worm support device and power assist unit having the same
JP4385286B2 (en) Electric power steering device
JP2006175891A (en) Electric power steering device
JP2007186021A (en) Electric power steering device
JP4501068B2 (en) Electric power steering device
JP2006224816A (en) Column assist type electric power steering device
JP2009051354A (en) Electric power steering device
JP2006027321A (en) Electric power-steering device
JP2004345444A (en) Electric power steering device
JP2016003760A (en) Worm reduction gear and electric power steering device including the same
JP2005219708A (en) Electric power steering device
JP2002249056A (en) Electric power steering device
JP4085867B2 (en) Worm support device and electric power steering device
JP4517285B2 (en) Electric power steering device
JP2004301265A (en) Device for supporting worm, and electric power steering apparatus
EP1813507A1 (en) Electric power steering apparatus
JP4284985B2 (en) Worm shaft support device and power assist unit
JP2004301262A (en) Worm support device and electric power steering device
JP2008296633A (en) Electric assist mechanism for electric power steering device
JP2004249767A (en) Electric power steering device
JP2004249844A (en) Electric power steering device
JP2004189039A (en) Electric power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4085867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees