JP4085767B2 - Control device for vehicle generator - Google Patents

Control device for vehicle generator Download PDF

Info

Publication number
JP4085767B2
JP4085767B2 JP2002293400A JP2002293400A JP4085767B2 JP 4085767 B2 JP4085767 B2 JP 4085767B2 JP 2002293400 A JP2002293400 A JP 2002293400A JP 2002293400 A JP2002293400 A JP 2002293400A JP 4085767 B2 JP4085767 B2 JP 4085767B2
Authority
JP
Japan
Prior art keywords
generator
power generation
amount
voltage
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002293400A
Other languages
Japanese (ja)
Other versions
JP2004124901A (en
Inventor
麻巳 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002293400A priority Critical patent/JP4085767B2/en
Publication of JP2004124901A publication Critical patent/JP2004124901A/en
Application granted granted Critical
Publication of JP4085767B2 publication Critical patent/JP4085767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関によって駆動される車両発電機の制御装置に関する。
【0002】
【従来の技術】
オルタネータの発電電圧を可変制御し、走行中の発電量コントロールを行う技術が知られている。
【0003】
上記の技術においては、ヘッドランプ点灯のように電気負荷が急激に増加した場合には、それに対応すべく発電電圧も増加するが、これによってオルタネータの回転トルクも増加してしまい、オルタネータを駆動しているエンジンへの負荷も増加し、エンジン回転が落ち込んでしまうという問題が生じていた。
【0004】
そこで、急激な要求電気負荷の増加にもエンジンの回転数を不安定にすることなく発電機の発電量を応答性よく増加させるために、発電量の増加に合わせてエンジンの吸入空気量をΔQだけ増加させる方法が開示されている(特許文献1参照)。
【0005】
【特許文献1】
特開2000−341998号公報
【0006】
【本発明が解決しようとする課題】
しかしながら、上記特許文献1では、エンジンの吸入空気量の補正量ΔQの設定方法について言及されていない。
【0007】
そこで、本発明では発電電圧切り替え時のエンジン吸入空気量の補正量ΔQの具体的な設定方法を有する発電制御装置の提供を目的とする。
【0008】
【課題を解決するための手段】
本発明は、内燃機関により駆動される発電機と、車両に搭載される電気機器の電気負荷に応じて前記発電機の発電電圧を制御する制御手段と、前記発電機の発電電圧に応じて前記内燃機関の吸入空気量を制御する制御手段とを備え、前記発電機の発電電圧を上げる場合には、電圧切り替え後の発電機の回転数における最大発電電流値と電圧切り替え前の発電電流値との差である発電変化量電流値に基づいて、発電電圧増加に伴って新たにエンジンにかかるトルクを推定し、このトルクに基づいて吸入空気量の補正量を決定してエンジン吸入空気量の補正を行う。
【0009】
【作用・効果】
本発明によれば、電気機器の電気負荷の増加に伴って発電機の発電電圧を増大させる際に、発電機の最大電流値と電圧切り替え前の発電電流値との差である発電変化量電流値に応じてそのときのエンジン吸入空気量の補正を行い適切な吸入空気量とするので、発電電圧切り替え直後に、走行中であれば出力低下による減速感、アイドリング中であればアイドル回転の落ち込み、といった問題が生じない。
【0010】
【発明の実施の形態】
以下本発明の実施形態を図面に基づいて説明する。
【0011】
図1は本実施形態のシステム構成を表したものである。
【0012】
1はエンジン、2はエンジン1によって駆動される発電機(オルタネータ)、3はエンジン1、発電機2および車両の電気機器の制御を行なうコントロールユニット(以下、ECM)、4は車載電気機器への電力供給を行なうバッテリである。
【0013】
ECM3には、発電機2の状態、発電電流センサ5で検出された電流値、およびヘッドランプ等の電気機器からの要求電気量が読み込まれ、これらに基づいて発電機2の発電量を制御すると共にエンジン1の吸入空気量を補正する。すなわち、要求電気量が増加した場合には発電機の発電電圧を増加させ、同時にこれに対応してエンジン吸入空気量を増加補正するようになっている。
【0014】
図2に本実施形態でECM3が行う制御ルーチンのフローチャートを示す。
【0015】
ステップS10では車両の電気機器の要求電力量に応じてECM3にて算出された発電電圧指令値を前回の発電電圧指令値と比較し、前回よりも大きければ、ステップS11へ進む。
【0016】
ステップS11では発電指令値を所定値と比較し、所定値以上であればステップS12へ進む。
【0017】
ここで、所定値はバッテリ4の起電力よりも高い電圧値、例えば13V以上の値を用いる。
【0018】
ステップS12では、電圧切り替え前の発電電流値と発電機2の現回転数での最大発電電流値との差(発電変化電流値)を算出し、ステップS13へ進む。
【0019】
なお、現回転数での最大発電電流値との比較を行う理由について図3、4を用いて説明する。
【0020】
図3は発電電圧切り替え前後のバッテリ4への流入電流、電圧の変化をタイムチャートにしたものであり、この図からTにおいて発電機2の電圧を上げた瞬間に、バッテリ4に流れる電流値が瞬間的に増加し、発電機2の発電電流が最大値付近まで増加することがわかる。
【0021】
この発電電流の増加分だけ発電機2を駆動するためのトルクも増加し、エンジン1の負荷となる。
【0022】
したがって、電圧切り替え前後の電流値の差を発電変化量として捕らえ、吸入空気量補正のためのパラメータとして用いる。
【0023】
予め求めておいた最大発電電流を発電電圧ごとのマップにしたものが図4である。
【0024】
点Aを発電電圧切り替え前(電流値=IA)とする。この時発電電圧を切り替えると最大発電電流値である点B(電流値=IB)まで電流値は増大する。このときIAとIBの差が発電変化量電流値となる。
【0025】
ステップS13では、予め求めておいた発電機2のトルクマップ(図6)を用いて、ステップS12で求めた発電変化電流値を発電機2の回転トルクに変換し、ステップS14へ進む。
【0026】
ステップS14ではステップS13で求めた発電機2の回転トルクにプーリー比を乗算して、発電電圧増加に伴って新たにエンジンにかかるトルクへ変換し、このトルクに応じた吸入空気量(補正吸入空気量)を算出する。
【0027】
ステップS10で前回発電電圧指令値以下だった場合、およびS11で所定値より小さかった場合には、処理を終了する。
【0028】
ECM3は上記のステップで算出した補正吸入空気量に応じたスロットルバルブ開度指令をスロットルバルブアクチュエータ(図示せず)に送り、エンジン1の吸入空気量を増加させる。
【0029】
以上のように、本実施形態では発電電圧の切り替えに伴ってエンジン1への負荷が増加しても、切り替え後の回転数における発電機2の最大発電電流に応じてエンジン1への吸入空気量を補正してエンジン出力を上げるので、エンジン回転の落ち込みやアイドル回転のふらつきといった問題が生じない。
【0030】
なお、補正吸入空気量を算出するためには、発電変化量を認知する必要があるが、発電変化量は車両消費電流の変化およびバッテリへの充電量の変化が要因となっており、発電電圧の変化量との相関はないため、発電電圧の変化量から直接発電変化量を求めることができない。そこで従来は、発電電圧を一定値以上に上げた場合には、発電機の発電量を最大にして対応していた。
【0031】
しかし本実施形態では、発電電圧を上げた瞬間に発電機2にはその回転における最大発電電流が流れ、発電量がその回転数における最大発電量近くまで上昇することに着目して、発電電圧切り替え前の電流値と切り替え後の回転数における最大発電電流値との差から発電変化量を算出している。
【0032】
これにより、従来のように要求発電量以上の発電を行う必要がなく、かつ、発電変化量に応じた吸入空気量の補正を行うことが可能になった。
【0033】
また、発電電圧指令値が所定値以下、つまりエンジン負荷にほとんど影響を与えない場合は吸入空気量の増量補正を行わないので、エンジン回転数が上がることがなく、燃費の悪化が防止できるという効果がある。
【0034】
次に第二実施形態について図5を用いて説明する。
【0035】
基本的には第一実施形態と同じであるが、本実施形態では発電電流センサ5を使用しない点が異なる。
【0036】
制御ルーチンは図2と同じであるが、ステップS12で用いる切り替え前の発電電流値の検出方法が異なる。
【0037】
本実施形態では発電電流センサ5を用いずに、車載電気機器の稼働状況を把握できる手段、例えばCAN等を用いることによって、各電気機器の稼働状況からの要求電気量を算出し、これに基づいて推定電流値を算出する。
【0038】
本実施形態によれば、第一実施形態と同様の効果の他に、発電電流センサ5が不要となる分だけコストが低減されるという効果が得られる。
【0039】
また、Fr端子信号検知などによる発電機2のトルク検知手段を設けて、電流値に変換することで発電電圧切り替え前の電流値を求めることもできる。
【0040】
なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。
【図面の簡単な説明】
【図1】第一実施形態のシステム構成図である。
【図2】第一実施形態の制御ルーチンを表すフローチャートである。
【図3】発電電圧切り替え前後のタイムチャートである。
【図4】最大発電電流値マップである。
【図5】第二実施形態のシステム構成図である。
【図6】発電機のトルクマップである。
【符号の説明】
1 エンジン
2 発電機(オルタネータ)
3 コントロールユニット(ECM)
4 バッテリ
5 発電電流センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a vehicle generator driven by an internal combustion engine.
[0002]
[Prior art]
A technique for variably controlling the power generation voltage of an alternator to control the amount of power generated during traveling is known.
[0003]
In the above technique, when the electrical load increases suddenly, such as when the headlamp is lit, the generated voltage also increases correspondingly, but this also increases the rotational torque of the alternator and drives the alternator. As a result, the load on the engine was also increased, causing a problem that the engine speed dropped.
[0004]
Therefore, in order to increase the power generation amount of the generator with high responsiveness without making the engine speed unstable even when the required electric load increases suddenly, the intake air amount of the engine is set to ΔQ in accordance with the increase in the power generation amount. A method of increasing only this is disclosed (see Patent Document 1).
[0005]
[Patent Document 1]
JP 2000-341998 A [0006]
[Problems to be solved by the present invention]
However, Patent Document 1 does not mention a method for setting the correction amount ΔQ of the intake air amount of the engine.
[0007]
Therefore, an object of the present invention is to provide a power generation control device having a specific method for setting the correction amount ΔQ of the engine intake air amount when switching the power generation voltage.
[0008]
[Means for Solving the Problems]
The present invention includes a generator driven by an internal combustion engine, control means for controlling a power generation voltage of the power generator according to an electric load of an electric device mounted on a vehicle, and the power generation voltage of the power generator. Control means for controlling the intake air amount of the internal combustion engine, and when increasing the power generation voltage of the generator, the maximum generated current value at the number of rotations of the generator after voltage switching and the generated current value before voltage switching, Based on the power generation change amount current value that is the difference between the two, the torque applied to the engine is newly estimated as the power generation voltage increases, and the correction amount of the intake air amount is determined based on this torque to correct the engine intake air amount. I do.
[0009]
[Action / Effect]
According to the present invention, when the power generation voltage of the generator is increased with an increase in the electrical load of the electrical equipment , the power generation change amount current that is the difference between the maximum current value of the generator and the power generation current value before the voltage switching. Depending on the value , the engine intake air amount at that time is corrected to an appropriate intake air amount. Therefore, immediately after the power generation voltage is switched, a feeling of deceleration due to a decrease in output is observed during driving, and a decrease in idle rotation occurs during idling. The problem of, does not occur.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
FIG. 1 shows the system configuration of this embodiment.
[0012]
DESCRIPTION OF SYMBOLS 1 is an engine, 2 is a generator (alternator) driven by the engine 1, 3 is a control unit (hereinafter referred to as an ECM) for controlling the engine 1, the generator 2, and a vehicle electric device, 4 is an in-vehicle electric device A battery that supplies power.
[0013]
The ECM 3 reads the state of the generator 2, the current value detected by the generated current sensor 5, and the required amount of electricity from an electric device such as a headlamp, and controls the amount of power generated by the generator 2 based on these. At the same time, the intake air amount of the engine 1 is corrected. That is, when the required amount of electricity increases, the power generation voltage of the generator is increased, and at the same time, the engine intake air amount is corrected to increase accordingly.
[0014]
FIG. 2 shows a flowchart of a control routine performed by the ECM 3 in this embodiment.
[0015]
In step S10, the power generation voltage command value calculated by the ECM 3 according to the required power amount of the electric device of the vehicle is compared with the previous power generation voltage command value. If it is larger than the previous time, the process proceeds to step S11.
[0016]
In step S11, the power generation command value is compared with a predetermined value, and if it is equal to or greater than the predetermined value, the process proceeds to step S12.
[0017]
Here, the predetermined value is a voltage value higher than the electromotive force of the battery 4, for example, a value of 13V or more.
[0018]
In step S12, the difference (power generation change current value) between the generated current value before voltage switching and the maximum generated current value at the current rotational speed of the generator 2 is calculated, and the process proceeds to step S13.
[0019]
The reason why the comparison with the maximum generated current value at the current rotation speed will be described with reference to FIGS.
[0020]
FIG. 3 is a time chart showing inflow current and voltage changes into the battery 4 before and after the generation voltage switching. From this figure, the current value flowing through the battery 4 at the moment when the voltage of the generator 2 is increased at T is shown in FIG. It can be seen that it increases instantaneously and the generated current of the generator 2 increases to near the maximum value.
[0021]
The torque for driving the generator 2 is increased by the increase in the generated current and becomes a load on the engine 1.
[0022]
Therefore, the difference in current value before and after voltage switching is captured as the amount of change in power generation and used as a parameter for correcting the intake air amount.
[0023]
FIG. 4 shows a map of the maximum generated current determined in advance for each generated voltage.
[0024]
Let point A be before the generation voltage switching (current value = IA). At this time, when the generated voltage is switched, the current value increases up to point B (current value = IB) which is the maximum generated current value. At this time, the difference between IA and IB is the power generation variation current value.
[0025]
In step S13, the power generation change current value obtained in step S12 is converted into the rotational torque of the power generator 2 using the torque map (FIG. 6) of the power generator 2 obtained in advance, and the process proceeds to step S14.
[0026]
In step S14, the rotational torque of the generator 2 obtained in step S13 is multiplied by a pulley ratio to newly convert the torque to the engine as the generated voltage increases, and the intake air amount (corrected intake air) corresponding to this torque is converted. Amount).
[0027]
If it is less than or equal to the previous power generation voltage command value in step S10, and if it is smaller than the predetermined value in S11, the process ends.
[0028]
The ECM 3 sends a throttle valve opening command corresponding to the corrected intake air amount calculated in the above steps to a throttle valve actuator (not shown), and increases the intake air amount of the engine 1.
[0029]
As described above, in this embodiment, even if the load on the engine 1 increases as the generated voltage is switched, the amount of intake air to the engine 1 according to the maximum generated current of the generator 2 at the speed after switching. Since the engine output is increased by correcting the above, problems such as a drop in engine rotation and fluctuations in idle rotation do not occur.
[0030]
In order to calculate the corrected intake air amount, it is necessary to recognize the amount of change in power generation, but the amount of change in power generation is caused by changes in vehicle current consumption and changes in the amount of charge to the battery. Since there is no correlation with the amount of change in power generation, the amount of change in power generation cannot be obtained directly from the amount of change in power generation voltage. Therefore, conventionally, when the power generation voltage is raised above a certain value, the power generation amount of the generator is maximized.
[0031]
However, in the present embodiment, the generator 2 is switched to the generation voltage by paying attention to the fact that the maximum generation current in the rotation flows through the generator 2 at the moment when the generation voltage is increased, and the generation amount rises to near the maximum generation amount at the rotation number. The amount of power generation change is calculated from the difference between the previous current value and the maximum generated current value at the number of rotations after switching.
[0032]
As a result, it is not necessary to generate power more than the required power generation as in the prior art, and it is possible to correct the intake air amount in accordance with the power generation change amount.
[0033]
In addition, when the generated voltage command value is less than the predetermined value, that is, when the engine load is hardly affected, the increase in intake air amount is not corrected, so that the engine speed does not increase and fuel consumption can be prevented from deteriorating. There is.
[0034]
Next, a second embodiment will be described with reference to FIG.
[0035]
This is basically the same as in the first embodiment, except that the generated current sensor 5 is not used in this embodiment.
[0036]
The control routine is the same as in FIG. 2, but the method for detecting the generated current value before switching used in step S12 is different.
[0037]
In the present embodiment, by using a means that can grasp the operating status of the in-vehicle electrical device without using the generated current sensor 5, for example, CAN, etc., the required amount of electricity from the operating status of each electrical device is calculated, and based on this To calculate the estimated current value.
[0038]
According to the present embodiment, in addition to the same effect as that of the first embodiment, an effect that the cost is reduced by the amount that the generated current sensor 5 is unnecessary is obtained.
[0039]
Moreover, the current value before switching the generated voltage can be obtained by providing torque detecting means for the generator 2 by detecting the Fr terminal signal or the like and converting it to a current value.
[0040]
The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a first embodiment.
FIG. 2 is a flowchart showing a control routine of the first embodiment.
FIG. 3 is a time chart before and after switching a generated voltage.
FIG. 4 is a maximum generated current value map;
FIG. 5 is a system configuration diagram of a second embodiment.
FIG. 6 is a torque map of a generator.
[Explanation of symbols]
1 Engine 2 Generator (alternator)
3 Control unit (ECM)
4 Battery 5 Generated current sensor

Claims (4)

内燃機関により駆動される発電機と、
車両に搭載される電気機器の電気負荷に応じて前記発電機の発電電圧を制御する電圧制御手段と、
前記発電機の発電電圧に応じて前記内燃機関の吸入空気量を制御する空気量制御手段とを備え、
前記発電機の発電電圧を上げる場合には、電圧切り替え後の発電機の回転数における最大発電電流値と電圧切り替え前の発電電流値との差である発電変化量電流値に基づいて、発電電圧増加に伴って新たにエンジンにかかるトルクを推定し、このトルクに基づいて吸入空気量の補正量を決定してエンジン吸入空気量の補正を行うことを特徴とする車載発電機の制御装置。
A generator driven by an internal combustion engine;
Voltage control means for controlling the generated voltage of the generator according to the electrical load of the electrical equipment mounted on the vehicle;
Air amount control means for controlling the intake air amount of the internal combustion engine in accordance with the power generation voltage of the generator,
When increasing the power generation voltage of the generator , based on the power generation change amount current value that is the difference between the maximum power generation current value at the number of rotations of the generator after voltage switching and the power generation current value before voltage switching, An on-vehicle generator control device characterized by newly estimating a torque applied to an engine as it increases and determining a correction amount of an intake air amount based on the torque to correct the engine intake air amount.
電圧切り替え前の発電機の発電量を発電電流センサによって検知する請求項1に記載の車載発電機の制御装置 The on-vehicle generator control device according to claim 1, wherein the power generation amount of the generator before voltage switching is detected by a generation current sensor . 電圧切り替え前の発電機の発電量を、電気負荷の稼働状況から求まる推定電流値に基づいて算出する請求項1に記載の車載発電機の制御装置。The on- vehicle generator control device according to claim 1, wherein the power generation amount of the generator before voltage switching is calculated based on an estimated current value obtained from an operating state of the electric load . 電圧切り替え前の発電機の発電量を、発電機の回転トルク検出手段による検出値に基づいて算出する請求項1に記載の車載発電機の制御装置。The on-vehicle generator control device according to claim 1, wherein the power generation amount of the generator before voltage switching is calculated based on a detection value by a rotational torque detection means of the generator.
JP2002293400A 2002-10-07 2002-10-07 Control device for vehicle generator Expired - Fee Related JP4085767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293400A JP4085767B2 (en) 2002-10-07 2002-10-07 Control device for vehicle generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293400A JP4085767B2 (en) 2002-10-07 2002-10-07 Control device for vehicle generator

Publications (2)

Publication Number Publication Date
JP2004124901A JP2004124901A (en) 2004-04-22
JP4085767B2 true JP4085767B2 (en) 2008-05-14

Family

ID=32284316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293400A Expired - Fee Related JP4085767B2 (en) 2002-10-07 2002-10-07 Control device for vehicle generator

Country Status (1)

Country Link
JP (1) JP4085767B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613715B1 (en) 2004-10-15 2006-08-22 현대모비스 주식회사 Apparatus for compensating idle rpm when assist heater operated
US7735592B2 (en) * 2008-01-28 2010-06-15 Textron Innovations Inc. Regulated output voltage generator-set applied to mobile equipment in the turf industry

Also Published As

Publication number Publication date
JP2004124901A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP3019682B2 (en) Power generation control method for hybrid vehicles
JP3286517B2 (en) Control device for vehicles equipped with lean burn engine
EP0765999B1 (en) System and method for controlling a generator for a vehicle
US8198836B2 (en) Hybrid vehicle and method of controlling hybrid vehicle
US5415139A (en) Control system for controlling excess air ratio of internal combustion engine using a generator-motor
CN110293956B (en) Control device for hybrid vehicle
JP3070788B2 (en) Power generation control device for in-vehicle generator
JP2009033950A (en) Power supply controller
JP4085767B2 (en) Control device for vehicle generator
JP4770468B2 (en) Control device for vehicle generator
US20080179889A1 (en) Vehicle battery charger and method of operating same
US8922036B2 (en) Vehicular power generation system and power generation control method for the same
JP3541988B2 (en) Auxiliary power control device for internal combustion engine
JP3135774B2 (en) Vehicle charging system
JP2007085238A (en) Engine control device
JP3094685B2 (en) Drive control device for electric vehicle
JP5380927B2 (en) Power generation control device and power generation control system
JP5293218B2 (en) Vehicle motor control apparatus and method
JP3289361B2 (en) Control device for engine drive generator for electric vehicle
KR100435683B1 (en) Charge controlling method of hybrid electric vehicle
JP2010016949A (en) Power generation control device and power generation control system
JP2003134894A (en) Controller for vehicle generator
KR100456850B1 (en) Flux control apparatus of inducement motor in electric vehicle and method thereof
JP2583834B2 (en) Onboard generator control
JP4918814B2 (en) Air quantity control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees