JP2001008686A - Bacillus subtilis natto having ability of being naturally transformed - Google Patents

Bacillus subtilis natto having ability of being naturally transformed

Info

Publication number
JP2001008686A
JP2001008686A JP11180804A JP18080499A JP2001008686A JP 2001008686 A JP2001008686 A JP 2001008686A JP 11180804 A JP11180804 A JP 11180804A JP 18080499 A JP18080499 A JP 18080499A JP 2001008686 A JP2001008686 A JP 2001008686A
Authority
JP
Japan
Prior art keywords
gene
bacillus
bacterium
ability
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11180804A
Other languages
Japanese (ja)
Other versions
JP4085523B2 (en
Inventor
Fujio Kawamura
富士夫 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP18080499A priority Critical patent/JP4085523B2/en
Publication of JP2001008686A publication Critical patent/JP2001008686A/en
Application granted granted Critical
Publication of JP4085523B2 publication Critical patent/JP4085523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new bacterium which is a mutant or recombinant of a bacterium belonging to the genus Bacillus whose wild type does not substantially have an ability of being naturally transformed, has late-stage competence genes which can express, and acquired an ability of being naturally transformed. SOLUTION: This is a new bacterium which is a mutant or recombinant of a bacterium belonging to the genus Bacillus whose wild type does not substantially have an ability of being naturally transformed, has late-stage competence genes which can express, and acquired an ability of being naturally transformed. This bacterium can be transformed at a significantly high frequency compared with the natural mutation, so that it can be preferably used for the molecular breeding. This bacterium is obtained by keeping active ComK protein by destroying mecA gene and/or mecB gene of Bacillus subtilis natto, followed by constructing B. subtilis natto which acquired an ability of being naturally transformed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自然形質転換可能
を獲得したバチルス属細菌に関し、詳しくは、野生株が
自然形質転換能を有しないバチルス属細菌の変異株又は
組換え株であって、自然形質転換能を有するバチルス属
細菌に関する。
The present invention relates to a bacterium belonging to the genus Bacillus which has acquired natural transformation capability. More specifically, the present invention relates to a mutant or recombinant strain of a bacterium belonging to the genus Bacillus in which a wild-type strain has no natural transformation ability. The present invention relates to a Bacillus bacterium capable of natural transformation.

【0002】[0002]

【従来の技術】枯草菌(バチルス・サブチリス)をはじ
めとするバチルス属細菌は、菌体外酵素の生産菌として
工業的に利用されているばかりでなく、納豆菌(Bacill
us subtilis natto)のように食品生産にも古くから用
いられているものもある。また、近年では、バチルス属
細菌の強い分泌生産能に着目し、大腸菌や酵母と並ん
で、遺伝子組換えの宿主として利用されている。
2. Description of the Related Art Bacillus bacteria such as Bacillus subtilis are not only industrially used as bacterium producing extracellular enzymes but also Bacillus subtilis (Bacillus subtilis).
Some of them have long been used in food production, such as us subtilis natto). In recent years, attention has been paid to the strong secretory production ability of Bacillus bacteria, and they are used as hosts for genetic recombination along with Escherichia coli and yeast.

【0003】バチルス・サブチリスの形質転換法とし
て、自然形質転換法(コンピテントセル法)、プロトプ
ラスト法、エレクトロポレーション法が主として用いら
れている。これらの方法のうち、自然形質転換法は、比
較的大きなDNA分子を導入することができる利点があ
るが、自然形質転換はバチルス・サブチリス マーブル
グ(Marburg)系の菌株(168、166、160株)のみで起こ
り、納豆菌等では自然形質転換の頻度は極めて低く、形
質転換能(コンピテンシー)を有しないともいわれてい
る。また、プロトプラスト法及びエレクトロポレーショ
ン法は、多くの菌種に応用可能である一方、プロトプラ
スト法ではプロトプラストが不安定でありバーストしや
すい、再現性が低い、さらにはプロトプラストの再生に
完全培地を用いるため栄養要求マーカーを使用できない
等の欠点がある。さらに、エレクトロポレーション法
は、形質転換効率が低いという問題がある(以上、Mole
cularBiological Method for Bacillus, Edited by Har
wood, C. R. et al., John Wiley & Sons, p.98-10
3)。
[0003] As a method for transforming Bacillus subtilis, a natural transformation method (competent cell method), a protoplast method, and an electroporation method are mainly used. Among these methods, the natural transformation method has an advantage that a relatively large DNA molecule can be introduced. However, the natural transformation method is based on Bacillus subtilis Marburg strains (168, 166, 160 strains). It is said that the frequency of natural transformation is extremely low in Bacillus natto and the like, and that it does not have transformation ability (competency). In addition, the protoplast method and the electroporation method can be applied to many strains, while the protoplast method is unstable and easily bursts, has low reproducibility, and further uses a complete medium for the regeneration of protoplasts. Therefore, there is a drawback that a nutritional requirement marker cannot be used. In addition, the electroporation method has a problem that the transformation efficiency is low.
cularBiological Method for Bacillus, Edited by Har
wood, CR et al., John Wiley & Sons, p.98-10
3).

【0004】バチルス・サブチリス マーブルグ株で
は、コンピテンスは、早期コンピテンス遺伝子群及び後
期コンピテンス遺伝子群によって誘導されることが知ら
れている(Solomon, J. M., et al., Genes & Developm
ent, 10, 2014-2024 (1996), Lazazzera, B. A., et a
l., Genes & Development, 19, 455-458 (1997), Dubna
u, D., Gene, 192, 191-198 (1997))。後期コンピテン
ス遺伝子群の発現には、早期コンピテンス遺伝子である
comK産物(ComK)が必要である。comK遺伝
子は構成的に発現するが、通常の生育条件では、Com
Kタンパク質は同じく早期コンピテンス遺伝子であるm
ec(medium independent competence)A、mecB
(clpC)、clpPの各遺伝子産物によって分解さ
れるため、後期コンピテンス遺伝子群は発現しない。一
方、コンピテンスが誘導する条件で培養すると、com
K遺伝子の発現が促進されるため、活性型comKが後
期コンピテンス遺伝子群の発現を誘導する。その結果、
コンピテンスが誘導される。
[0004] In Bacillus subtilis Marburg strains, competence is known to be induced by early and late competence genes (Solomon, JM, et al., Genes & Developm).
ent, 10, 2014-2024 (1996), Lazazzera, BA, et a
l., Genes & Development, 19, 455-458 (1997), Dubna
u, D., Gene, 192, 191-198 (1997)). Expression of the late competence genes requires a comK product (ComK), which is an early competence gene. Although the comK gene is constitutively expressed, under normal growth conditions,
The K protein is also an early competence gene
ec (medium independent competence) A, mecB
Since it is degraded by each of the (clpC) and clpP gene products, the late competence genes are not expressed. On the other hand, when cultured under conditions in which competence is induced, com
Since the expression of the K gene is promoted, the active form of comK induces the expression of a group of late competence genes. as a result,
Competence is induced.

【0005】しかし、納豆菌等の自然形質転換能を有し
ないバチルス属細菌が同様のコンピテンス遺伝子群を有
しているか、有していたとしても発現可能であるかにつ
いては知られていない。
[0005] However, it is not known whether Bacillus bacteria having no natural transforming ability such as Bacillus natto have the same group of competence genes or can be expressed even if they do.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記観点か
らなされたものであり、納豆菌等の、野生株が実質的に
自然形質転換能を有しないバチルス属細菌の形質転換を
可能にする技術を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention has been made from the above viewpoint, and enables the transformation of a Bacillus bacterium, such as Bacillus natto, whose wild strain has substantially no natural transformation ability. The task is to provide technology.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意研究を行った結果、納豆菌ではCo
mKタンパク質が活性化されていないために後期コンピ
テンス遺伝子が誘導されず、その結果、自然形質転換能
を有しないことを見い出した。そして、納豆菌のmec
A遺伝子又はmecB遺伝子を破壊したところ、自然形
質転換能を獲得した納豆菌を構築することに成功し、本
発明を完成するに至った。すなわち本発明は、以下のと
おりである。
Means for Solving the Problems The present inventor has conducted intensive studies in order to solve the above-mentioned problems.
It was found that the late competence gene was not induced because the mK protein was not activated, and as a result, it did not have a natural transformation ability. And mec of natto bacteria
Disruption of the A gene or the mecB gene resulted in the successful construction of Bacillus natto having acquired the natural transformation ability, thereby completing the present invention. That is, the present invention is as follows.

【0008】(1)野生株が実質的に自然形質転換能を
有しないバチルス属細菌の変異株又は組換え株であっ
て、後期コンピテンス遺伝子群が発現可能であり、か
つ、自然形質転換能を獲得したバチルス属細菌。 (2)バチルス・サブチリス(Bacillus subtilis)で
ある(1)の細菌。 (3)納豆菌(Bacillus subtilis natto)である
(2)の細菌。 (4)前記後期コンピテンス遺伝子群が、comCオペ
ロン、comEオペロン、comFオペロン又はcom
Gオペロンから選ばれる(1)の細菌。 (5)活性型ComKタンパク質を保持する(1)の細
菌。 (6)comK遺伝子の発現が強化されたことにより活
性型ComKタンパク質を保持する請求項5記載の細
菌。 (7)mecA遺伝子又はmecB遺伝子の一方又は両
方が破壊されたことにより活性型ComKタンパク質を
保持する(5)の細菌。 (8)実質的に自然形質転換能を有しないバチルス属細
菌に後期コンピテンス遺伝子の発現能を付与することを
特徴とするバチルス属細菌に自然形質転換能を付与する
方法。
(1) A wild-type strain is a mutant or recombinant strain of a bacterium belonging to the genus Bacillus having substantially no natural transformation ability, capable of expressing a late-competence gene group, and having a natural transformation ability. Bacillus bacteria acquired. (2) The bacterium according to (1), which is Bacillus subtilis. (3) The bacterium according to (2), which is Bacillus subtilis natto. (4) The late competence gene group is a comC operon, a comE operon, a comF operon, or a com operon.
(1) The bacterium selected from the G operon. (5) The bacterium according to (1), which retains an active form of the ComK protein. (6) The bacterium according to (5), wherein the bacterium retains an active ComK protein due to enhanced expression of the comK gene. (7) The bacterium according to (5), wherein one or both of the mecA gene and the mecB gene are disrupted, thereby retaining the active ComK protein. (8) A method for conferring natural transformation ability on a Bacillus bacterium, which comprises imparting the ability to express a late competence gene to a Bacillus bacterium having substantially no natural transformation ability.

【0009】尚、本発明において、自然形質転換とは、
特定の条件に培養した細菌の培養液にDNAを加えて培
養したときに、該DNAが細菌細胞に取り込まれて保持
されることをいう。「実質的に自然形質転換能を有しな
い」とは、薬剤耐性等の表現形質の発現頻度が、該表現
形質に相当する遺伝子を含むDNAを用いて形質転換を
行った場合と、自然突然変異とで有意差がないことをい
う。また、自然形質転換能を付与するとは、自然形質転
換能を有しない細菌に自然形質転換能を付与すること、
及び、非常に低い自然形質転換能を有する細菌において
自然形質転換能を高めることをいう。
[0009] In the present invention, natural transformation refers to
When DNA is added to a culture solution of bacteria cultured under specific conditions and cultured, the DNA is taken up and retained by the bacterial cells. "Substantially does not have natural transformation ability" means that the frequency of expression of a phenotype such as drug resistance is the case where transformation is carried out using DNA containing a gene corresponding to the phenotype, Means that there is no significant difference between In addition, to confer natural transformation ability, to confer natural transformation ability to bacteria that do not have natural transformation ability,
In addition, it refers to enhancing the natural transformation ability of a bacterium having a very low natural transformation ability.

【0010】[0010]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の細菌は、野生株が実質的に自然形質転換能を有
しないバチルス属細菌の変異株又は組換え株であって、
後期コンピテンス遺伝子群が発現可能であり、かつ、自
然形質転換能を獲得したバチルス属細菌である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The bacterium of the present invention is a mutant or recombinant strain of a bacterium belonging to the genus Bacillus in which a wild strain has substantially no natural transformation ability,
It is a bacterium belonging to the genus Bacillus that can express a group of late competence genes and has acquired a natural transformation ability.

【0011】バチルス属細菌としては、バチルス・サブ
チリス(Bacillus subtilis)、バチルス・ステアロサ
ーモフィルス(Bacillus stearothermophilus)、バチ
ルス・メタノリカス(Bacillus methanolicus)、バチ
ルス・アミロリケファシエンス(Bacillus amiloliquef
aciens)、具体的には納豆菌(Bacillus subtilis natt
o)が挙げられる。バチルス属細菌で自然形質転換が起
こるのはバチルス・サブチリス マーブルグ(Marbur
g)系の菌株のみであるといわれており、それらの菌株
以外のバチルス属細菌は、本発明を適用して自然形質転
換能を付与し得る。また、マーブルグ系の菌株であって
も、同様にして自然形質転換能を向上させ得る。
[0011] Examples of Bacillus bacteria include Bacillus subtilis, Bacillus stearothermophilus, Bacillus methanolicus, and Bacillus amiloliquefaciens.
aciens), specifically Bacillus subtilis natt
o). Natural transformation of Bacillus sp. Occurs with Bacillus subtilis Marburg
It is said that these strains are only g) strains, and Bacillus bacteria other than those strains can be imparted with natural transformation ability by applying the present invention. Even in the case of Marburg strains, the natural transformation ability can be improved in the same manner.

【0012】マーブルグ系の菌株は、特定の培養条件で
培養すると、コンピテンス遺伝子群が誘導され自然形質
転換能が発現するが、納豆菌のような自然形質転換能を
有しないバチルス属細菌(以下、単に「納豆菌等」とも
いう)は、そのような条件で培養しても、後期コンピテ
ンス遺伝群の発現が誘導されない。したがって、後期コ
ンピテンス遺伝子群の発現を可能にすることによって、
納豆菌等に自然形質転換能を付与することができる。
Bacterial strains of the Bacillus genus which do not have natural transforming ability such as Bacillus natto (hereinafter referred to as "natto bacterium") are derived from the Marburg strain when they are cultured under specific culturing conditions. (Simply referred to as "natto bacteria") does not induce expression of the late competence gene group even when cultured under such conditions. Therefore, by allowing the expression of late competence genes,
Natural transforming ability can be imparted to Bacillus natto or the like.

【0013】後期コンピテンス遺伝子群の発現を可能に
するには、納豆菌等が元来保持する後期コンピテンス遺
伝子群が発現するように発現制御系を改変するか、発現
可能な後期コンピテンス遺伝子群を納豆菌等に導入すれ
ばよい。具体的には、例えば、活性型ComKタンパク
質を後期コンピテンス遺伝子群の発現を誘導するような
量で細胞内に保持させればよい。活性型ComKタンパ
ク質を細胞内に保持させるには、comK遺伝子の発現
量を増大させるか、あるいはmecA遺伝子又はmec
B遺伝子を破壊又は変異させ、MecAタンパク質又は
MecBタンパク質が正常に機能しないようにすればよ
い。mecA遺伝子又はmecB遺伝子の破壊は、いず
れか一方でもよく、両方であってもよい。
In order to enable expression of the late competence gene group, the expression control system is modified so that the late competence gene group originally retained by Bacillus natto or the like, or the late competence gene group that can be expressed is converted to natto. What is necessary is just to introduce into bacteria. Specifically, for example, the active ComK protein may be retained in a cell in such an amount as to induce the expression of the late competence gene group. In order to retain the activated ComK protein in the cell, the expression level of the comK gene is increased or the mecA gene or mec
The B gene may be disrupted or mutated so that the MecA protein or MecB protein does not function normally. Disruption of the mecA gene or the mecB gene may be either one or both.

【0014】mecA遺伝子又はmecB遺伝子の破壊
は、内部に他のDNA配列を挿入したmecA遺伝子又
はmecB遺伝子、あるいは内部を欠失したmecA遺
伝子又はmecB遺伝子を含むDNA断片を、納豆菌等
の培養液に加えて培養することにより納豆菌等細胞を形
質転換し、染色体上のmecA遺伝子又はmecB遺伝
子と相同組換えを起こさせることにより、行うことがで
きる。
Disruption of the mecA gene or the mecB gene can be accomplished by adding a mecA gene or a mecB gene into which another DNA sequence has been inserted, or a DNA fragment containing a mecA gene or a mecB gene having an internally deleted gene, to a culture solution of Bacillus natto or the like. By transforming cells such as Bacillus natto by culturing in addition to the above, the homologous recombination with the mecA gene or the mecB gene on the chromosome can be performed.

【0015】バチルス・サブチリスのmecA遺伝子
(Genbank/EMBL/DDBJ accetion No. L06059)又はme
cB遺伝子(Genbank/EMBL/DDBJ accetion No. U0260
4)は、それらの塩基配列が報告されており、該塩基配
列に基づいて合成したオリゴヌクレオチドをプライマー
とするポリメラーゼチェインリアクション法(PCR:
polymerase chain reaction; White,T.J. et al., Tre
nds Genet., 5,185 (1989)参照)により、バチルス属細
菌染色体DNAから単離することができる。
Bacillus subtilis mecA gene (Genbank / EMBL / DDBJ accetion No. L06059) or me
cB gene (Genbank / EMBL / DDBJ accetion No. U0260
4) reports their base sequences, and uses a polymerase chain reaction method (PCR: PCR) using an oligonucleotide synthesized based on the base sequence as a primer.
polymerase chain reaction; White, TJ et al., Tre
nds Genet., 5,185 (1989)).

【0016】納豆菌等の形質転換は、枯草菌で通常用い
られている自然形質転換法(コンピテントセル法)(J.
Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1
958))と同様にして、特定の条件に培養した細胞の培養
液にDNAを加えて培養することにより、行うことがで
きる。納豆菌等は、対数増殖期から定常期へと移行する
時期の生育フェーズにおいて形質転換能が高まる。具体
的には例えば、形質転換は次のようにして行うことがで
きる。すなわち、納豆菌等を、実施例に示すコンピテン
ス誘導培地にOD660が0.05前後となるように植菌
し、37℃で5時間振盪培養を行った後、菌体をコンピ
テンス誘導培地に懸濁し、この細胞懸濁液にDNAを加
え、さらに37℃で1.5時間振盪培養した後、LB液
体培地を加え、37℃で1時間浸透培養を続け、その
後、LB寒天培地に塗布し、37℃で一晩培養する。
Transformation of Bacillus natto and the like can be carried out by a natural transformation method (competent cell method) usually used for Bacillus subtilis (J.
Spizizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1
958)), DNA can be added to a culture solution of cells cultured under specific conditions and cultured. Bacillus natto and the like have an increased transforming ability in the growth phase when the phase shifts from the logarithmic growth phase to the stationary phase. Specifically, for example, the transformation can be performed as follows. That is, natto or the like is inoculated into the competence induction medium described in the Examples so that the OD 660 is around 0.05, and cultured with shaking at 37 ° C. for 5 hours, and then the cells are suspended in the competence induction medium. After turbidity, DNA was added to the cell suspension, followed by shaking culture at 37 ° C. for 1.5 hours, LB liquid medium was added, culture was continued for 1 hour at 37 ° C., and then applied to LB agar medium. Incubate at 37 ° C overnight.

【0017】形質転換株の選択は、導入しようとするD
NAに薬剤耐性遺伝子等のマーカーを保持させ、形質転
換処理後の細胞のマーカー形質を指標として行うことが
できる。マーカー遺伝子を内部に含むmecA遺伝子又
はmecB遺伝子は、これらの遺伝子の破壊に好適に用
いることができる。このようなマーカー遺伝子を内部に
含むmecA遺伝子又はmecB遺伝子を保持するバチ
ルス・ズブチリスとして、mecA欠損株BD2123[hisB2 le
u-8 metB5 mecAΔ(spc) amyE::comG-lacZ(cat)]、及び
mecB欠損株BD2243[hisB2 leu-8 metB5 mecBΔ(spc) am
yE::comG-lacZ(cat)](Dubnau, D., Gene, 192, 191-1
98 (1997)参照)が挙げられる。これらの菌株の染色体
DNA断片は、そのままmecA遺伝子又はmecB遺
伝子の破壊に用いることができる。
The selection of the transformant depends on the D to be introduced.
A marker such as a drug resistance gene can be retained in NA, and the marker trait of the transformed cell can be used as an index. The mecA gene or mecB gene containing a marker gene therein can be suitably used for disruption of these genes. As a Bacillus subtilis carrying a mecA gene or a mecB gene containing such a marker gene therein, a mecA-deficient strain BD2123 [hisB2 le
u-8 metB5 mecAΔ (spc) amyE :: comG-lacZ (cat)], and
mecB deficient strain BD2243 [hisB2 leu-8 metB5 mecBΔ (spc) am
yE :: comG-lacZ (cat)] (Dubnau, D., Gene, 192, 191-1
98 (1997)). The chromosomal DNA fragments of these strains can be directly used for disruption of the mecA gene or the mecB gene.

【0018】形質転換が起こったことは、形質転換株か
らDNAを調製し、同DNAでバチルス・ズブチリス
マーブルグ系の菌株を形質転換し、マーカー遺伝子を保
持する形質転換体を得ることにより、確認することがで
きる。
[0018] The fact that the transformation has occurred is as follows. DNA is prepared from the transformed strain, and B. subtilis is used for the DNA.
It can be confirmed by transforming a Marburg strain and obtaining a transformant having the marker gene.

【0019】また、上記のようにして得られるmecA
欠損株又はmecB欠損株が、活性型ComKタンパク
質を細胞内に保持し、後期コンピテンス遺伝子群が発現
可能であることは、後期コンピテンス遺伝子群のオペロ
ンのプロモーターにβ−ガラクトシダーゼ遺伝子等のレ
ポーター遺伝子を連結した融合遺伝子をmecA欠損株
又はmecB欠損株に保持させ、これらの株のβ−ガラ
クトシダーゼ活性が発現することにより、確認すること
ができる。前記融合遺伝子としては、例えば、BD2123株
[hisB2 leu-8 metB5 mecAΔ(spc) amyE::comG-lacZ(ca
t)](Liyun Kong and David Dubnau, Proc, Natl. Aca
d. Sci. USA, 91, 5793-5797 (1994))が染色体DNA
上に保持する、バチルス・ズブチリスcomG遺伝子の転写
調節領域とエシェリヒア・コリK12株由来のβ−ガラ
クトシダーゼをコードするlacZ遺伝子との融合遺伝子
(PcomG-lacZ)が挙げられる。
Further, mecA obtained as described above is used.
The fact that the deficient strain or the mecB deficient strain retains the active form of the ComK protein in the cell and the late competence gene group can be expressed means that the reporter gene such as the β-galactosidase gene is linked to the promoter of the operon of the late competence gene group. The fusion gene obtained can be retained in a mecA-deficient strain or a mecB-deficient strain, and the β-galactosidase activity of these strains can be confirmed by expression. Examples of the fusion gene include BD2123 strain [hisB2 leu-8 metB5 mecAΔ (spc) amyE :: comG-lacZ (ca
t)] (Liyun Kong and David Dubnau, Proc, Natl. Aca
d. Sci. USA, 91, 5793-5797 (1994))
And a fusion gene (PcomG-lacZ) of the transcription regulatory region of the Bacillus subtilis comG gene and the lacZ gene encoding β-galactosidase derived from Escherichia coli K12 strain, which is retained above.

【0020】また、後期コンピテンス遺伝子群のオペロ
ンのプロモーターを、発現にComKタンパク質を必要
としないプロモーターに置換した融合遺伝子を作製し、
同融合遺伝子を納豆菌等に導入することによっても、自
然形質転換能を付与することができる。また、納豆菌等
の染色体上の後期コンピテンス遺伝子群のオペロンのプ
ロモーターを、発現にComKタンパク質を必要としな
いプロモーターに置換することによっても、自然形質転
換能を付与することができる。染色体上の遺伝子のプロ
モーターを置換する技術は、特開平1−215280号
公報に開示されている。
Further, a fusion gene is prepared by replacing the promoter of the operon of the late competence gene group with a promoter that does not require a ComK protein for expression.
Natural transformation ability can also be imparted by introducing the fusion gene into Bacillus natto or the like. Natural transformation ability can also be imparted by replacing the promoter of the operon of the late competence genes on the chromosome such as Bacillus natto with a promoter that does not require a ComK protein for expression. A technique for replacing a promoter of a gene on a chromosome is disclosed in JP-A-1-215280.

【0021】後期コンピテンス遺伝子群としては、co
mC遺伝子、comEオペロン、comFオペロン又は
comGオペロンから選ばれる1種又は2種以上が挙げ
られる。
The late competence genes include co
One or more selected from the mC gene, the comE operon, the comF operon, and the comG operon.

【0022】[0022]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。 <1>納豆菌の単離 タカノフーズ株式会社の納豆(「おかめ納豆」(同社の
登録商標))より納豆菌を分離した。前記納豆の希釈液
をLB寒天培地に塗布して単一コロニー分離を行い、2
種の納豆菌を単離した。1種は非常にラフなコロニーを
形成し、バチルス・サブチリス ナットウ(Bacillus s
ubtilis natto) OK1と命名し、他の1種はバチルス・
サブチリス マーブルグ168に似たコロニーを形成し、
バチルス・サブチリス ナットウ OK2と命名した。これ
らの株は、数十kb(70kb以下)と約6kbの2つ
のプラスミドを保持し、その生育にビオチン(ビタミン
H)を要求した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. <1> Isolation of Bacillus natto Bacillus natto was isolated from natto ("Okame Natto" (registered trademark) of Takano Foods Co., Ltd.). The diluted solution of natto was spread on an LB agar medium to separate a single colony.
The species Bacillus natto was isolated. One species forms a very rough colony, and Bacillus subtilis natto (Bacillus s.
ubtilis natto) Named OK1 and the other is Bacillus
Form a colony similar to Subtilis Marburg 168,
Bacillus subtilis Natto named OK2. These strains maintained two plasmids of several tens kb (70 kb or less) and about 6 kb, and required biotin (vitamin H) for their growth.

【0023】<2>PcomG-lacZ融合遺伝子をもつバチル
ス・サブチリスOK2株の構築 comG遺伝子の転写調節領域とエシェリヒア・コリK12
株由来のβ−ガラクトシダーゼをコードするlacZ遺伝子
との融合遺伝子(PcomG-lacZ)及びクロラムフェニコー
ルアセチルトランスフェラーゼ遺伝子がアミラーゼ遺伝
子(amyE)に挿入されたDNA断片(amyE::comG-lacZ
(cat)が、バチルス・サブチリス168系統株の染色体上の
amyE領域に挿入されたBD2123株[hisB2 leu-8 metB5 me
cAΔ(spc) amyE::comG-lacZ(cat)](Liyun Kong and D
avid Dubnau, Proc, Natl. Acad.Sci. USA, 91, 5793-5
797 (1994))から染色体DNAを、斎藤、三浦の方法
(Biochem. Biophys. Acta., 72, 619 (1963))で抽出
し、得られたDNAを用いて通常の形質転換法(J. Spi
zizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (195
8))により、バチルス・サブチリス168株に導入した。
<2> Construction of Bacillus subtilis OK2 strain having PcomG-lacZ fusion gene Transcriptional regulatory region of comG gene and Escherichia coli K12
A fusion gene (PcomG-lacZ) with a lacZ gene encoding β-galactosidase derived from a strain and a DNA fragment (amyE :: comG-lacZ) having a chloramphenicol acetyltransferase gene inserted into an amylase gene (amyE)
(cat) on the chromosome of Bacillus subtilis 168 strain
BD2123 strain inserted into the amyE region [hisB2 leu-8 metB5 me
cAΔ (spc) amyE :: comG-lacZ (cat)] (Liyun Kong and D
avid Dubnau, Proc, Natl. Acad. Sci. USA, 91, 5793-5
797 (1994)), extracted by the method of Saito and Miura (Biochem. Biophys. Acta., 72, 619 (1963)), and using the obtained DNA, a conventional transformation method (J. Spi
zizen, Proc, Natl. Acad. Sci. USA, 44, 1072 (195
8)), and introduced into 168 strains of Bacillus subtilis.

【0024】目的とする融合遺伝子を含むDNA断片が
amyE遺伝子間に挿入された株は、クロラムフェニコール
を5μg/ml含むLB寒天培地(Luria-Bertani培
地: Sambrook, J., Fritsch, E. F., and Maniatis,
T., "Molecular Cloning A Laboratory Manual, Second
Edition", Cold Spring Harbor Laboratory Press (19
89))に塗布し、出現したコロニーを選択することによ
って得た。
The DNA fragment containing the desired fusion gene is
The strain inserted between the amyE genes was an LB agar medium containing 5 μg / ml of chloramphenicol (Luria-Bertani medium: Sambrook, J., Fritsch, EF, and Maniatis,
T., "Molecular Cloning A Laboratory Manual, Second
Edition ", Cold Spring Harbor Laboratory Press (19
89)) and obtained by selecting colonies that appeared.

【0025】さらに、OK2株に、上記PcomG-lacZ融合
遺伝子を導入した株を構築した。上記で得られたPcomG-
lacZ融合遺伝子を持つバチルス・サブチリス168株の染
色体DNAを前記と同様にして抽出した。一方、OK2
株を0.1μg/mlのビオチンを加えたコンピテンス
誘導培地[CI液体培地:Spizizen最少培地(J. Spizi
zen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958)
に0.05% Yeast Extract(Difco)及び0.1μg/mlの
ビオチンを加えた培地]にOD660が0.05前後とな
るように植菌し、37℃で5時間振盪培養を行った後、
0.5mlの培養液を分取し、8000rpm、4℃で2
分遠心分離して集菌し、1mlのCI培地[Spizizen最
少培地に0.025% Yeast Extract (Difco)及び0.1μg
/mlのビオチンを加えた培地]に懸濁した。この細胞
懸濁液0.1mlに、前記のPcomG-lacZ融合遺伝子を持
つバチルス・サブチリス168株の染色体DNA0.2μ
gを加え、さらに37℃で1.5時間振盪培養した後、
0.3mlのLB液体培地を加え、37℃で1時間浸透
培養を続け、5μg/mlのクロラムフェニコールを含
むLB寒天培地に塗布し、37℃で一晩培養した。その
結果、2つのコロニーを得た。
Further, a strain in which the above PcomG-lacZ fusion gene was introduced into the OK2 strain was constructed. PcomG- obtained above
The chromosomal DNA of Bacillus subtilis strain 168 having the lacZ fusion gene was extracted in the same manner as described above. On the other hand, OK2
The strain was added to a competence induction medium to which 0.1 μg / ml biotin was added [CI liquid medium: Spizizen minimal medium (J. Spizi
zen, Proc, Natl. Acad. Sci. USA, 44, 1072 (1958)
After 0.05% Yeast Extract (Difco) and 0.1 [mu] g / ml of OD 660 in culture medium] plus biotin was inoculated so that the front and rear 0.05, was carried out for 5 hours by shaking culture at 37 ° C., the
An aliquot of 0.5 ml of the culture solution was collected and subjected to 8000 rpm at 4 ° C for 2 hours.
After centrifugation to collect cells, 1 ml of CI medium [0.025% yeast extract (Difco) and 0.1 μg
/ Media supplemented with biotin / ml). To 0.1 ml of this cell suspension, 0.2 μm of chromosomal DNA of Bacillus subtilis strain 168 having the PcomG-lacZ fusion gene was added.
g, followed by shaking culture at 37 ° C. for 1.5 hours.
0.3 ml of LB liquid medium was added, culture was continued for 1 hour at 37 ° C., applied to LB agar medium containing 5 μg / ml chloramphenicol, and cultured at 37 ° C. overnight. As a result, two colonies were obtained.

【0026】上記の2株を用いて、CI培地中での後記
コンピテンス遺伝子の発現をlacZ活性(β−ガラクトシ
ダーゼ活性)をレポーターとして調べたところ、全く発
現が認められなかった。このことは、これらの形質転換
株に、完全なPcomG-lacZ融合遺伝子が導入されていない
か、納豆菌では後記コンピテンス遺伝子の誘導系に何ら
かの欠陥があるものと考えられた。このことを確かめる
ために、上記形質転換体から抽出したDNAでバチルス
・サブチリス168株を通常の形質転換法により形質転換
し、得られたCmrの形質転換株をCI培地で培養し、l
acZ活性を調べた。その結果、Cmr株のすべて(50株
中の50株)においてPcomG-lacZの発現がみられた。以
上のことから、OK2株に導入されたPcomG-lacZ融合遺
伝子は目的通りの構造を有していることが確認され、後
記コンピテンス遺伝子の誘導系に欠陥があることが示唆
された。
Using the above two strains, the expression of the competence gene described below in a CI medium was examined using lacZ activity (β-galactosidase activity) as a reporter. As a result, no expression was observed. This suggests that the complete PcomG-lacZ fusion gene was not introduced into these transformants, or that there was some defect in the competence gene induction system described later in Bacillus natto. To confirm this, the Bacillus subtilis 168 strain by the DNA extracted from the transformant transformed by conventional transformation method, the resulting transformant of Cm r cultured in CI medium, l
The acZ activity was examined. As a result, the expression of PcomG-lacZ was observed in all of the Cm r stock (50 shares in 50 shares). From the above, it was confirmed that the PcomG-lacZ fusion gene introduced into the OK2 strain had the desired structure, suggesting that the competence gene induction system described below was defective.

【0027】<3>mecA変異又はmecB変異の導入による
コンピテンス遺伝子の発現回復 (1)amyE::comG-lacZ(cat)を持つバチルス・サブチリ
ス168株へのmecA、mecB変異の導入 上記でcomGオペロンが誘導されないのは、このオペロン
の正の転写因子であるComKタンパク質が活性化されてい
ないためではないかと考え、OK2株にバチルス・サブチ
リス168株のmecA変異及びmecB変異を導入した。バチル
ス・サブチリス168系統のmecA欠損株BD2123[hisB2 leu
-8 metB5 mecAΔ(spc) amyE::comG-lacZ(cat)]、及びm
ecB欠損株BD2243[hisB2 leu-8 metB5 mecBΔ(spc) amy
E::comG-lacZ(cat)]よりDNAを抽出し、通常の形質
転換法によりamyE::comG-lacZ(cat)を持つバチルス・サ
ブチリス168(trpC2)株に導入した。BD2123株及びBD22
43は、それぞれmecA遺伝子及びmecB遺伝子の内部にスペ
クチノマイシン耐性遺伝子が挿入されている。これらの
変異株では、ComKタンパク質の分解が起こらず、構成的
に後期コンピテンス遺伝子群が発現していることが報告
されている(Dubnau,D., Gene, 192, 191-198 (199
7))。
<3> Recovery of competence gene expression by introduction of mecA mutation or mecB mutation (1) Introduction of mecA and mecB mutations into Bacillus subtilis 168 strain having amyE :: comG-lacZ (cat) It is thought that ComK protein, which is a positive transcription factor of this operon, was not activated. Therefore, the mecA mutation and the mecB mutation of Bacillus subtilis 168 strain were introduced into the OK2 strain. Bacillus subtilis strain 168 mecA-deficient strain BD2123 [hisB2 leu
-8 metB5 mecAΔ (spc) amyE :: comG-lacZ (cat)] and m
ecB deficient strain BD2243 (hisB2 leu-8 metB5 mecBΔ (spc) amy
DNA was extracted from E.:comG-lacZ(cat)] and introduced into a Bacillus subtilis 168 (trpC2) strain having amyE :: comG-lacZ (cat) by a usual transformation method. BD2123 strain and BD22
No. 43 has a spectinomycin resistance gene inserted inside the mecA gene and the mecB gene, respectively. In these mutants, it has been reported that the ComK protein is not degraded and the late competence genes are constitutively expressed (Dubnau, D., Gene, 192, 191-198 (199
7)).

【0028】上記のようにして、PcomG-lacZを持つmecA
変異株バチルス・サブチリス[mecAΔ(spc)amyE::comG-
lacZ]、及びPcomG-lacZを持つmecB変異株バチルス・サ
ブチリス[mecBΔ(spc)amyE::comG-lacZ]を構築した。
これらの形質転換株は、100μg/mlのスペクチノ
マイシンと5μg/mlのクロラムフェニコールを含む
LB寒天培地上で選択し、かつX−gal[5−ブロモ
−4−(クロロ−3−インドリル−β−D−ガラクトシ
ド)]を100μg/ml含むLB寒天培地上で青色を
呈する、すなわちPcomG-lacZ遺伝子が構成的に発現して
いることで、目的のDNAが導入されていることを確認
した。
As described above, mecA having PcomG-lacZ
Mutant Bacillus subtilis [mecAΔ (spc) amyE :: comG-
lacZ] and a mecB mutant Bacillus subtilis having PcomG-lacZ [mecBΔ (spc) amyE :: comG-lacZ] were constructed.
These transformants were selected on LB agar medium containing 100 μg / ml spectinomycin and 5 μg / ml chloramphenicol, and X-gal [5-bromo-4- (chloro-3-indolyl). -Β-D-galactoside)] on an LB agar medium containing 100 μg / ml, that is, since the PcomG-lacZ gene was constitutively expressed, it was confirmed that the target DNA had been introduced. .

【0029】(2)OK2株のmecA及びmecB欠損株の構築 上記で得られたバチルス・サブチリス168株のmecA変異
株[mecAΔ(spc)amyE::comG-lacZ]及びmecB変異株[me
cBΔ(spc)amyE::comG-lacZ]よりDNAを調製し、<2
>で構築したPcomG-lacZを持つOK2株に導入した。具体
的には、<2>で述べたのと同様に形質転換を行った。
尚、mecA変異株[mecAΔ(spc)amyE::comG-lacZ]由来の
DNAは23μg/ml、及びmecB変異株[mecBΔ(sp
c)amyE::comG-lacZ]由来のDNAは43μg/mlの
DNA溶液を、それぞれ細胞懸濁液0.1mlに対して
3μl加えた。
(2) Construction of mecA and mecB deficient strains of OK2 strain mecA mutant [mecAΔ (spc) amyE :: comG-lacZ] and mecB mutant of 168 Bacillus subtilis strain obtained above
DNA was prepared from cBΔ (spc) amyE :: comG-lacZ], and <2
And introduced into the OK2 strain having PcomG-lacZ constructed in>. Specifically, transformation was performed in the same manner as described in <2>.
The DNA derived from the mecA mutant [mecAΔ (spc) amyE :: comG-lacZ] was 23 μg / ml, and the mecB mutant [mecBΔ (sp
c) For DNA derived from amyE :: comG-lacZ], 3 μl of a 43 μg / ml DNA solution was added to 0.1 ml of the cell suspension.

【0030】100μg/mlのスペクチノマイシンと
5μg/mlのクロラムフェニコールを含むLB寒天培
地に塗布することにより形質転換株の選択を行い、スペ
クチノマイシン及びクロラムフェニコール耐性(Spc
r、Cmr)株を取得した。こうして、形質転換可能な納
豆菌OK2 mecAΔ(spc)amyE::comG-lacZ及びOK2 mecBΔ(s
pc)amyE::comG-lacZを得た。形質転換株の出現頻度は、
表1に示すとおりであった。
Transformants were selected by plating on LB agar medium containing 100 μg / ml spectinomycin and 5 μg / ml chloramphenicol, and resistant to spectinomycin and chloramphenicol (Spc
r , Cm r ) strain was obtained. Thus, the transformable Bacillus natto OK2 mecAΔ (spc) amyE :: comG-lacZ and OK2 mecBΔ (s
pc) amyE :: comG-lacZ was obtained. The appearance frequency of the transformant is
As shown in Table 1.

【0031】[0031]

【表1】 表1 ──────────────────────────────────── 供与DNA 受容菌 Spcr, Cmr株 ──────────────────────────────────── 168 mecAΔ(spc) OK2 2.2×102/ml amyE::comG-lacZ amyE::comG-lacZ ──────────────────────────────────── 168 mecBΔ(spc) OK2 4.6×102/ml amyE::comG-lacZ amyE::comG-lacZ ────────────────────────────────────[Table 1] Table 1 ──────────────────────────────────── donor DNA recipient bacterium Spc r, Cm r strain ──────────────────────────────────── 168 mecAΔ (spc) OK2 2.2 × 10 2 / ml amyE :: comG-lacZ amyE :: comG-lacZ ──────────────────────────────────── 168 mecBΔ (spc) OK2 4.6 × 10 2 / ml amyE :: comG-lacZ amyE :: comG-lacZ ──────────────────────────── ────────

【0032】(3)形質転換株のβ−ガラクトシダーゼ
活性の測定 168[amyE::comG-lacZ(cat)]及びOK2[amyE::comG-lac
Z(cat)]は、5μg/mlのクロラムフェニコールを含
むLB寒天培地で、また、OK2[mecAΔ(spc)amyE::comG
-lacZ]及びOK2[mecBΔ(spc)amyE::comG-lacZ]は、5
μg/mlのクロラムフェニコール及び100μg/m
lのスペクチノマイシンを含むLB寒天培地で、それぞ
れ37℃で一晩培養し、ビオチン0.1μg/mlと5
μg/mlのクロラムフェニコールを含むCI培地(me
cA変異株及びmecB変異株はさらに50μg/mlのスペ
クチノマイシンを含む)5mlに、OD660が約0.1
になるように植菌し、37℃で振盪培養した。培養開始
から1時間毎にOD660を測定し、同時に15000rp
m、2分間の遠心で集菌し、活性測定まで−30℃に保
存した。0、1、2時間目は1ml、3、4、5、6、
7時間目は0.5mlの培養液を分取した。
(3) Measurement of β-galactosidase activity of the transformant 168 [amyE :: comG-lacZ (cat)] and OK2 [amyE :: comG-lac
Z (cat)] is an LB agar medium containing 5 μg / ml chloramphenicol, and OK2 [mecAΔ (spc) amyE :: comG
-lacZ] and OK2 [mecBΔ (spc) amyE :: comG-lacZ]
Chloramphenicol at 100 μg / ml and 100 μg / m
Each of the cells was cultured overnight at 37 ° C. on an LB agar medium containing 1 μl of spectinomycin.
CI medium containing μg / ml chloramphenicol (me
cA mutants and mecB mutant further comprises spectinomycin 50μg / ml) 5ml, OD 660 is about 0.1
And cultured at 37 ° C. with shaking. OD 660 is measured every hour from the start of culture, and 15,000 rp
The cells were collected by centrifugation for 2 minutes and stored at -30 ° C until activity measurement. At 0, 1, 2 hours, 1 ml, 3, 4, 5, 6,
At the 7th hour, 0.5 ml of the culture solution was collected.

【0033】上記のようにして集菌した細胞をZバッフ
ァー(60mM Na2HPO4, 40mM NaHPO4・2H2O, 10mM KCl, 1m
M MgSO4・7H2O, 50mM 2-メルカプトエタノール)500
μlに懸濁し、トルエンを4滴加え、20秒間ボルテッ
クスし、28℃の恒温槽で2分間プレインキュベート
し、反応液の温度を28℃とした。次に、基質として、
分解されると黄色の生成物を生じるONPG(O−ニト
ロフェニル−β−D−ガラクトピラノシド)を4mg/
ml含むZバッファーを200μl加えて混合し、28
℃で反応を開始させた。薄く黄色く色づいたら、1Mの
炭酸ナトリウム溶液を500μl加え、反応を停止さ
せ、氷中に保存した。反応開始から停止までの時間をT
(分)とする。尚、色づかなかったサンプルは、最大2
0分間28℃で反応させてから、反応を停止させた。反
応溶液を15000rpm、4℃で5分遠心した後、上清
をキュベットに移し、分光光度計でA420を測定した。
β−ガラクトシダーゼ活性は、次のようにして算出した
(Wang, P-Z and Doi, R.H., J. Biol. Chem., 259, 86
19-8625 (1984))。結果を、図1に示す。図中、活性を
縦軸に、サンプリングした時間を横軸に示す。
[0033] Cells were harvested as described above Z buffer (60mM Na 2 HPO 4, 40mM NaHPO 4 · 2H 2 O, 10mM KCl, 1m
M MgSO 4 · 7H 2 O, 50mM 2- mercaptoethanol) 500
The mixture was suspended in μl, 4 drops of toluene were added, vortexed for 20 seconds, and pre-incubated for 2 minutes in a thermostat at 28 ° C., and the temperature of the reaction solution was set to 28 ° C. Next, as a substrate,
4 mg ONPG (O-nitrophenyl-β-D-galactopyranoside), which gives a yellow product when decomposed
Add 200 μl of Z buffer containing 50 ml, and mix.
The reaction was started at ° C. When it turned pale yellow, 500 μl of 1 M sodium carbonate solution was added to stop the reaction, and stored on ice. The time from reaction start to stop is T
(Minutes). Samples that were not colored were up to 2
After reacting at 28 ° C. for 0 minutes, the reaction was stopped. The reaction solution was centrifuged for 5 minutes at 15000 rpm, 4 ° C., the supernatant was transferred to a cuvette and measured A 420 in a spectrophotometer.
β-galactosidase activity was calculated as follows (Wang, PZ and Doi, RH, J. Biol. Chem., 259, 86).
19-8625 (1984)). The results are shown in FIG. In the figure, the activity is shown on the vertical axis, and the sampling time is shown on the horizontal axis.

【0034】[0034]

【数1】活性(unit)=A420×1000/T(分)×OD660
×V(ml)
## EQU1 ## Activity (unit) = A 420 × 1000 / T (min) × OD 660
× V (ml)

【0035】 <4>形質転換可能な納豆菌の形質転換能の評価 納豆菌自身の薬剤耐性マーカー遺伝子を得るために、納
豆菌より自然突然変異によるリファンピシン耐性変異
(rifr)株をまず単離し、OK2SR21株と命名した。この
リファンピシン耐性変異が、RNAポリメラーゼβサブ
ユニット遺伝子の変異であることは、30Sリボゾーム
S12タンパク質遺伝子(rpsL)内のストレプトマイシ
ン耐性変異(strA)との同時形質転換(co-transformat
ion)頻度により確認した。
<4> Evaluation of Transformation Ability of Bacillus natto Transformable In order to obtain a drug resistance marker gene of Bacillus natto, a rifampicin resistant mutant (rif r ) strain by natural mutation was first isolated from Bacillus natto. The strain was named OK2SR21 strain. The fact that the rifampicin resistance mutation is a mutation of the RNA polymerase β subunit gene means that the rifampicin resistance mutation is a mutation of the streptomycin resistance mutation (strA) in the 30S ribosomal S12 protein gene (rpsL) (co-transformaton).
ion) frequency.

【0036】バチルス・サブチリス168株のstrA47変異
は、rpsL遺伝子内の変異であり、同株でたった一つのコ
ドンの変異のみが知られている。また、rif1728は、168
株のRNAポリメラーゼβサブユニット遺伝子内の変異
であり、多くのrifrが同じ変異であることが知られてい
る。OK2株で取得した自然突然変異(rifr)が、既知の
これらの遺伝子内の変異であるか否かを、互いにマッピ
ングすることにより推定した。その結果、OK2で得られ
たrifr(rif21と命名した)はrpoBの変異であり、strA
もrpsL(strA)の変異であることがわかった。
The strA47 mutation in Bacillus subtilis strain 168 is a mutation in the rpsL gene, and only one codon mutation is known in the strain. Also, rif1728 is 168
Strains are mutant RNA polymerase β subunit in a gene, it is known that many rif r is the same mutation. Whether the spontaneous mutation (rif r ) obtained in the OK2 strain was a known mutation in these genes was estimated by mapping each other. As a result, the rif r (named rif21) obtained in OK2 was a mutation of rpoB and strA
Was also found to be a mutation in rpsL (strA).

【0037】OK2SR21株(rif21)及び168株のrifr株(r
if1728)から調製したDNAを用いて、<3>で得た形
質転換可能な納豆菌OK2 mecAΔ(spc)amyE::comG-lacZ
株、OK2 mecBΔ(spc)amyE::comG-lacZ、及び168株を、
通常の形質転換法により形質転換した。OK2SR21株由来
のDNAは23μg/ml、168株のrifr株由来のDN
Aは43μg/mlのDNA溶液を、それぞれ細胞懸濁
液0.1mlに対して3μl加えた。形質転換株の出現
頻度は、表2に示すとおりであった。
[0037] of OK2SR21 shares (rif21) and 168 shares rif r strain (r
using the DNA prepared from if1728), the transformable Bacillus natto OK2 mecAΔ (spc) amyE :: comG-lacZ obtained in <3>.
Strain, OK2 mecBΔ (spc) amyE :: comG-lacZ, and 168 strains,
Transformation was performed by the usual transformation method. DNA from OK2SR21 share 23μg / ml, 168 shares DN derived from the rif r strains of
In A, 3 μl of a 43 μg / ml DNA solution was added to 0.1 ml of the cell suspension. The frequency of appearance of the transformed strain was as shown in Table 2.

【0038】[0038]

【表2】 表2 ──────────────────────────────────── 供与DNA 受容菌 Spcr, Cmr株 ──────────────────────────────────── OKSR21 rif21 OK2 mecAΔ(spc) 2.46×104/ml amyE::comG-lacZ ──────────────────────────────────── OKSR21 rif21 OK2 mecBΔ(spc) 2.00×104/ml amyE::comG-lacZ ──────────────────────────────────── OKSR21 rif21 168 2.91×104/ml ──────────────────────────────────── 168 rif1728 168 1.98×104/ml ────────────────────────────────────[Table 2] Table 2 ──────────────────────────────────── donor DNA recipient bacterium Spc r, Cm r strain ──────────────────────────────────── OKSR21 rif21 OK2 mecAΔ (spc) 2.46 × 10 4 / ml amyE :: comG-lacZ ──────────────────────────────────── OKSR21 rif21 OK2 mecBΔ (spc) 2.00 × 10 4 / ml amyE :: comG-lacZ ──────────────────────────────────── OKSR21 rif21 168 2.91 × 10 4 / ml ──────────────────────────────────── 168 rif1728 168 1.98 × 10 4 / ml ────────────────────────────────────

【0039】<5>OK2誘導株の制限・修飾系の有無の
確認 バチルス・サブチリスには多くの制限・修飾系が知られ
ているので、プラスミドpUB110(カナマイシン耐性(Km
r)マーカーを含む)を用いて、OK2 mecAΔ(spc)amyE::
comG-lacZ、OK2 mecBΔ(spc)amyE::comG-lacZの制限・
修飾系の有無を調べた。
<5> Confirmation of Presence or Absence of Restriction / Modification System of OK2 Derivative Strain Since many restriction / modification systems are known in Bacillus subtilis, plasmid pUB110 (kanamycin resistance (Km
r) Including OK2 mecAΔ (spc) amyE ::
comG-lacZ, OK2 mecBΔ (spc) amyE :: comG-lacZ restrictions
The presence or absence of the modification system was examined.

【0040】168株を用いて増殖させたpUB110、及びOKS
R21株由来のDNAを用いて、OK2 mecAΔ(spc)amyE::co
mG-lacZ株、OK2 mecBΔ(spc)amyE::comG-lacZ168株、OK
2株、及び168株を、通常の形質転換法により形質転換し
た。結果を表3に示す。この結果から、納豆菌には、16
8株と異なる制限・修飾系は存在しないことがわかる。
PUB110 grown using strain 168, and OKS
Using DNA from the R21 strain, OK2 mecAΔ (spc) amyE :: co
mG-lacZ strain, OK2 mecBΔ (spc) amyE :: comG-lacZ168 strain, OK
Two strains and 168 strains were transformed by a usual transformation method. Table 3 shows the results. From these results, it was found that Bacillus natto
It can be seen that there is no restriction / modification system different from the eight strains.

【0041】[0041]

【表3】 表3 ──────────────────────────────────── 供与DNA 受容菌 Rifr株 Cmr株 ──────────────────────────────────── OKSR21 rif21 168 1.28×105/ml pUB110( 5μg/ml) 168 1.05×104/ml pUB110(10μg/ml) 168 3.32×104/ml ──────────────────────────────────── OKSR21 rif21 OK2 3.5 ×102/ml pUB110( 5μg/ml) OK2 1.0×102/ml pUB110(10μg/ml) OK2 9.5×10 /ml ──────────────────────────────────── OKSR21 rif21 OK2 mecAΔ 3.90×104/ml pUB110( 5μg/ml) OK2 mecAΔ − pUB110(10μg/ml) OK2 mecAΔ 1.95×104/ml ──────────────────────────────────── OKSR21 rif21 OK2 mecBΔ 2.13×104/ml pUB110( 5μg/ml) OK2 mecBΔ 6.8 ×102/ml pUB110(10μg/ml) OK2 mecBΔ 1.1 ×103/ml ────────────────────────────────────Table 3 ──────────────────────────────────── Donor DNA recipient Rif r strain Cm r strain ──────────────────────────────────── OKSR21 rif21 168 1.28 × 10 5 / ml pUB110 (5 μg / ml) 168 1.05 × 10 4 / ml pUB110 (10 μg / ml) 168 3.32 × 10 4 / ml ─────────────────────────── ───────── OKSR21 rif21 OK2 3.5 × 10 2 / ml pUB110 (5 μg / ml) OK2 1.0 × 10 2 / ml pUB110 (10 μg / ml) OK2 9.5 × 10 / ml ─────── ───────────────────────────── OKSR21 rif21 OK2 mecAΔ 3.90 × 10 4 / ml pUB110 (5μg / ml) OK2 mecAΔ − pUB110 ( (10μg / ml) OK2 mecAΔ 1.95 × 10 4 / ml ──────────────────────────────────── OKSR21 rif21 OK2 mecBΔ 2.13 × 10 4 / ml pUB110 (5μg / ml) OK2 mecBΔ 6.8 × 1 0 2 / ml pUB110 (10 μg / ml) OK2 mecBΔ 1.1 × 10 3 / ml ──────────────────────────────── ────

【0042】<6>comK遺伝子の発現強化によるコンピ
テンス遺伝子の発現回復 枯草菌のファージSPO1の強力なプロモーター及びエシェ
リヒア・コリのlacプロモーターとの融合プロモーター
であるPspac(Methods in Enzymology, vol.185, 185-
(1990))を含むプラスミドpAG58をEcoRI及びBamHIで切
断し、Pspacを含む断片を切り出した。バチルス属細菌
のプラスミドpUB110をEcoRI及びBamHIで切断し、前記断
片と連結し、プラスミドpULI7を得た(図2)。
<6> Recovery of Competence Gene Expression by Enhancing Expression of comK Gene Pspac (Methods in Enzymology, vol. -
(1990)) was cut with EcoRI and BamHI, and a fragment containing Pspac was cut out. Bacillus bacterium plasmid pUB110 was digested with EcoRI and BamHI, and ligated with the fragment to obtain plasmid pULI7 (FIG. 2).

【0043】一方、バチルス・ズブチリス168株の染色
体DNAを鋳型とし、配列番号1及び2に示す塩基配列
を有し、末端にXbaIの認識配列を有するオリゴヌクレオ
チドをプライマーとするPCRにより、comK遺伝子を含む
DNA断片を増幅した。この断片をXbaIで消化し、XbaI
で消化したpUL17に連結し、プラスミドpULI7SK27を得た
(図2)。同プラスミドは、Pspacの制御下で発現するc
omK遺伝子を有しており、同遺伝子はIPTGにより誘導さ
れ得る。尚、上記の各プラスミドの構築は、バチルス・
ズブチリス168株を用いて行った。
On the other hand, the comK gene was subjected to PCR using the chromosomal DNA of Bacillus subtilis strain 168 as a template, an oligonucleotide having the nucleotide sequence shown in SEQ ID NOS: 1 and 2 and an end having an XbaI recognition sequence as a primer. The containing DNA fragment was amplified. This fragment is digested with XbaI and XbaI
The plasmid was ligated to pUL17 digested with, to obtain plasmid pULI7SK27 (FIG. 2). This plasmid expresses c under the control of Pspac.
It has the omK gene, which can be induced by IPTG. The construction of each of the above plasmids was carried out by Bacillus
Subtilis 168 strain was used.

【0044】OK2[amyE::comG-lacZ(cat)]を上記プラ
スミドpULI7SK27で形質転換した。形質転換株を、カナ
マイシン7.5μg/mlを含むLB培地で培養し、各種濃度のI
PTGを添加してcomK遺伝子の誘導を行い、β−ガラクト
シダーゼ活性を測定した。結果を図3に示す。また、同
様にして培養した形質転換株を、OK2SR21株の染色体D
NAで形質転換し、rifrを指標として形質転換効率を評
価した。結果を表4に示す。この結果から、comK遺伝子
の発現を増強することによって、納豆菌の形質転換能を
示すことがわかる。
OK2 [amyE :: comG-lacZ (cat)] was transformed with the above plasmid pULI7SK27. The transformed strain was cultured in an LB medium containing 7.5 μg / ml of kanamycin, and various concentrations of I
The comK gene was induced by adding PTG, and β-galactosidase activity was measured. The results are shown in FIG. In addition, the transformant cultured in the same manner was transformed into chromosome D of OK2SR21 strain.
Was transformed with NA, it was evaluated transformation efficiency as an indicator rif r. Table 4 shows the results. From these results, it can be seen that by enhancing the expression of the comK gene, Bacillus natto can be transformed.

【0045】[0045]

【表4】 ────────────────────────────── 受容菌 IPTG濃度(mM) rifr株 ────────────────────────────── 0 2.0 ×10 /ml OK2[amyE::comG-lacZ(cat)] 0.1 8.5 ×10 /ml 1 2.35×103/ml ──────────────────────────────[Table 4] ────────────────────────────── recipient bacteria IPTG concentration (mM) rif r stock ────── ──────────────────────── 0 2.0 × 10 / ml OK2 [amyE :: comG-lacZ (cat)] 0.1 8.5 × 10 / ml 1 2.35 × 10 3 / ml ──────────────────────────────

【0046】[0046]

【発明の効果】本発明により、納豆菌等の、野生株が実
質的に自然形質転換能を有しないバチルス属細菌の形質
転換を可能にすることができる。本発明によれば、自然
突然変異に比べて有意に高い頻度で納豆菌等の形質転換
を行うことが可能となるので、納豆菌等の分子育種に好
適に利用することができる。
Industrial Applicability According to the present invention, it is possible to transform a Bacillus bacterium, such as Bacillus natto, whose wild strain has substantially no natural transformation ability. According to the present invention, transformation of Bacillus natto and the like can be performed at a significantly higher frequency than spontaneous mutation, so that it can be suitably used for molecular breeding of Bacillus natto and the like.

【配列表】 SEQUENCE LISTING[Sequence List] SEQUENCE LISTING

【0047】 <110> 味の素株式会社(Ajinomoto Co., Inc.) <120> 自然形質転換能を有する納豆菌 <130> P-6557 <141> 1999-06-25 <160> 2 <170> PatentIn Ver. 2.0<110> Ajinomoto Co., Inc. <120> Bacillus natto having natural transformation ability <130> P-6557 <141> 1999-06-25 <160> 2 <170> PatentIn Ver. 2.0

【0048】 <210> 1 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:primer for amplifying Bacillus subtilis comK gene <400> 1 catctctaga gatggaggcc ataatatgag tcag 34<210> 1 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for amplifying Bacillus subtilis comK gene <400> 1 catctctaga gatggaggcc ataatatgag tcag 34

【0049】 <210> 2 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence:primer for amplifying Bacillus subtilis comK gene <400> 2 ttagtctaga ctaataccgt tccccgagct cacg 34<210> 2 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: primer for amplifying Bacillus subtilis comK gene <400> 2 ttagtctaga ctaataccgt tccccgagct cacg 34

【図面の簡単な説明】[Brief description of the drawings]

【図1】 168[amyE::comG-lacZ(cat)]、OK2[amyE::
comG-lacZ(cat)]、OK2[mecAΔ(spc)amyE::comG-lac
Z]及びOK2[mecBΔ(spc)amyE::comG-lacZ]のβ−ガラ
クトシダーゼ活性を示す図。活性を縦軸に、サンプリン
グした時間を横軸に示す。
[Figure 1] 168 [amyE :: comG-lacZ (cat)], OK2 [amyE ::
comG-lacZ (cat)], OK2 [mecAΔ (spc) amyE :: comG-lac
The figure which shows (beta) -galactosidase activity of Z] and OK2 [mecB (spc) amyE :: comG-lacZ]. The activity is shown on the vertical axis and the sampling time is shown on the horizontal axis.

【図2】 IPTGで発現が誘導されるcomK遺伝子を有する
プラスミドpULI7SK27の構築過程を示す図。
FIG. 2 is a view showing a process of constructing a plasmid pULI7SK27 having a comK gene whose expression is induced by IPTG.

【図3】 IPTGで発現が誘導されるcomK遺伝子を有する
プラスミドpULI7SK27を含む納豆菌形質転換体のβ−ガ
ラクトスシダーゼ活性のIPTGによる誘導を示す図。
FIG. 3 is a diagram showing the induction of β-galactosidase activity of a Bacillus natto transformant containing plasmid pULI7SK27 having a comK gene whose expression is induced by IPTG by IPTG.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 野生株が実質的に自然形質転換能を有し
ないバチルス属細菌の変異株又は組換え株であって、後
期コンピテンス遺伝子群が発現可能であり、かつ、自然
形質転換能を獲得したバチルス属細菌。
1. A wild-type strain which is a mutant or recombinant strain of a bacterium belonging to the genus Bacillus which has substantially no natural transformation ability, is capable of expressing a late-competence gene group, and has a natural transformation ability. Bacillus bacteria.
【請求項2】 バチルス・サブチリス(Bacillus subti
lis)である請求項1記載の細菌。
2. Bacillus subtiris (Bacillus subtiris)
The bacterium according to claim 1, which is lis).
【請求項3】 納豆菌(Bacillus subtilis natto)で
ある請求項2記載の細菌。
3. The bacterium according to claim 2, which is Bacillus subtilis natto.
【請求項4】 前記後期コンピテンス遺伝子群が、co
mCオペロン、comEオペロン、comFオペロン又
はcomGオペロンから選ばれる請求項1記載の細菌。
4. The late competence gene group comprises a co
The bacterium according to claim 1, which is selected from mC operon, comE operon, comF operon, and comG operon.
【請求項5】 活性型ComKタンパク質を保持する請
求項1記載の細菌。
5. The bacterium according to claim 1, wherein the bacterium retains an active ComK protein.
【請求項6】 comK遺伝子の発現が強化されたこと
により活性型ComKタンパク質を保持する請求項5記
載の細菌。
6. The bacterium according to claim 5, wherein the bacterium retains an active ComK protein due to enhanced expression of the comK gene.
【請求項7】 mecA遺伝子又はmecB遺伝子の一
方又は両方が破壊されたことにより活性型ComKタン
パク質を保持する請求項5記載の細菌。
7. The bacterium according to claim 5, wherein one or both of the mecA gene and the mecB gene is disrupted to retain the active ComK protein.
【請求項8】 実質的に自然形質転換能を有しないバチ
ルス属細菌に後期コンピテンス遺伝子の発現能を付与す
ることを特徴とするバチルス属細菌に自然形質転換能を
付与する方法。
8. A method for imparting a natural transforming ability to a Bacillus bacterium, which comprises imparting a late competence gene expression ability to a Bacillus bacterium having substantially no natural transformation ability.
JP18080499A 1999-06-25 1999-06-25 Natto bacillus with natural transformation ability Expired - Lifetime JP4085523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18080499A JP4085523B2 (en) 1999-06-25 1999-06-25 Natto bacillus with natural transformation ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18080499A JP4085523B2 (en) 1999-06-25 1999-06-25 Natto bacillus with natural transformation ability

Publications (2)

Publication Number Publication Date
JP2001008686A true JP2001008686A (en) 2001-01-16
JP4085523B2 JP4085523B2 (en) 2008-05-14

Family

ID=16089646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18080499A Expired - Lifetime JP4085523B2 (en) 1999-06-25 1999-06-25 Natto bacillus with natural transformation ability

Country Status (1)

Country Link
JP (1) JP4085523B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150218567A1 (en) * 2012-09-27 2015-08-06 Novozymes A/S Bacterial Mutants with Improved Transformation Efficiency
JP2018532413A (en) * 2015-10-30 2018-11-08 ダニスコ・ユーエス・インク Enhancement and expression of protein expression

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150218567A1 (en) * 2012-09-27 2015-08-06 Novozymes A/S Bacterial Mutants with Improved Transformation Efficiency
JP2018532413A (en) * 2015-10-30 2018-11-08 ダニスコ・ユーエス・インク Enhancement and expression of protein expression
JP7025325B2 (en) 2015-10-30 2022-02-24 ダニスコ・ユーエス・インク Enhancement of protein expression and its method

Also Published As

Publication number Publication date
JP4085523B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
Reverchon et al. Characterization of kdgR, a gene of Erwinia chrysanthemi that regulates pectin degradation
Iino et al. S. pombe pac1+, whose overexpression inhibits sexual development, encodes a ribonuclease III‐like RNase.
US7919605B1 (en) Nucleic acids, compositions and methods for the excision of target nucleic acids
KR20170087521A (en) Fungal genome modification systems and methods of use
US6184000B1 (en) System for the sequential, directional cloning of multiple DNA sequences
WO2019086708A1 (en) A genetically modified bacillus subtilis strain, optimized vectors, and uses thereof
JP2012507984A (en) Improved production of riboflavin
US20160289690A1 (en) Mortierella alpina recombinant gene expression system and construction method and use thereof
Shimizu et al. Expression of gpsA encoding biosynthetic sn‐glycerol 3‐phosphate dehydrogenase suppresses both the LB− phenotype of a secB null mutant and the cold‐sensitive phenotype of a secG null mutant
WO2020206197A1 (en) Methods for polynucleotide integration into the genome of bacillus using dual circular recombinant dna constructs and compositions thereof
JPS60149390A (en) Biosynthesis method and its cell
Beall et al. Cloning and characterization of spoVR, a gene from Bacillus subtilis involved in spore cortex formation
Hamel et al. Functional complementation of an oxa1− yeast mutation identifies an Arabidopsis thaliana cDNA involved in the assembly of respiratory complexes
Payne et al. Exploitation of a chromosomally integrated lactose operon for controlled gene expression in Lactococcus lactis
US20100047384A1 (en) Methods of producing transformation competent bacteria
Solioz et al. Operon of vacuolar-type Na (+)-ATPase of Enterococcus hirae
Ainsa et al. Construction of a family of Mycobacterium/Escherichia coli shuttle vectors derived from pAL5000 and pACYC184: their use for cloning an antibiotic-resistance gene from Mycobacterium fortuitum
US5872238A (en) Thermophile gene transfer
JP4085523B2 (en) Natto bacillus with natural transformation ability
Lazzaroni et al. Excretion of alkaline phosphatase by Escherichia coli K-12 pho constitutive mutants transformed with plasmids carrying the alkaline phosphatase structural gene
Michel-Reydellet et al. Characterization of Azorhizobium caulinodans glnB and glnA genes: involvement of the P (II) protein in symbiotic nitrogen fixation
JP4495904B2 (en) Modified promoter
KR20070007288A (en) Reduction of spontaneous mutation rates in cells
Kormanec et al. Identification and transcriptional analysis of a cold shock-inducible gene, cspA, in Streptomyces coelicolor A3 (2)
Stamm et al. Purification of cold-shock-like proteins from Stigmatella aurantiaca–molecular cloning and characterization of the cspA gene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5