JP4085523B2 - Natto bacillus with natural transformation ability - Google Patents

Natto bacillus with natural transformation ability Download PDF

Info

Publication number
JP4085523B2
JP4085523B2 JP18080499A JP18080499A JP4085523B2 JP 4085523 B2 JP4085523 B2 JP 4085523B2 JP 18080499 A JP18080499 A JP 18080499A JP 18080499 A JP18080499 A JP 18080499A JP 4085523 B2 JP4085523 B2 JP 4085523B2
Authority
JP
Japan
Prior art keywords
gene
operon
bacillus
natto
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18080499A
Other languages
Japanese (ja)
Other versions
JP2001008686A (en
Inventor
富士夫 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP18080499A priority Critical patent/JP4085523B2/en
Publication of JP2001008686A publication Critical patent/JP2001008686A/en
Application granted granted Critical
Publication of JP4085523B2 publication Critical patent/JP4085523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自然形質転換可能を獲得したバチルス属細菌に関し、詳しくは、野生株が自然形質転換能を有しないバチルス属細菌の変異株又は組換え株であって、自然形質転換能を有するバチルス属細菌に関する。
【0002】
【従来の技術】
枯草菌(バチルス・サブチリス)をはじめとするバチルス属細菌は、菌体外酵素の生産菌として工業的に利用されているばかりでなく、納豆菌(Bacillus subtilis natto)のように食品生産にも古くから用いられているものもある。また、近年では、バチルス属細菌の強い分泌生産能に着目し、大腸菌や酵母と並んで、遺伝子組換えの宿主として利用されている。
【0003】
バチルス・サブチリスの形質転換法として、自然形質転換法(コンピテントセル法)、プロトプラスト法、エレクトロポレーション法が主として用いられている。これらの方法のうち、自然形質転換法は、比較的大きなDNA分子を導入することができる利点があるが、自然形質転換はバチルス・サブチリス マーブルグ(Marburg)系の菌株(168、166、160株)のみで起こり、納豆菌等では自然形質転換の頻度は極めて低く、形質転換能(コンピテンシー)を有しないともいわれている。また、プロトプラスト法及びエレクトロポレーション法は、多くの菌種に応用可能である一方、プロトプラスト法ではプロトプラストが不安定でありバーストしやすい、再現性が低い、さらにはプロトプラストの再生に完全培地を用いるため栄養要求マーカーを使用できない等の欠点がある。さらに、エレクトロポレーション法は、形質転換効率が低いという問題がある(以上、Molecular Biological Method for Bacillus, Edited by Harwood, C. R. et al., John Wiley & Sons, p.98-103)。
【0004】
バチルス・サブチリス マーブルグ株では、コンピテンスは、早期コンピテンス遺伝子群及び後期コンピテンス遺伝子群によって誘導されることが知られている(Solomon, J. M., et al., Genes & Development, 10, 2014-2024 (1996), Lazazzera, B. A., et al., Genes & Development, 19, 455-458 (1997), Dubnau, D., Gene, 192, 191-198 (1997))。後期コンピテンス遺伝子群の発現には、早期コンピテンス遺伝子であるcomK産物(ComK)が必要である。comK遺伝子は構成的に発現するが、通常の生育条件では、ComKタンパク質は同じく早期コンピテンス遺伝子であるmec(medium independent competence)A、mecB(clpC)、clpPの各遺伝子産物によって分解されるため、後期コンピテンス遺伝子群は発現しない。一方、コンピテンスが誘導する条件で培養すると、comK遺伝子の発現が促進されるため、活性型comKが後期コンピテンス遺伝子群の発現を誘導する。その結果、コンピテンスが誘導される。
【0005】
しかし、納豆菌等の自然形質転換能を有しないバチルス属細菌が同様のコンピテンス遺伝子群を有しているか、有していたとしても発現可能であるかについては知られていない。
【0006】
【発明が解決しようとする課題】
本発明は、上記観点からなされたものであり、納豆菌等の、野生株が実質的に自然形質転換能を有しないバチルス属細菌の形質転換を可能にする技術を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者は、上記課題を解決するために鋭意研究を行った結果、納豆菌ではComKタンパク質が活性化されていないために後期コンピテンス遺伝子が誘導されず、その結果、自然形質転換能を有しないことを見い出した。そして、納豆菌のmecA遺伝子又はmecB遺伝子を破壊したところ、自然形質転換能を獲得した納豆菌を構築することに成功し、本発明を完成するに至った。
すなわち本発明は、以下のとおりである。
【0008】
(1)野生株が実質的に自然形質転換能を有しないバチルス属細菌の変異株又は組換え株であって、後期コンピテンス遺伝子群が発現可能であり、かつ、自然形質転換能を獲得したバチルス属細菌。
(2)バチルス・サブチリス(Bacillus subtilis)である(1)の細菌。
(3)納豆菌(Bacillus subtilis natto)である(2)の細菌。
(4)前記後期コンピテンス遺伝子群が、comCオペロン、comEオペロン、comFオペロン又はcomGオペロンから選ばれる(1)の細菌。
(5)活性型ComKタンパク質を保持する(1)の細菌。
(6)comK遺伝子の発現が強化されたことにより活性型ComKタンパク質を保持する請求項5記載の細菌。
(7)mecA遺伝子又はmecB遺伝子の一方又は両方が破壊されたことにより活性型ComKタンパク質を保持する(5)の細菌。
(8)実質的に自然形質転換能を有しないバチルス属細菌に後期コンピテンス遺伝子の発現能を付与することを特徴とするバチルス属細菌に自然形質転換能を付与する方法。
【0009】
尚、本発明において、自然形質転換とは、特定の条件に培養した細菌の培養液にDNAを加えて培養したときに、該DNAが細菌細胞に取り込まれて保持されることをいう。「実質的に自然形質転換能を有しない」とは、薬剤耐性等の表現形質の発現頻度が、該表現形質に相当する遺伝子を含むDNAを用いて形質転換を行った場合と、自然突然変異とで有意差がないことをいう。また、自然形質転換能を付与するとは、自然形質転換能を有しない細菌に自然形質転換能を付与すること、及び、非常に低い自然形質転換能を有する細菌において自然形質転換能を高めることをいう。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の細菌は、野生株が実質的に自然形質転換能を有しないバチルス属細菌の変異株又は組換え株であって、後期コンピテンス遺伝子群が発現可能であり、かつ、自然形質転換能を獲得したバチルス属細菌である。
【0011】
バチルス属細菌としては、バチルス・サブチリス(Bacillus subtilis)、バチルス・ステアロサーモフィルス(Bacillus stearothermophilus)、バチルス・メタノリカス(Bacillus methanolicus)、バチルス・アミロリケファシエンス(Bacillus amiloliquefaciens)、具体的には納豆菌(Bacillus subtilis natto)が挙げられる。バチルス属細菌で自然形質転換が起こるのはバチルス・サブチリス マーブルグ(Marburg)系の菌株のみであるといわれており、それらの菌株以外のバチルス属細菌は、本発明を適用して自然形質転換能を付与し得る。また、マーブルグ系の菌株であっても、同様にして自然形質転換能を向上させ得る。
【0012】
マーブルグ系の菌株は、特定の培養条件で培養すると、コンピテンス遺伝子群が誘導され自然形質転換能が発現するが、納豆菌のような自然形質転換能を有しないバチルス属細菌(以下、単に「納豆菌等」ともいう)は、そのような条件で培養しても、後期コンピテンス遺伝群の発現が誘導されない。したがって、後期コンピテンス遺伝子群の発現を可能にすることによって、納豆菌等に自然形質転換能を付与することができる。
【0013】
後期コンピテンス遺伝子群の発現を可能にするには、納豆菌等が元来保持する後期コンピテンス遺伝子群が発現するように発現制御系を改変するか、発現可能な後期コンピテンス遺伝子群を納豆菌等に導入すればよい。具体的には、例えば、活性型ComKタンパク質を後期コンピテンス遺伝子群の発現を誘導するような量で細胞内に保持させればよい。活性型ComKタンパク質を細胞内に保持させるには、comK遺伝子の発現量を増大させるか、あるいはmecA遺伝子又はmecB遺伝子を破壊又は変異させ、MecAタンパク質又はMecBタンパク質が正常に機能しないようにすればよい。mecA遺伝子又はmecB遺伝子の破壊は、いずれか一方でもよく、両方であってもよい。
【0014】
mecA遺伝子又はmecB遺伝子の破壊は、内部に他のDNA配列を挿入したmecA遺伝子又はmecB遺伝子、あるいは内部を欠失したmecA遺伝子又はmecB遺伝子を含むDNA断片を、納豆菌等の培養液に加えて培養することにより納豆菌等細胞を形質転換し、染色体上のmecA遺伝子又はmecB遺伝子と相同組換えを起こさせることにより、行うことができる。
【0015】
バチルス・サブチリスのmecA遺伝子(Genbank/EMBL/DDBJ accetion No. L06059)又はmecB遺伝子(Genbank/EMBL/DDBJ accetion No. U02604)は、それらの塩基配列が報告されており、該塩基配列に基づいて合成したオリゴヌクレオチドをプライマーとするポリメラーゼチェインリアクション法(PCR:polymerase chain reaction; White,T.J. et al., Trends Genet., 5,185 (1989)参照)により、バチルス属細菌染色体DNAから単離することができる。
【0016】
納豆菌等の形質転換は、枯草菌で通常用いられている自然形質転換法(コンピテントセル法)(J. Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958))と同様にして、特定の条件に培養した細胞の培養液にDNAを加えて培養することにより、行うことができる。納豆菌等は、対数増殖期から定常期へと移行する時期の生育フェーズにおいて形質転換能が高まる。具体的には例えば、形質転換は次のようにして行うことができる。すなわち、納豆菌等を、実施例に示すコンピテンス誘導培地にOD660が0.05前後となるように植菌し、37℃で5時間振盪培養を行った後、菌体をコンピテンス誘導培地に懸濁し、この細胞懸濁液にDNAを加え、さらに37℃で1.5時間振盪培養した後、LB液体培地を加え、37℃で1時間浸透培養を続け、その後、LB寒天培地に塗布し、37℃で一晩培養する。
【0017】
形質転換株の選択は、導入しようとするDNAに薬剤耐性遺伝子等のマーカーを保持させ、形質転換処理後の細胞のマーカー形質を指標として行うことができる。マーカー遺伝子を内部に含むmecA遺伝子又はmecB遺伝子は、これらの遺伝子の破壊に好適に用いることができる。このようなマーカー遺伝子を内部に含むmecA遺伝子又はmecB遺伝子を保持するバチルス・ズブチリスとして、mecA欠損株BD2123[hisB2 leu-8 metB5 mecAΔ(spc) amyE::comG-lacZ(cat)]、及びmecB欠損株BD2243[hisB2 leu-8 metB5 mecBΔ(spc) amyE::comG-lacZ(cat)](Dubnau, D., Gene, 192, 191-198 (1997)参照)が挙げられる。これらの菌株の染色体DNA断片は、そのままmecA遺伝子又はmecB遺伝子の破壊に用いることができる。
【0018】
形質転換が起こったことは、形質転換株からDNAを調製し、同DNAでバチルス・ズブチリス マーブルグ系の菌株を形質転換し、マーカー遺伝子を保持する形質転換体を得ることにより、確認することができる。
【0019】
また、上記のようにして得られるmecA欠損株又はmecB欠損株が、活性型ComKタンパク質を細胞内に保持し、後期コンピテンス遺伝子群が発現可能であることは、後期コンピテンス遺伝子群のオペロンのプロモーターにβ−ガラクトシダーゼ遺伝子等のレポーター遺伝子を連結した融合遺伝子をmecA欠損株又はmecB欠損株に保持させ、これらの株のβ−ガラクトシダーゼ活性が発現することにより、確認することができる。前記融合遺伝子としては、例えば、BD2123株[hisB2 leu-8 metB5 mecAΔ(spc) amyE::comG-lacZ(cat)](Liyun Kong and David Dubnau, Proc, Natl. Acad. Sci. USA, 91, 5793-5797 (1994))が染色体DNA上に保持する、バチルス・ズブチリスcomG遺伝子の転写調節領域とエシェリヒア・コリK12株由来のβ−ガラクトシダーゼをコードするlacZ遺伝子との融合遺伝子(PcomG-lacZ)が挙げられる。
【0020】
また、後期コンピテンス遺伝子群のオペロンのプロモーターを、発現にComKタンパク質を必要としないプロモーターに置換した融合遺伝子を作製し、同融合遺伝子を納豆菌等に導入することによっても、自然形質転換能を付与することができる。また、納豆菌等の染色体上の後期コンピテンス遺伝子群のオペロンのプロモーターを、発現にComKタンパク質を必要としないプロモーターに置換することによっても、自然形質転換能を付与することができる。染色体上の遺伝子のプロモーターを置換する技術は、特開平1−215280号公報に開示されている。
【0021】
後期コンピテンス遺伝子群としては、comC遺伝子、comEオペロン、comFオペロン又はcomGオペロンから選ばれる1種又は2種以上が挙げられる。
【0022】
【実施例】
以下、本発明を実施例によりさらに具体的に説明する。
<1>納豆菌の単離
タカノフーズ株式会社の納豆(「おかめ納豆」(同社の登録商標))より納豆菌を分離した。前記納豆の希釈液をLB寒天培地に塗布して単一コロニー分離を行い、2種の納豆菌を単離した。1種は非常にラフなコロニーを形成し、バチルス・サブチリス ナットウ(Bacillus subtilis natto) OK1と命名し、他の1種はバチルス・サブチリス マーブルグ168に似たコロニーを形成し、バチルス・サブチリス ナットウ OK2と命名した。これらの株は、数十kb(70kb以下)と約6kbの2つのプラスミドを保持し、その生育にビオチン(ビタミンH)を要求した。
【0023】
<2>PcomG-lacZ融合遺伝子をもつバチルス・サブチリスOK2株の構築
comG遺伝子の転写調節領域とエシェリヒア・コリK12株由来のβ−ガラクトシダーゼをコードするlacZ遺伝子との融合遺伝子(PcomG-lacZ)及びクロラムフェニコールアセチルトランスフェラーゼ遺伝子がアミラーゼ遺伝子(amyE)に挿入されたDNA断片(amyE::comG-lacZ(cat)が、バチルス・サブチリス168系統株の染色体上のamyE領域に挿入されたBD2123株[hisB2 leu-8 metB5 mecAΔ(spc) amyE::comG-lacZ(cat)](Liyun Kong and David Dubnau, Proc, Natl. Acad. Sci. USA, 91, 5793-5797 (1994))から染色体DNAを、斎藤、三浦の方法(Biochem. Biophys. Acta., 72, 619 (1963))で抽出し、得られたDNAを用いて通常の形質転換法(J. Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958))により、バチルス・サブチリス168株に導入した。
【0024】
目的とする融合遺伝子を含むDNA断片がamyE遺伝子間に挿入された株は、クロラムフェニコールを5μg/ml含むLB寒天培地(Luria-Bertani培地: Sambrook, J., Fritsch, E. F., and Maniatis, T., "Molecular Cloning A Laboratory Manual, Second Edition", Cold Spring Harbor Laboratory Press (1989))に塗布し、出現したコロニーを選択することによって得た。
【0025】
さらに、OK2株に、上記PcomG-lacZ融合遺伝子を導入した株を構築した。上記で得られたPcomG-lacZ融合遺伝子を持つバチルス・サブチリス168株の染色体DNAを前記と同様にして抽出した。一方、OK2株を0.1μg/mlのビオチンを加えたコンピテンス誘導培地[CI液体培地:Spizizen最少培地(J. Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958)に0.05% Yeast Extract (Difco)及び0.1μg/mlのビオチンを加えた培地]にOD660が0.05前後となるように植菌し、37℃で5時間振盪培養を行った後、0.5mlの培養液を分取し、8000rpm、4℃で2分遠心分離して集菌し、1mlのCI培地[Spizizen最少培地に0.025% Yeast Extract (Difco)及び0.1μg/mlのビオチンを加えた培地]に懸濁した。この細胞懸濁液0.1mlに、前記のPcomG-lacZ融合遺伝子を持つバチルス・サブチリス168株の染色体DNA0.2μgを加え、さらに37℃で1.5時間振盪培養した後、0.3mlのLB液体培地を加え、37℃で1時間浸透培養を続け、5μg/mlのクロラムフェニコールを含むLB寒天培地に塗布し、37℃で一晩培養した。その結果、2つのコロニーを得た。
【0026】
上記の2株を用いて、CI培地中での後記コンピテンス遺伝子の発現をlacZ活性(β−ガラクトシダーゼ活性)をレポーターとして調べたところ、全く発現が認められなかった。このことは、これらの形質転換株に、完全なPcomG-lacZ融合遺伝子が導入されていないか、納豆菌では後記コンピテンス遺伝子の誘導系に何らかの欠陥があるものと考えられた。このことを確かめるために、上記形質転換体から抽出したDNAでバチルス・サブチリス168株を通常の形質転換法により形質転換し、得られたCmrの形質転換株をCI培地で培養し、lacZ活性を調べた。その結果、Cmr株のすべて(50株中の50株)においてPcomG-lacZの発現がみられた。以上のことから、OK2株に導入されたPcomG-lacZ融合遺伝子は目的通りの構造を有していることが確認され、後記コンピテンス遺伝子の誘導系に欠陥があることが示唆された。
【0027】
<3>mecA変異又はmecB変異の導入によるコンピテンス遺伝子の発現回復
(1)amyE::comG-lacZ(cat)を持つバチルス・サブチリス168株へのmecA、mecB変異の導入
上記でcomGオペロンが誘導されないのは、このオペロンの正の転写因子であるComKタンパク質が活性化されていないためではないかと考え、OK2株にバチルス・サブチリス168株のmecA変異及びmecB変異を導入した。バチルス・サブチリス168系統のmecA欠損株BD2123[hisB2 leu-8 metB5 mecAΔ(spc) amyE::comG-lacZ(cat)]、及びmecB欠損株BD2243[hisB2 leu-8 metB5 mecBΔ(spc) amyE::comG-lacZ(cat)]よりDNAを抽出し、通常の形質転換法によりamyE::comG-lacZ(cat)を持つバチルス・サブチリス168(trpC2)株に導入した。BD2123株及びBD2243は、それぞれmecA遺伝子及びmecB遺伝子の内部にスペクチノマイシン耐性遺伝子が挿入されている。これらの変異株では、ComKタンパク質の分解が起こらず、構成的に後期コンピテンス遺伝子群が発現していることが報告されている(Dubnau, D., Gene, 192, 191-198 (1997))。
【0028】
上記のようにして、PcomG-lacZを持つmecA変異株バチルス・サブチリス[mecAΔ(spc)amyE::comG-lacZ]、及びPcomG-lacZを持つmecB変異株バチルス・サブチリス[mecBΔ(spc)amyE::comG-lacZ]を構築した。これらの形質転換株は、100μg/mlのスペクチノマイシンと5μg/mlのクロラムフェニコールを含むLB寒天培地上で選択し、かつX−gal[5−ブロモ−4−(クロロ−3−インドリル−β−D−ガラクトシド)]を100μg/ml含むLB寒天培地上で青色を呈する、すなわちPcomG-lacZ遺伝子が構成的に発現していることで、目的のDNAが導入されていることを確認した。
【0029】
(2)OK2株のmecA及びmecB欠損株の構築
上記で得られたバチルス・サブチリス168株のmecA変異株[mecAΔ(spc)amyE::comG-lacZ]及びmecB変異株[mecBΔ(spc)amyE::comG-lacZ]よりDNAを調製し、<2>で構築したPcomG-lacZを持つOK2株に導入した。具体的には、<2>で述べたのと同様に形質転換を行った。尚、mecA変異株[mecAΔ(spc)amyE::comG-lacZ]由来のDNAは23μg/ml、及びmecB変異株[mecBΔ(spc)amyE::comG-lacZ]由来のDNAは43μg/mlのDNA溶液を、それぞれ細胞懸濁液0.1mlに対して3μl加えた。
【0030】
100μg/mlのスペクチノマイシンと5μg/mlのクロラムフェニコールを含むLB寒天培地に塗布することにより形質転換株の選択を行い、スペクチノマイシン及びクロラムフェニコール耐性(Spcr、Cmr)株を取得した。こうして、形質転換可能な納豆菌OK2 mecAΔ(spc)amyE::comG-lacZ及びOK2 mecBΔ(spc)amyE::comG-lacZを得た。形質転換株の出現頻度は、表1に示すとおりであった。
【0031】
【表1】

Figure 0004085523
【0032】
(3)形質転換株のβ−ガラクトシダーゼ活性の測定
168[amyE::comG-lacZ(cat)]及びOK2[amyE::comG-lacZ(cat)]は、5μg/mlのクロラムフェニコールを含むLB寒天培地で、また、OK2[mecAΔ(spc)amyE::comG-lacZ]及びOK2[mecBΔ(spc)amyE::comG-lacZ]は、5μg/mlのクロラムフェニコール及び100μg/mlのスペクチノマイシンを含むLB寒天培地で、それぞれ37℃で一晩培養し、ビオチン0.1μg/mlと5μg/mlのクロラムフェニコールを含むCI培地(mecA変異株及びmecB変異株はさらに50μg/mlのスペクチノマイシンを含む)5mlに、OD660が約0.1になるように植菌し、37℃で振盪培養した。培養開始から1時間毎にOD660を測定し、同時に15000rpm、2分間の遠心で集菌し、活性測定まで−30℃に保存した。0、1、2時間目は1ml、3、4、5、6、7時間目は0.5mlの培養液を分取した。
【0033】
上記のようにして集菌した細胞をZバッファー(60mM Na2HPO4, 40mM NaHPO4・2H2O, 10mM KCl, 1mM MgSO4・7H2O, 50mM 2-メルカプトエタノール)500μlに懸濁し、トルエンを4滴加え、20秒間ボルテックスし、28℃の恒温槽で2分間プレインキュベートし、反応液の温度を28℃とした。次に、基質として、分解されると黄色の生成物を生じるONPG(O−ニトロフェニル−β−D−ガラクトピラノシド)を4mg/ml含むZバッファーを200μl加えて混合し、28℃で反応を開始させた。薄く黄色く色づいたら、1Mの炭酸ナトリウム溶液を500μl加え、反応を停止させ、氷中に保存した。反応開始から停止までの時間をT(分)とする。尚、色づかなかったサンプルは、最大20分間28℃で反応させてから、反応を停止させた。反応溶液を15000rpm、4℃で5分遠心した後、上清をキュベットに移し、分光光度計でA420を測定した。β−ガラクトシダーゼ活性は、次のようにして算出した(Wang, P-Z and Doi, R.H., J. Biol. Chem., 259, 8619-8625 (1984))。結果を、図1に示す。図中、活性を縦軸に、サンプリングした時間を横軸に示す。
【0034】
【数1】
活性(unit)=A420×1000/T(分)×OD660×V(ml)
【0035】
<4>形質転換可能な納豆菌の形質転換能の評価
納豆菌自身の薬剤耐性マーカー遺伝子を得るために、納豆菌より自然突然変異によるリファンピシン耐性変異(rifr)株をまず単離し、OK2SR21株と命名した。このリファンピシン耐性変異が、RNAポリメラーゼβサブユニット遺伝子の変異であることは、30SリボゾームS12タンパク質遺伝子(rpsL)内のストレプトマイシン耐性変異(strA)との同時形質転換(co-transformation)頻度により確認した。
【0036】
バチルス・サブチリス168株のstrA47変異は、rpsL遺伝子内の変異であり、同株でたった一つのコドンの変異のみが知られている。また、rif1728は、168株のRNAポリメラーゼβサブユニット遺伝子内の変異であり、多くのrifrが同じ変異であることが知られている。OK2株で取得した自然突然変異(rifr)が、既知のこれらの遺伝子内の変異であるか否かを、互いにマッピングすることにより推定した。その結果、OK2で得られたrifr(rif21と命名した)はrpoBの変異であり、strAもrpsL(strA)の変異であることがわかった。
【0037】
OK2SR21株(rif21)及び168株のrifr株(rif1728)から調製したDNAを用いて、<3>で得た形質転換可能な納豆菌OK2 mecAΔ(spc)amyE::comG-lacZ株、OK2 mecBΔ(spc)amyE::comG-lacZ、及び168株を、通常の形質転換法により形質転換した。OK2SR21株由来のDNAは23μg/ml、168株のrifr株由来のDNAは43μg/mlのDNA溶液を、それぞれ細胞懸濁液0.1mlに対して3μl加えた。形質転換株の出現頻度は、表2に示すとおりであった。
【0038】
【表2】
Figure 0004085523
【0039】
<5>OK2誘導株の制限・修飾系の有無の確認
バチルス・サブチリスには多くの制限・修飾系が知られているので、プラスミドpUB110(カナマイシン耐性(Kmr)マーカーを含む)を用いて、OK2 mecAΔ(spc)amyE::comG-lacZ、OK2 mecBΔ(spc)amyE::comG-lacZの制限・修飾系の有無を調べた。
【0040】
168株を用いて増殖させたpUB110、及びOKSR21株由来のDNAを用いて、OK2 mecAΔ(spc)amyE::comG-lacZ株、OK2 mecBΔ(spc)amyE::comG-lacZ168株、OK2株、及び168株を、通常の形質転換法により形質転換した。結果を表3に示す。この結果から、納豆菌には、168株と異なる制限・修飾系は存在しないことがわかる。
【0041】
【表3】
Figure 0004085523
【0042】
<6>comK遺伝子の発現強化によるコンピテンス遺伝子の発現回復
枯草菌のファージSPO1の強力なプロモーター及びエシェリヒア・コリのlacプロモーターとの融合プロモーターであるPspac(Methods in Enzymology, vol.185, 185- (1990))を含むプラスミドpAG58をEcoRI及びBamHIで切断し、Pspacを含む断片を切り出した。バチルス属細菌のプラスミドpUB110をEcoRI及びBamHIで切断し、前記断片と連結し、プラスミドpULI7を得た(図2)。
【0043】
一方、バチルス・ズブチリス168株の染色体DNAを鋳型とし、配列番号1及び2に示す塩基配列を有し、末端にXbaIの認識配列を有するオリゴヌクレオチドをプライマーとするPCRにより、comK遺伝子を含むDNA断片を増幅した。この断片をXbaIで消化し、XbaIで消化したpUL17に連結し、プラスミドpULI7SK27を得た(図2)。同プラスミドは、Pspacの制御下で発現するcomK遺伝子を有しており、同遺伝子はIPTGにより誘導され得る。尚、上記の各プラスミドの構築は、バチルス・ズブチリス168株を用いて行った。
【0044】
OK2[amyE::comG-lacZ(cat)]を上記プラスミドpULI7SK27で形質転換した。形質転換株を、カナマイシン7.5μg/mlを含むLB培地で培養し、各種濃度のIPTGを添加してcomK遺伝子の誘導を行い、β−ガラクトシダーゼ活性を測定した。結果を図3に示す。また、同様にして培養した形質転換株を、OK2SR21株の染色体DNAで形質転換し、rifrを指標として形質転換効率を評価した。結果を表4に示す。この結果から、comK遺伝子の発現を増強することによって、納豆菌の形質転換能を示すことがわかる。
【0045】
【表4】
Figure 0004085523
【0046】
【発明の効果】
本発明により、納豆菌等の、野生株が実質的に自然形質転換能を有しないバチルス属細菌の形質転換を可能にすることができる。本発明によれば、自然突然変異に比べて有意に高い頻度で納豆菌等の形質転換を行うことが可能となるので、納豆菌等の分子育種に好適に利用することができる。
【配列表】
Figure 0004085523
【0047】
Figure 0004085523
【0048】
Figure 0004085523
【0049】
Figure 0004085523

【図面の簡単な説明】
【図1】 168[amyE::comG-lacZ(cat)]、OK2[amyE::comG-lacZ(cat)]、OK2[mecAΔ(spc)amyE::comG-lacZ]及びOK2[mecBΔ(spc)amyE::comG-lacZ]のβ−ガラクトシダーゼ活性を示す図。活性を縦軸に、サンプリングした時間を横軸に示す。
【図2】 IPTGで発現が誘導されるcomK遺伝子を有するプラスミドpULI7SK27の構築過程を示す図。
【図3】 IPTGで発現が誘導されるcomK遺伝子を有するプラスミドpULI7SK27を含む納豆菌形質転換体のβ−ガラクトスシダーゼ活性のIPTGによる誘導を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bacterium belonging to the genus Bacillus that has acquired the ability to be naturally transformed, and in particular, a mutant or recombinant strain of a bacterium belonging to the genus Bacillus whose wild strain does not have a natural transformation ability, and has a natural transformation ability. It relates to the genus bacteria.
[0002]
[Prior art]
Bacillus subtilis bacteria such as Bacillus subtilis are not only industrially used as bacteria producing extracellular enzymes, but are also old in food production like Bacillus subtilis natto. Some are used from. In recent years, focusing on the strong secretory production ability of Bacillus bacteria, it has been used as a host for genetic recombination along with E. coli and yeast.
[0003]
As a method for transforming Bacillus subtilis, a natural transformation method (competent cell method), a protoplast method, and an electroporation method are mainly used. Among these methods, the natural transformation method has an advantage that a relatively large DNA molecule can be introduced, but the natural transformation is a strain of Bacillus subtilis Marburg (168, 166, 160 strains). It is said that the frequency of natural transformation is very low in Bacillus natto and the like, and it is said that it does not have transformation ability (competency). The protoplast method and the electroporation method can be applied to many bacterial species, while the protoplast method is unstable and easily burst, has low reproducibility, and uses a complete medium for protoplast regeneration. Therefore, there are drawbacks such as the inability to use an auxotrophic marker. Furthermore, the electroporation method has a problem of low transformation efficiency (Molecular Biological Method for Bacillus, Edited by Harwood, CR et al., John Wiley & Sons, p. 98-103).
[0004]
In Bacillus subtilis Marburg strain, competence is known to be induced by early and late competence genes (Solomon, JM, et al., Genes & Development, 10, 2014-2024 (1996) Lazazzera, BA, et al., Genes & Development, 19, 455-458 (1997), Dubnau, D., Gene, 192, 191-198 (1997)). The expression of the late competence gene group requires the comK product (ComK) which is an early competence gene. Although the comK gene is constitutively expressed, under normal growth conditions, the ComK protein is degraded by the gene products of mec (medium independent competence) A, mecB (clpC), and clpP, which are also early competence genes. Competence genes are not expressed. On the other hand, when the culture is performed under conditions in which competence is induced, the expression of the comK gene is promoted, so that active comK induces the expression of the late-stage competence gene group. As a result, competence is induced.
[0005]
However, it is not known whether Bacillus bacteria having no natural transformation ability such as Bacillus natto have the same competence gene group or can be expressed even if they have.
[0006]
[Problems to be solved by the invention]
The present invention has been made from the above viewpoint, and it is an object of the present invention to provide a technique that enables transformation of a Bacillus bacterium, such as Bacillus natto, in which a wild strain has substantially no natural transformation ability. .
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventor has no ability to induce late competence genes because of the absence of ComK protein activation in Bacillus natto. I found out. And when the mecA gene or mecB gene of Bacillus natto was disrupted, it succeeded in constructing Bacillus natto which acquired natural transformation ability, and came to complete this invention.
That is, the present invention is as follows.
[0008]
(1) A Bacillus that is a mutant or recombinant strain of a bacterium belonging to the genus Bacillus that does not substantially have a natural transformation ability, can express a late competence gene group, and has acquired the natural transformation ability Genus bacteria.
(2) The bacterium according to (1), which is Bacillus subtilis.
(3) The bacterium according to (2), which is Bacillus subtilis natto.
(4) The bacterium according to (1), wherein the late competence gene group is selected from a comC operon, a comE operon, a comF operon, and a comG operon.
(5) The bacterium according to (1), which retains an active ComK protein.
(6) The bacterium according to claim 5, which retains an active ComK protein due to enhanced expression of the comK gene.
(7) The bacterium according to (5), which retains an active ComK protein by disrupting one or both of the mecA gene and the mecB gene.
(8) A method for imparting natural transformation ability to a Bacillus bacterium, characterized by imparting late competence gene expression ability to a Bacillus bacterium having substantially no natural transformation ability.
[0009]
In the present invention, natural transformation means that when DNA is added to a culture medium of bacteria cultured under specific conditions and cultured, the DNA is taken up and retained in bacterial cells. “Substantially not having natural transformation ability” means that the expression frequency of a phenotype such as drug resistance is transformed with DNA containing a gene corresponding to the phenotype, and spontaneous mutation It means that there is no significant difference. Furthermore, imparting natural transformation ability means imparting natural transformation ability to a bacterium not having natural transformation ability, and enhancing natural transformation ability in a bacterium having very low natural transformation ability. Say.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The bacterium of the present invention is a mutant or recombinant strain of a bacterium belonging to the genus Bacillus whose wild strain has substantially no natural transformation ability, can express a late competence gene group, and has a natural transformation ability. Acquired Bacillus bacteria.
[0011]
As bacteria belonging to the genus Bacillus, Bacillus subtilis, Bacillus stearothermophilus, Bacillus methanolicus, Bacillus amiloliquefaciens, specifically Bacillus amiloliquefaciens. (Bacillus subtilis natto). It is said that natural transformation occurs only in Bacillus subtilis Marburg strains in Bacillus bacteria, and Bacillus bacteria other than those strains apply natural transformation ability by applying the present invention. Can be granted. Even in the case of a Marburg strain, the natural transformation ability can be improved in the same manner.
[0012]
When strains of Marburg are cultured under specific culture conditions, competent genes are induced and natural transformation ability is expressed, but Bacillus bacteria (hereinafter referred to simply as “Natto”) that do not have natural transformation ability, such as Bacillus natto. Even when cultured under such conditions, the expression of the late-competence genetic group is not induced. Therefore, natural transformation ability can be imparted to Bacillus natto and the like by enabling expression of the late-stage competence gene group.
[0013]
In order to enable expression of late-stage competence genes, the expression control system is modified so that late-stage competence genes originally retained by Bacillus natto, etc. are expressed, or the late-stage competence genes that can be expressed are changed to Bacillus natto, etc. What is necessary is just to introduce. Specifically, for example, the active ComK protein may be retained in the cell in an amount that induces the expression of the late-stage competence gene group. In order to retain the active ComK protein in the cell, the expression level of the comK gene may be increased, or the mecA gene or mecB gene may be disrupted or mutated so that the MecA protein or MecB protein does not function normally. . Either one or both of the mecA gene and the mecB gene may be disrupted.
[0014]
The mecA gene or mecB gene is destroyed by adding a mecA gene or mecB gene into which another DNA sequence has been inserted, or a DNA fragment containing the mecA gene or mecB gene from which the inside has been deleted, to a culture solution such as Bacillus natto. It can be performed by transforming cells such as Bacillus natto by culturing and causing homologous recombination with the mecA gene or mecB gene on the chromosome.
[0015]
The mecA gene (Genbank / EMBL / DDBJ accetion No. L06059) or mecB gene (Genbank / EMBL / DDBJ accetion No. U02604) of Bacillus subtilis has been reported and synthesized based on the base sequence. It can be isolated from Bacillus bacterial chromosomal DNA by the polymerase chain reaction method (PCR: Polymerase chain reaction; see White, TJ et al., Trends Genet., 5,185 (1989)) using the prepared oligonucleotide as a primer.
[0016]
Transformation of natto, etc. is the same as the natural transformation method (competent cell method) normally used in Bacillus subtilis (J. Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958)) Thus, DNA can be added to the culture medium of cells cultured under specific conditions and cultured. Bacillus natto and the like have increased transformation ability in the growth phase at the time of transition from the logarithmic growth phase to the stationary phase. Specifically, for example, transformation can be performed as follows. That is, natto bacteria and the like were inoculated into the competence induction medium shown in the Examples so that the OD 660 was about 0.05, and after shaking culture at 37 ° C. for 5 hours, the cells were suspended in the competence induction medium. After turbidity, DNA was added to this cell suspension, and further cultured with shaking at 37 ° C. for 1.5 hours. After that, LB liquid medium was added, and osmotic culture was continued at 37 ° C. for 1 hour, and then applied to LB agar medium. Incubate overnight at 37 ° C.
[0017]
Selection of the transformed strain can be performed by holding a marker such as a drug resistance gene in the DNA to be introduced and using the marker trait of the cell after transformation treatment as an index. The mecA gene or mecB gene containing the marker gene can be suitably used for disrupting these genes. As a Bacillus subtilis carrying mecA gene or mecB gene containing such marker gene, mecA-deficient strain BD2123 [hisB2 leu-8 metB5 mecAΔ (spc) amyE :: comG-lacZ (cat)], and mecB-deficient Strain BD2243 [hisB2 leu-8 metB5 mecBΔ (spc) amyE :: comG-lacZ (cat)] (see Dubnau, D., Gene, 192, 191-198 (1997)). Chromosomal DNA fragments of these strains can be used as they are for disrupting the mecA gene or mecB gene.
[0018]
The occurrence of transformation can be confirmed by preparing DNA from the transformant, transforming a Bacillus subtilis Marburg strain with the DNA, and obtaining a transformant carrying the marker gene. .
[0019]
In addition, the mecA-deficient strain or mecB-deficient strain obtained as described above retains the active ComK protein in the cell and is capable of expressing the late-competence gene group. This is because the operon promoter of the late-competence gene group It can be confirmed by holding a fusion gene linked to a reporter gene such as β-galactosidase gene in a mecA-deficient strain or mecB-deficient strain and expressing the β-galactosidase activity of these strains. Examples of the fusion gene include BD2123 strain [hisB2 leu-8 metB5 mecAΔ (spc) amyE :: comG-lacZ (cat)] (Liyun Kong and David Dubnau, Proc, Natl. Acad. Sci. USA, 91, 5793 -5797 (1994)) is a fusion gene (PcomG-lacZ) of the transcriptional regulatory region of the Bacillus subtilis comG gene and the lacZ gene encoding β-galactosidase derived from Escherichia coli K12 strain, which is retained on the chromosomal DNA. It is done.
[0020]
In addition, by creating a fusion gene in which the promoter of the operon of the late-competence gene group is replaced with a promoter that does not require the ComK protein for expression, and introducing the fusion gene into Bacillus natto, etc., natural transformation ability is also imparted. can do. Natural transformation ability can also be imparted by substituting the promoter of the late competence gene group operon on the chromosome such as Bacillus natto with a promoter that does not require the ComK protein for expression. A technique for replacing a promoter of a gene on a chromosome is disclosed in JP-A-1-215280.
[0021]
The late competence gene group includes one or more selected from the comC gene, the comE operon, the comF operon, and the comG operon.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
<1> Isolation of Bacillus natto Bacillus natto was isolated from Natto ("Okame Natto" (registered trademark)) of Takano Foods Co., Ltd. The diluted natto solution was applied to an LB agar medium to separate a single colony, and two kinds of natto bacteria were isolated. One species forms a very rough colony, named Bacillus subtilis natto OK1, and the other species forms a colony similar to Bacillus subtilis Marburg 168, with Bacillus subtilis natto OK2. Named. These strains retained two plasmids of several tens of kb (70 kb or less) and about 6 kb, and required biotin (vitamin H) for their growth.
[0023]
<2> Construction of Bacillus subtilis OK2 strain with PcomG-lacZ fusion gene
DNA in which the transcriptional regulatory region of the comG gene and the lacZ gene encoding β-galactosidase derived from Escherichia coli K12 strain (PcomG-lacZ) and the chloramphenicol acetyltransferase gene are inserted into the amylase gene (amyE) The BD2123 strain [hisB2 leu-8 metB5 mecAΔ (spc) amyE :: comG-lacZ (cat) in which the fragment (amyE :: comG-lacZ (cat) is inserted into the amyE region on the chromosome of the Bacillus subtilis 168 strain ] (Liyun Kong and David Dubnau, Proc, Natl. Acad. Sci. USA, 91, 5793-5797 (1994)), the chromosomal DNA was obtained from the method of Saito and Miura (Biochem. Biophys. Acta., 72, 619 (1963). )), And introduced into the Bacillus subtilis 168 strain by the usual transformation method (J. Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958)) using the obtained DNA. .
[0024]
A strain in which a DNA fragment containing the target fusion gene was inserted between amyE genes was obtained by using an LB agar medium containing 5 μg / ml of chloramphenicol (Luria-Bertani medium: Sambrook, J., Fritsch, EF, and Maniatis, T., “Molecular Cloning A Laboratory Manual, Second Edition”, Cold Spring Harbor Laboratory Press (1989)), and colonies that appeared were selected.
[0025]
Furthermore, a strain in which the above PcomG-lacZ fusion gene was introduced into the OK2 strain was constructed. The chromosomal DNA of Bacillus subtilis 168 strain having the PcomG-lacZ fusion gene obtained above was extracted in the same manner as described above. On the other hand, the OK2 strain was added to a competence induction medium supplemented with 0.1 μg / ml biotin [CI liquid medium: Spizizen minimal medium (J. Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958), 0.05% Yeast Extract (Difco) and 0.1 μg / ml biotin added medium] was inoculated so that OD 660 was about 0.05, and after 5 hours of shaking culture at 37 ° C., 0.5 ml The culture solution is collected, collected by centrifugation at 8000 rpm, 4 ° C. for 2 minutes, and 1 ml of CI medium [Spizizen minimal medium added with 0.025% Yeast Extract (Difco) and 0.1 μg / ml biotin] To 0.1 ml of this cell suspension was added 0.2 μg of chromosomal DNA of Bacillus subtilis 168 strain having the PcomG-lacZ fusion gene, and the mixture was further cultured with shaking at 37 ° C. for 1.5 hours. Add 0.3 ml of LB liquid medium and continue osmotic culture at 37 ° C for 1 hour The LB agar medium containing 5 μg / ml chloramphenicol was spread and cultured overnight at 37 ° C. As a result, two colonies were obtained.
[0026]
Using the above two strains, the expression of the later mentioned competence gene in the CI medium was examined using lacZ activity (β-galactosidase activity) as a reporter, and no expression was observed. This suggests that the complete PcomG-lacZ fusion gene has not been introduced into these transformed strains, or that the competence gene induction system described below has some defects in Bacillus natto. In order to confirm this, the Bacillus subtilis 168 strain was transformed with the DNA extracted from the above transformant by a conventional transformation method, and the obtained Cm r transformant was cultured in a CI medium to obtain lacZ activity. I investigated. As a result, the expression of PcomG-lacZ was observed in all of the Cm r stock (50 shares in 50 shares). From the above, it was confirmed that the PcomG-lacZ fusion gene introduced into the OK2 strain had the intended structure, suggesting that the competence gene induction system described below is defective.
[0027]
<3> Recovery of expression of competence genes by introduction of mecA mutation or mecB mutation (1) Introduction of mecA and mecB mutations into Bacillus subtilis 168 strain having amyE :: comG-lacZ (cat) The comG operon is not induced above This was thought to be because the ComK protein, which is a positive transcription factor of this operon, was not activated, and the mecA and mecB mutations of the Bacillus subtilis 168 strain were introduced into the OK2 strain. 168 strains of Bacillus subtilis mecA deficient BD2123 [hisB2 leu-8 metB5 mecAΔ (spc) amyE :: comG-lacZ (cat)] and mecB deficient strain BD2243 [hisB2 leu-8 metB5 mecBΔ (spc) amyE :: comG -lacZ (cat)] was extracted from the DNA and introduced into the Bacillus subtilis 168 (trpC2) strain having amyE :: comG-lacZ (cat) by a conventional transformation method. In BD2123 strain and BD2243, the spectinomycin resistance gene is inserted into the mecA gene and mecB gene, respectively. In these mutant strains, it has been reported that the ComK protein is not degraded and the late competence genes are constitutively expressed (Dubnau, D., Gene, 192, 191-198 (1997)).
[0028]
As described above, mecA mutant Bacillus subtilis [mecAΔ (spc) amyE :: comG-lacZ] with PcomG-lacZ and mecB mutant Bacillus subtilis [mecBΔ (spc) amyE: with PcomG-lacZ :: comG-lacZ]. These transformants were selected on LB agar medium containing 100 μg / ml spectinomycin and 5 μg / ml chloramphenicol, and X-gal [5-bromo-4- (chloro-3-indolyl) -Β-D-galactoside)] in blue on an LB agar medium containing 100 μg / ml, that is, the constitutive expression of the PcomG-lacZ gene confirmed that the target DNA was introduced. .
[0029]
(2) Construction of mecA and mecB deficient strains of OK2 strain mecA mutant [mecAΔ (spc) amyE :: comG-lacZ] and mecB mutant [mecBΔ (spc) amyE: : comG-lacZ] was prepared and introduced into the OK2 strain having PcomG-lacZ constructed in <2>. Specifically, transformation was performed in the same manner as described in <2>. The DNA derived from the mecA mutant [mecAΔ (spc) amyE :: comG-lacZ] is 23 μg / ml, and the DNA derived from the mecB mutant [mecBΔ (spc) amyE :: comG-lacZ] is 43 μg / ml. 3 μl of the solution was added to each 0.1 ml of cell suspension.
[0030]
Transformants are selected by applying to LB agar medium containing 100 μg / ml spectinomycin and 5 μg / ml chloramphenicol, and resistant to spectinomycin and chloramphenicol (Spc r , Cm r ) Acquired shares. In this way, transformable natto bacteria OK2 mecAΔ (spc) amyE :: comG-lacZ and OK2 mecBΔ (spc) amyE :: comG-lacZ were obtained. The frequency of appearance of the transformant was as shown in Table 1.
[0031]
[Table 1]
Figure 0004085523
[0032]
(3) Measurement of β-galactosidase activity of transformed strain
168 [amyE :: comG-lacZ (cat)] and OK2 [amyE :: comG-lacZ (cat)] are LB agar media containing 5 μg / ml chloramphenicol, and OK2 [mecAΔ (spc) amyE :: comG-lacZ] and OK2 [mecBΔ (spc) amyE :: comG-lacZ] are LB agar media containing 5 μg / ml chloramphenicol and 100 μg / ml spectinomycin, each at 37 ° C. Cultivate overnight, 5 ml of CI medium containing 0.1 μg / ml biotin and 5 μg / ml chloramphenicol (mecA mutant and mecB mutant further contain 50 μg / ml spectinomycin) and OD 660 Inoculated to about 0.1, and cultured at 37 ° C. with shaking. OD 660 was measured every hour from the start of culture, simultaneously collected at 15000 rpm for 2 minutes, and stored at −30 ° C. until activity measurement. At 0, 1, 2 hours, 1 ml, 3, 4, 5, 6, 7 hours, 0.5 ml of the culture solution was collected.
[0033]
Cells collected as described above are suspended in 500 μl of Z buffer (60 mM Na 2 HPO 4 , 40 mM NaHPO 4 .2H 2 O, 10 mM KCl, 1 mM MgSO 4 .7H 2 O, 50 mM 2-mercaptoethanol) and toluene. 4 drops were added, vortexed for 20 seconds, pre-incubated for 2 minutes in a constant temperature bath at 28 ° C., and the temperature of the reaction solution was adjusted to 28 ° C. Next, 200 μl of Z buffer containing 4 mg / ml of ONPG (O-nitrophenyl-β-D-galactopyranoside), which yields a yellow product when decomposed, is added as a substrate, mixed, and reacted at 28 ° C. Was started. When it turned pale yellow, 500 μl of 1M sodium carbonate solution was added to stop the reaction and stored in ice. The time from the start to the end of the reaction is T (minutes). In addition, the sample which was not colored was made to react at 28 degreeC for a maximum of 20 minutes, Then, reaction was stopped. The reaction solution was centrifuged at 15000 rpm and 4 ° C. for 5 minutes, then the supernatant was transferred to a cuvette and A 420 was measured with a spectrophotometer. β-galactosidase activity was calculated as follows (Wang, PZ and Doi, RH, J. Biol. Chem., 259, 8619-8625 (1984)). The results are shown in FIG. In the figure, the activity is plotted on the vertical axis and the sampling time is plotted on the horizontal axis.
[0034]
[Expression 1]
Activity (unit) = A 420 x 1000 / T (min) x OD 660 x V (ml)
[0035]
<4> Evaluation of transformability of transformable Bacillus natto In order to obtain the drug resistance marker gene of Bacillus natto itself, a rifampicin resistant mutant (rif r ) strain by natural mutation was first isolated from Bacillus natto, and OK2SR21 strain Named. This rifampicin resistance mutation was confirmed to be a mutation in the RNA polymerase β subunit gene by the co-transformation frequency with the streptomycin resistance mutation (strA) in the 30S ribosomal S12 protein gene (rpsL).
[0036]
The strA47 mutation in Bacillus subtilis strain 168 is a mutation in the rpsL gene, and only one codon mutation is known in the same strain. Further, rif1728 is a mutation in the RNA polymerase β subunit gene of 168 strains, and it is known that many rif r are the same mutation. It was estimated by mapping each other whether the natural mutation (rif r ) obtained in the OK2 strain was a known mutation in these genes. As a result, it was found that rif r (named rif21) obtained with OK2 was a mutation of rpoB, and strA was also a mutation of rpsL (strA).
[0037]
Using DNA prepared from OK2SR21 strain (rif21) rif r strains and 168 strain (rif1728), <3> transformable obtained in a natto OK2 mecAΔ (spc) amyE :: comG -lacZ strain, OK2 mecBΔ (spc) amyE :: comG-lacZ and 168 strains were transformed by a conventional transformation method. DNA from OK2SR21 strain DNA from rif r strain 23μg / ml, 168 strain a DNA solution 43μg / ml, were added 3μl respectively cell suspension 0.1 ml. The frequency of appearance of the transformant was as shown in Table 2.
[0038]
[Table 2]
Figure 0004085523
[0039]
<5> Confirmation of the presence or absence of restriction / modification systems in the OK2 derivative strain Since many restriction / modification systems are known for Bacillus subtilis, the plasmid pUB110 (including the kanamycin resistance (Kmr) marker) can be used. The presence or absence of a restriction / modification system of mecAΔ (spc) amyE :: comG-lacZ, OK2 mecBΔ (spc) amyE :: comG-lacZ was examined.
[0040]
PUB110 grown using 168 strain, and DNA derived from OKSR21 strain, OK2 mecAΔ (spc) amyE :: comG-lacZ strain, OK2 mecBΔ (spc) amyE :: comG-lacZ168 strain, OK2 strain, and 168 strains were transformed by a conventional transformation method. The results are shown in Table 3. From this result, it can be seen that there are no restriction / modification systems different from 168 strains in Bacillus natto.
[0041]
[Table 3]
Figure 0004085523
[0042]
<6> Recovering Competence Gene Expression by Enhancing Expression of comK Gene Pspac (Methods in Enzymology, vol. 185, 185- (1990), a fusion promoter of Bacillus subtilis phage SPO1 and the Escherichia coli lac promoter )) Plasmid pAG58 was digested with EcoRI and BamHI, and a fragment containing Pspac was excised. The plasmid pUB110 of the bacterium belonging to the genus Bacillus was cleaved with EcoRI and BamHI and ligated with the fragment to obtain a plasmid pULI7 (FIG. 2).
[0043]
On the other hand, a DNA fragment containing the comK gene by PCR using the chromosomal DNA of Bacillus subtilis strain 168 as a template, the base sequence shown in SEQ ID NOs: 1 and 2, and the oligonucleotide having the XbaI recognition sequence at the end as a primer Was amplified. This fragment was digested with XbaI and ligated to pUL17 digested with XbaI to obtain plasmid pULI7SK27 (FIG. 2). This plasmid has a comK gene that is expressed under the control of Pspac and can be induced by IPTG. Each plasmid was constructed using Bacillus subtilis 168 strain.
[0044]
OK2 [amyE :: comG-lacZ (cat)] was transformed with the plasmid pULI7SK27. The transformed strain was cultured in LB medium containing 7.5 μg / ml kanamycin, various concentrations of IPTG were added to induce the comK gene, and β-galactosidase activity was measured. The results are shown in FIG. In addition, the transformed strain cultured in the same manner was transformed with the chromosomal DNA of the OK2SR21 strain, and the transformation efficiency was evaluated using rif r as an index. The results are shown in Table 4. From this result, it can be seen that by enhancing the expression of the comK gene, the transformation ability of Bacillus natto is shown.
[0045]
[Table 4]
Figure 0004085523
[0046]
【The invention's effect】
According to the present invention, it is possible to transform a Bacillus bacterium, such as Bacillus natto, in which a wild strain has substantially no natural transformation ability. According to the present invention, since it becomes possible to transform natto bacteria and the like with a frequency significantly higher than that of natural mutation, it can be suitably used for molecular breeding of natto bacteria and the like.
[Sequence Listing]
Figure 0004085523
[0047]
Figure 0004085523
[0048]
Figure 0004085523
[0049]
Figure 0004085523

[Brief description of the drawings]
[Fig. 1] 168 [amyE :: comG-lacZ (cat)], OK2 [amyE :: comG-lacZ (cat)], OK2 [mecAΔ (spc) amyE :: comG-lacZ] and OK2 [mecBΔ (spc) The figure which shows (beta) -galactosidase activity of amyE :: comG-lacZ]. Activity is plotted on the vertical axis, and sampled time is plotted on the horizontal axis.
FIG. 2 shows the construction process of plasmid pULI7SK27 having a comK gene whose expression is induced by IPTG.
FIG. 3 shows the induction of β-galactosidase activity by IPTG in a Bacillus natto transformant containing plasmid pULI7SK27 having a comK gene whose expression is induced by IPTG.

Claims (5)

comK遺伝子の発現が強化され、comCオペロン、comEオペロン、comFオペロン又はcomGオペロンから選ばれる後期コンピテンス遺伝子群が発現可能であり、かつ、自然形質転換能を獲得した納豆菌 Bacillus subtilis natto Expression of comK gene is enhanced, COMC operon, COME operon, a late competence genes selected from comF operon or comG operon expressible, and, natto (Bacillus subtilis natto) that won natural transformation capability. mecA遺伝子とmecB遺伝子の一方もしくは両方が破壊され、comCオペロン、comEオペロン、comFオペロン又はcomGオペロンから選ばれる後期コンピテンス遺伝子群が発現可能であり、かつ、自然形質転換能を獲得した納豆菌 Bacillus subtilis natto One or both of the mecA gene and the mecB gene are disrupted, a late competence gene group selected from the comC operon , the comE operon, the comF operon and the comG operon can be expressed, and Bacillus natto ( Bacillus) has acquired natural transformation ability. subtilis natto ) . 活性型ComKタンパク質を保持する請求項1または2に記載の納豆菌。The Bacillus natto according to claim 1 or 2 , which retains an active ComK protein. comK遺伝子の発現を強化することにより、comCオペロン、comEオペロン、comFオペロン又はcomGオペロンから選ばれる後期コンピテンス遺伝子の発現能を納豆菌に付与することを特徴とする納豆菌に自然形質転換能を付与する方法。 By enhancing the expression of the comK gene, COMC operon, COME operon, characterized by imparting ability to express late competence genes selected from comF operon or comG operon Bacillus natto, a natural transformation ability to Bacillus natto How to grant. mecA遺伝子とmecB遺伝子の一方もしくは両方を破壊することにより、comCオペロン、comEオペロン、comFオペロン又はcomGオペロンから選ばれる後期コンピテンス遺伝子の発現能を納豆菌に付与することを特徴とする納豆菌に自然形質転換能を付与する方法。 by disrupting one or both of the mecA gene and mecB gene, COMC operon, COME operon, characterized by imparting ability to express late competence genes selected from comF operon or comG operon Bacillus natto, Bacillus natto A method of imparting natural transformation ability.
JP18080499A 1999-06-25 1999-06-25 Natto bacillus with natural transformation ability Expired - Lifetime JP4085523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18080499A JP4085523B2 (en) 1999-06-25 1999-06-25 Natto bacillus with natural transformation ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18080499A JP4085523B2 (en) 1999-06-25 1999-06-25 Natto bacillus with natural transformation ability

Publications (2)

Publication Number Publication Date
JP2001008686A JP2001008686A (en) 2001-01-16
JP4085523B2 true JP4085523B2 (en) 2008-05-14

Family

ID=16089646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18080499A Expired - Lifetime JP4085523B2 (en) 1999-06-25 1999-06-25 Natto bacillus with natural transformation ability

Country Status (1)

Country Link
JP (1) JP4085523B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619721A (en) * 2012-09-27 2015-05-13 诺维信股份有限公司 Bacterial mutants with improved transformation efficiency
US11306319B2 (en) * 2015-10-30 2022-04-19 Danisco Us Inc. Enhanced protein expression and methods thereof

Also Published As

Publication number Publication date
JP2001008686A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
Reverchon et al. Characterization of kdgR, a gene of Erwinia chrysanthemi that regulates pectin degradation
Zuber et al. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis
JP4139561B2 (en) Novel DNA cloning method
Rygus et al. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization
Goldenberg et al. Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response
CA2619989C (en) Regulation of heterologous recombinant protein expression in methylotrophic and methanotrophic bacteria
Yang et al. Translation of trpG in Bacillus subtilis is regulated by the trp RNA-binding attenuation protein (TRAP)
Lokman et al. Regulation of expression of the Lactobacillus pentosus xylAB operon
La Roche et al. Identification of dcmR, the regulatory gene governing expression of dichloromethane dehalogenase in Methylobacterium sp. strain DM4
Giel et al. A Mutation in a New Gene, bglJ Activates the bgl Operon in Escherichia coli K-12
Guerrero et al. Directed mutagenesis of a regulatory palindromic sequence upstream from the Brevibacterium lactofermentum tryptophan operon
JPS60149390A (en) Biosynthesis method and its cell
Kulik et al. Regulation of the Activity of the type ICEcoR124I Restriction Enzyme
JPH1084978A (en) Improved production of riboflavin
KR100546823B1 (en) Method and constructs for inhibiting protein expression in bacteria
HU201116B (en) Process for producing plasmids having uncontrolled replication conduct under given circumstances
JP4312834B2 (en) Improved prokaryotic expression of proteins
KR20220150328A (en) Methods of producing constitutive bacterial promoters conferring low to medium expression
NO319058B1 (en) Genes for butyrobetaine / crotonobetaine L-carnitine metabolism and their use for microbiological preparation of L-carnitine.
JP4085523B2 (en) Natto bacillus with natural transformation ability
Solioz et al. Operon of vacuolar-type Na (+)-ATPase of Enterococcus hirae
EP1664305B1 (en) Selection system containing non-antibiotic resistance selection marker
US6100063A (en) Procaryotic cell comprising at least two copies of a gene
Gomelsky et al. The Rhodobacter sphaeroides 2.4. 1 rho gene: expression and genetic analysis of structure and function
JP7061018B2 (en) A novel promoter and a method for producing a protein using the promoter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5