JP4085468B2 - Kinetic energy absorber for rotating body - Google Patents

Kinetic energy absorber for rotating body Download PDF

Info

Publication number
JP4085468B2
JP4085468B2 JP12870398A JP12870398A JP4085468B2 JP 4085468 B2 JP4085468 B2 JP 4085468B2 JP 12870398 A JP12870398 A JP 12870398A JP 12870398 A JP12870398 A JP 12870398A JP 4085468 B2 JP4085468 B2 JP 4085468B2
Authority
JP
Japan
Prior art keywords
ring member
inner ring
rotating body
kinetic energy
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12870398A
Other languages
Japanese (ja)
Other versions
JPH11325066A (en
Inventor
継雄 松下
能行 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP12870398A priority Critical patent/JP4085468B2/en
Publication of JPH11325066A publication Critical patent/JPH11325066A/en
Application granted granted Critical
Publication of JP4085468B2 publication Critical patent/JP4085468B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転体が破損した場合に、その回転体の運動エネルギーを吸収して事故の拡大を防止する装置に関する。
【0002】
【従来の技術】
タービンブレードやターボポンプのロータ等の回転体は、一般に磁気軸受等により支承され、非常に高速で回転する。また、かかる回転体を有する装置は外側にケースを有しており、回転体は当該ケースにより覆われている。
しかし、高速で回転するロータが、回転中に何らかの原因で破損した場合には、高速回転によってロータが一気に全壊に至り、破片が飛び散る。飛び散った破片は、装置の軸端側の、ケースで覆われていない部分から飛び出る。従って、これらの飛散破片により周辺の装置が損傷を被ることがあった。
このような問題点を解決するものとして、実開平6−4392号公報によれば、ロータの上部と下部との間に分断溝を設け、下部から生じた破損を上部に波及させないロータ構造を有するターボ分子ポンプが開示されている。このようなロータ構造によれば、ロータの破損を半壊で食い止めて、飛散する破片の量を低減することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、上記公報に記載されたロータ構造によって破損の程度を半壊に食い止めたとしても、高速回転するロータの破損により大きな運動エネルギーを有したまま飛散した破片が、ロータを覆うケースに衝突してこれを破壊することがある。この場合、装置の周囲にロータの破片が飛び出して、大きな事故を招くという問題点があった。
【0004】
上記のような従来の問題点に鑑み、本発明は、回転体の保有する運動エネルギーを安全に吸収する運動エネルギー吸収装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の回転体の運動エネルギー吸収装置は、軸支されて回転する回転体の外周に沿って、当該回転体との間に間隙を有して設けられ、当該回転体が回転中に破損したとき、当該回転体又はその破片に衝突されて当該回転体の回転方向に回転する内輪部材と、前記内輪部材の外周面に転がり摩擦で接触する転動体と、前記転動体を前記内輪部材との間に保持することにより前記内輪部材を回転自在に支持する外輪部材とを備え、前記内輪部材及び外輪部材の一方に前記転動体を案内する軌道が設けられ、この軌道の硬度がHRC30〜45であることを特徴とするものである(請求項1)
【0006】
記のように構成された回転体の運動エネルギー吸収装置において、回転体が回転中に破損したとき、回転体又はその破片は、ラジアル方向への遠心力と接線方向への回転速度との合成方向に飛散する。飛散した破片等は内輪部材に衝突し、内輪部材はこれによって回転体の回転方向と同じ方向に回転する。従って、飛散した破片等の保有していた運動エネルギーは、その一部が内輪部材の回転という運動エネルギーに置き換わることにより吸収される。さらに、内輪部材の運動エネルギーが転動体と内外輪部材との摩擦により熱エネルギーとして消耗された後、内輪部材は停止する。また、この場合、軌道の硬度(HRC30〜45)は、一般に軸受の軌道輪の硬度として採用されている値に比べて低い。従って、軌道面が比較的柔らかく、そのため、飛散した破片等の衝突による衝撃荷重により軌道が塑性変形する。これにより転動体との摩擦抵抗が増大し、運動エネルギー吸収効率が高くなる。
【0007】
上記運動エネルギー吸収装置(請求項)において、前記内輪部材及び外輪部材の硬度が共にHRC30〜45であってもよい(請求項)。
この場合、内輪部材及び外輪部材の硬度が、一般に軸受の内外輪の硬度として採用されている値に比べて低い値であり、比較的柔らかい。従って、内外輪部材は、衝撃荷重に対しても、割れを生じない。
【0008】
上記運動エネルギー吸収装置(請求項1)において、前記転動体はその移動方向にほぼ隙間無く装填されていてもよい(請求項)。
この場合、運動エネルギー吸収装置は、いわば総玉軸受状の構成となり、高い耐荷重性を発揮する。
【0009】
【発明の実施の形態】
図1は、本発明の一実施形態による回転体の運動エネルギー吸収装置を示す断面図、図2は図1のII−II線断面図である。図1及び図2において、回転体1は図示しない磁気軸受等によって図2の時計回り方向又はその逆方向に回転自在に軸支されている。回転体とは、例えば、ターボ分子ポンプにおけるロータ、タービンブレード、又はスピンドル装置の主軸等であり、非常に高速に回転する。
【0010】
運動エネルギー吸収装置2は、回転体1の外周に沿って、当該回転体1との間に一定の間隙を有して配設された円筒状の内輪部材3と、内輪部材3の外周面に形成された軌道(20〜30%Bd(玉直径))3aに転がり摩擦で接触する転動体(玉)4と、転動体4を内輪部材3との間に保持することにより内輪部材3を図2の時計回り方向又はその逆方向に回転自在に支持する円筒状の外輪部材5とによって構成されている。外輪部材5は、図示しない構造物の静止部に固定される。なお、転動体4の軌道3aは内輪部材3にのみ軸方向に所定間隔で複数条設けられており、外輪部材5の内面は、軌道を有しない円筒状内面である。
転動体4を内輪部材3と外輪部材5とによって挟持した状態で、外輪部材5の上端外周側の数箇所からピン6が打ち込まれる。打ち込まれたピン6の先端は、内輪部材3の上端外周側に穿設されたピン孔3bに挿入されている。従って、当該ピン6により、内輪部材3と外輪部材5とは軸方向に互いに分離しない構造となっている。なお、ピン6の位置は、上記の場所以外に、軸方向中央部等、転動体4の移動の妨げとならない場所であればどこでもよい。転動体4は、図2に示すように周方向にほぼ隙間なく装填され、いわば総玉軸受状の構成を成している。従って、当該運動エネルギー吸収装置2は高い耐荷重性を発揮する。なお、転動体間の隙間が全くないと転動体4の転動ができないので、周方向に少なくとも転動体1個分以上で、角度にして30度以下の範囲の隙間を設けることが必要である。
【0011】
上記運動エネルギー吸収装置2は、回転体1を覆うケースの役割を兼ねている。
内輪部材3、転動体4及び外輪部材5には、軸受に用いられる材料と同様のステンレス鋼や高炭素クロム軸受鋼が用いられる。硬度は、内輪部材3及び外輪部材5がHRC30〜45であり、転動体4はHRC60以上である。内輪部材3及び外輪部材5についての硬度(HRC30〜45)は、軸受の内外輪に一般に採用される硬度より低く、従って比較的柔らかい。硬度が低いことは変形し易いことであるとともに、衝撃荷重に対しては割れにくくなることを意味する。
内輪部材3及び外輪部材5の全面にはMコーティングが施され、個体潤滑と防錆とが図られている。
【0012】
次に、上記のように構成された回転体の運動エネルギー吸収装置2の動作について図3を参照して説明する。図3は図2と同様の断面図であるが、回転体1が反時計回り方向に高速回転中に破損した状態を示している。回転体1が高速回転中に破損すると、ラジアル方向への遠心力と接線方向への回転速度との合成方向(図中の矢印A参照)に破片が飛散する。飛散した破片が内輪部材3に衝突することにより、内輪部材3は反時計回り方向、すなわち回転体1の回転方向に駆動され、回転する。このとき、破片の保有する運動エネルギーは、その一部が内輪部材3の回転エネルギーに置き換わることによって、内輪部材3に吸収される。この結果、破片の運動エネルギーは減少し、飛散速度は減速される。従って、内輪部材3が破片によって破壊されることもない。また、転動体4が隙間無く装填された総玉軸受状の構成により、装置全体の破損がさらに確実に防止されている。
【0013】
なお、内輪部材3は破片の衝突時の衝撃荷重を直接に受け、また、外輪部材5も転動体4を介して衝撃荷重を受けるが、共に硬度が比較的柔らかいことにより、割れを生じることがない。一方、破片の衝突の際の衝撃荷重によって内輪部材3の軌道3aが若干の塑性変形を生じる。
内輪部材3の回転に伴って、転動体4が回転しながら移動する。ここで、転動体4は、上記のように塑性変形を生じた軌道3a上を移動する。従って、摩擦抵抗が大きく、転動体4の運動エネルギーは急速に熱エネルギーに変わる。また、転動体4同士がほぼ隙間無く装填されているので、互いに干渉し合って、摩擦により運動エネルギーが消費される。さらに、転動体4と外輪部材5との摩擦によっても運動エネルギーが消費される。こうして、内輪部材3の回転エネルギーは、摩擦による熱エネルギーに変わることで安全に吸収され、回転する内輪部材3にはブレーキがかかる。
なお、上記のように回転体1が分解して飛散した場合の他に、回転体1全体がこれを支持する軸受等から外れてしまった場合などにも、回転体1全体を内輪部材3によって受け止めることができ、装置全体の破損を防止することができる。
【0014】
なお、上記実施形態においては、内輪部材3及び外輪部材5の硬度を、軸受に用いられる硬度より低くしたが、硬度を低くするのは内輪部材3及び外輪部材5のいずれか一方でも良い。しかしながら、衝撃荷重を直接受ける内輪部材3の硬度を低くすることが望ましい。
また、上記実施形態において軌道3aは内輪部材3に設けたが、外輪部材5の内周面に設けてもよい。但し、何れの場合でも、軌道を設ける側の部材の硬度を低くするか若しくは軌道周辺部分のみの硬度を低くして、軌道の塑性変形を生じさせることが必要である。なお、内輪部材3及び外輪部材5の双方に軌道を設けることはできない。組立が不可能になるからである。
なお、内輪部材3及び外輪部材5の硬度を必ずしも低くすることなく、近似した効果を得ることも可能である。例えば、内輪部材3の内周面に衝撃吸収部材を被着し、内輪部材3に直接ブレーキ手段を圧接する構成も可能である。
また、エネルギー吸収装置2の寸法は、回転体1の大きさに合わせて任意に構成することが可能であり、回転体1の軸方向に複数個設けてもよい。
【0015】
【発明の効果】
以上のように構成された本発明は以下の効果を奏する。
請求項1の回転体の運動エネルギー吸収装置によれば、回転体が回転中に破損したとき、回転体又はその破片は、ラジアル方向への遠心力と接線方向への回転速度との合成方向に飛散して内輪部材に衝突し、内輪部材はこれによって回転体の回転方向と同じ方向に回転するので、飛散した破片等の保有していた運動エネルギーは、その一部が内輪部材の回転という運動エネルギーに置き換わることにより吸収される。さらに、内輪部材の運動エネルギーが転動体と内外輪部材との摩擦により熱エネルギーとして消耗される。従って、ケースの破壊等を招くことなく、回転体の運動エネルギーを安全に吸収することができる。
【0016】
また、軌道の硬度(HRC30〜45)は、一般に軸受の軌道輪の硬度として採用されている値に比べて低いので、軌道面が比較的柔らかく、そのため、飛散した破片等の衝突による衝撃荷重により軌道が塑性変形を生じる。これにより転動体と軌道との摩擦抵抗が増大し、運動エネルギー吸収効率が高くなる。
【0017】
請求項の回転体の運動エネルギー吸収装置によれば、内輪部材及び外輪部材の硬度が、一般に軸受の内外輪の硬度として採用されている値に比べて低い値であり、比較的柔らかいので、当該内外輪部材は衝撃荷重に対しても割れることなく、安全である。
【0018】
請求項の回転体の運動エネルギー吸収装置によれば、当該装置はいわば総玉軸受状の構成となり、高い耐荷重性を発揮するので、衝撃荷重に対しても破損しない。
【図面の簡単な説明】
【図1】本発明の一実施形態による回転体の運動エネルギー吸収装置を示す断面図である。
【図2】図1のII−II線から見た運動エネルギー吸収装置の断面図である。
【図3】上記運動エネルギー吸収装置において回転体が破損した状態を示す断面図である。
【符号の説明】
1 回転体
2 運動エネルギー吸収装置
3 内輪部材
3a 軌道
4 転動体
5 外輪部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device that prevents the expansion of an accident by absorbing the kinetic energy of a rotating body when the rotating body is damaged.
[0002]
[Prior art]
A rotating body such as a turbine blade or a rotor of a turbo pump is generally supported by a magnetic bearing or the like and rotates at a very high speed. Moreover, the apparatus which has this rotary body has a case on the outer side, and the rotary body is covered with the said case.
However, when a rotor that rotates at high speed is damaged for some reason during rotation, the rotor is completely destroyed at once by high-speed rotation, and fragments are scattered. The scattered pieces pop out from a portion of the device that is not covered with the case on the shaft end side. Accordingly, peripheral devices may be damaged by these scattered pieces.
In order to solve such problems, according to Japanese Utility Model Laid-Open No. 6-4392, a dividing groove is provided between the upper part and the lower part of the rotor, and the rotor structure that does not propagate the damage generated from the lower part to the upper part is provided. A turbomolecular pump is disclosed. According to such a rotor structure, damage to the rotor can be prevented by half-breaking, and the amount of debris scattered can be reduced.
[0003]
[Problems to be solved by the invention]
However, even if the degree of breakage is kept half-broken by the rotor structure described in the above publication, debris scattered with large kinetic energy due to breakage of the rotor rotating at high speed collides with the case covering the rotor. May be destroyed. In this case, there is a problem in that a broken piece of the rotor pops out around the apparatus, causing a serious accident.
[0004]
In view of the conventional problems as described above, an object of the present invention is to provide a kinetic energy absorbing device that safely absorbs kinetic energy held by a rotating body.
[0005]
[Means for Solving the Problems]
Kinetic energy absorber of a rotating body of the present invention, along the outer periphery of the rotary body rotating is pivotally supported, provided with a gap between those said rotating body, damage the rotating body during rotation An inner ring member that collides with the rotating body or a fragment thereof and rotates in the rotation direction of the rotating body, a rolling element that contacts the outer peripheral surface of the inner ring member by rolling friction, and the rolling element is the inner ring member. And an outer ring member that rotatably supports the inner ring member, and a track for guiding the rolling element is provided on one of the inner ring member and the outer ring member, and the hardness of the track is HRC 30 to 45. is characterized in that it (claim 1).
[0006]
In the kinetic energy absorbing device constructed rotator as above SL, when the rotating member is damaged during rotation, the rotating body or its debris, synthesis of the rotational speed of the centrifugal force and tangential to the radial direction Splash in the direction. The scattered pieces and the like collide with the inner ring member, and the inner ring member rotates in the same direction as the rotation direction of the rotating body. Therefore, the kinetic energy possessed by the scattered pieces and the like is absorbed by replacing a part thereof with the kinetic energy of rotation of the inner ring member. Furthermore, after the kinetic energy of the inner ring member is consumed as thermal energy due to friction between the rolling elements and the inner and outer ring members, the inner ring member stops. In this case, the hardness of the raceway (HRC 30 to 45) is lower than the value generally adopted as the hardness of the bearing raceway. Accordingly, the raceway surface is relatively soft, so that the raceway is plastically deformed by an impact load caused by the collision of scattered pieces and the like. This increases the frictional resistance with the rolling elements and increases the kinetic energy absorption efficiency.
[0007]
In the kinetic energy absorbing device (Claim 1 ), the hardness of the inner ring member and the outer ring member may be HRC 30 to 45 (Claim 2 ).
In this case, the hardness of the inner ring member and the outer ring member is lower than the value generally employed as the hardness of the inner and outer rings of the bearing, and is relatively soft. Therefore, the inner and outer ring members are not cracked even with an impact load.
[0008]
In the kinetic energy absorbing device (Claim 1), the rolling elements may be loaded with almost no gap in the moving direction (Claim 3 ).
In this case, the kinetic energy absorbing device has a so-called all-ball bearing configuration and exhibits high load resistance.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a sectional view showing a kinetic energy absorbing device for a rotating body according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line II-II in FIG. 1 and 2, the rotating body 1 is pivotally supported by a magnetic bearing or the like (not shown) so as to be rotatable in the clockwise direction in FIG. 2 or in the opposite direction. The rotating body is, for example, a rotor in a turbo molecular pump, a turbine blade, or a spindle of a spindle device, and rotates at a very high speed.
[0010]
The kinetic energy absorbing device 2 includes a cylindrical inner ring member 3 that is disposed along the outer periphery of the rotating body 1 with a certain gap between the rotating body 1 and an outer peripheral surface of the inner ring member 3. The inner ring member 3 is illustrated by holding the rolling element 4 between the formed raceway (20 to 30% Bd (ball diameter)) 3 a by rolling friction and the rolling element 4 between the inner ring member 3 and the inner ring member 3. 2 and a cylindrical outer ring member 5 that is rotatably supported in the clockwise direction or the opposite direction. The outer ring member 5 is fixed to a stationary part of a structure not shown. Note that a plurality of tracks 3a of the rolling element 4 are provided only at the inner ring member 3 at predetermined intervals in the axial direction, and the inner surface of the outer ring member 5 is a cylindrical inner surface having no track.
In a state where the rolling element 4 is sandwiched between the inner ring member 3 and the outer ring member 5, the pins 6 are driven from several locations on the outer peripheral side of the upper end of the outer ring member 5. The tip of the pin 6 that has been driven in is inserted into a pin hole 3 b that is formed on the outer periphery of the upper end of the inner ring member 3. Therefore, the inner ring member 3 and the outer ring member 5 are not separated from each other in the axial direction by the pin 6. The position of the pin 6 may be anywhere other than the above location as long as it does not hinder the movement of the rolling element 4 such as the central portion in the axial direction. As shown in FIG. 2, the rolling elements 4 are loaded with almost no gap in the circumferential direction, and have a so-called full ball bearing configuration. Therefore, the kinetic energy absorbing device 2 exhibits high load resistance. In addition, since the rolling element 4 cannot roll if there is no gap between the rolling elements, it is necessary to provide a gap in the range of 30 degrees or less in angle at least for one rolling element in the circumferential direction. .
[0011]
The kinetic energy absorbing device 2 also serves as a case that covers the rotating body 1.
For the inner ring member 3, the rolling element 4 and the outer ring member 5, the same stainless steel or high carbon chrome bearing steel as the material used for the bearing is used. The hardness of the inner ring member 3 and the outer ring member 5 is HRC30 to 45, and the rolling element 4 is HRC60 or higher. The hardness (HRC 30 to 45) for the inner ring member 3 and the outer ring member 5 is lower than the hardness generally employed for the inner and outer rings of the bearing and is therefore relatively soft. Low hardness means that it is easy to deform and that it is difficult to break against impact loads.
The entire surface of the inner ring member 3 and the outer ring member 5 is coated with M o S 2 to achieve solid lubrication and rust prevention.
[0012]
Next, the operation of the kinetic energy absorbing device 2 of the rotating body configured as described above will be described with reference to FIG. FIG. 3 is a cross-sectional view similar to FIG. 2, but shows a state in which the rotating body 1 is damaged during high-speed rotation in the counterclockwise direction. When the rotating body 1 is broken during high-speed rotation, debris is scattered in the combined direction of the centrifugal force in the radial direction and the rotational speed in the tangential direction (see arrow A in the figure). When the scattered pieces collide with the inner ring member 3, the inner ring member 3 is driven and rotated in the counterclockwise direction, that is, the rotating direction of the rotating body 1. At this time, the kinetic energy possessed by the fragments is absorbed by the inner ring member 3 by partially replacing the rotational energy of the inner ring member 3. As a result, the kinetic energy of the fragments decreases and the scattering speed is reduced. Therefore, the inner ring member 3 is not broken by fragments. Moreover, the whole ball bearing-like configuration in which the rolling elements 4 are loaded without gaps prevents the entire device from being damaged more reliably.
[0013]
The inner ring member 3 directly receives the impact load at the time of the collision of the fragments, and the outer ring member 5 also receives the impact load through the rolling elements 4, but both of them are relatively soft and may crack. Absent. On the other hand, the track 3a of the inner ring member 3 is slightly plastically deformed by the impact load at the time of the collision of the fragments.
As the inner ring member 3 rotates, the rolling element 4 moves while rotating. Here, the rolling element 4 moves on the track 3a in which plastic deformation has occurred as described above. Accordingly, the frictional resistance is large, and the kinetic energy of the rolling element 4 is rapidly changed to thermal energy. Further, since the rolling elements 4 are loaded with almost no gap, they interfere with each other and consume kinetic energy due to friction. Furthermore, kinetic energy is also consumed by friction between the rolling elements 4 and the outer ring member 5. Thus, the rotational energy of the inner ring member 3 is safely absorbed by changing to thermal energy due to friction, and the rotating inner ring member 3 is braked.
In addition to the case where the rotating body 1 is disassembled and scattered as described above, the entire rotating body 1 is also moved by the inner ring member 3 when the entire rotating body 1 is detached from a bearing or the like that supports the rotating body 1. It can be received and damage to the entire apparatus can be prevented.
[0014]
In the above embodiment, the hardness of the inner ring member 3 and the outer ring member 5 is set lower than the hardness used for the bearing, but the hardness may be reduced by either the inner ring member 3 or the outer ring member 5. However, it is desirable to reduce the hardness of the inner ring member 3 that directly receives an impact load.
In the above embodiment, the track 3 a is provided on the inner ring member 3, but may be provided on the inner peripheral surface of the outer ring member 5. However, in any case, it is necessary to reduce the hardness of the member on the side where the track is provided or to reduce the hardness of only the periphery of the track to cause plastic deformation of the track. It is not possible to provide a track on both the inner ring member 3 and the outer ring member 5. This is because assembly becomes impossible.
An approximate effect can be obtained without necessarily reducing the hardness of the inner ring member 3 and the outer ring member 5. For example, a configuration in which an impact absorbing member is attached to the inner peripheral surface of the inner ring member 3 and the brake means is directly pressed against the inner ring member 3 is possible.
The dimensions of the energy absorbing device 2 can be arbitrarily configured according to the size of the rotating body 1, and a plurality of dimensions may be provided in the axial direction of the rotating body 1.
[0015]
【The invention's effect】
The present invention configured as described above has the following effects.
According to the apparatus for absorbing kinetic energy of a rotating body according to claim 1, when the rotating body breaks during rotation, the rotating body or its fragments are in the combined direction of the centrifugal force in the radial direction and the rotational speed in the tangential direction. Since it scatters and collides with the inner ring member, and the inner ring member rotates in the same direction as the rotation direction of the rotating body, a part of the kinetic energy held by the scattered pieces etc. is the movement of rotation of the inner ring member Absorbed by replacing energy. Furthermore, the kinetic energy of the inner ring member is consumed as thermal energy due to friction between the rolling elements and the inner and outer ring members. Therefore, the kinetic energy of the rotating body can be safely absorbed without causing destruction of the case.
[0016]
Further, trajectory hardness (HRC30~45), since generally lower than the value that is adopted as the hardness of the bearing ring of the bearing raceways is relatively soft, therefore, the impact load caused by collision of such scattered debris This causes plastic deformation of the track. Thereby, the frictional resistance between the rolling elements and the raceway increases, and the kinetic energy absorption efficiency increases.
[0017]
According to the kinetic energy absorbing device for a rotating body of claim 2 , the hardness of the inner ring member and the outer ring member is a lower value than the value generally adopted as the hardness of the inner and outer rings of the bearing, and is relatively soft. The inner and outer ring members are safe without cracking against impact loads.
[0018]
According to the kinetic energy absorbing device for a rotating body of claim 3, the device has a so-called all-ball bearing configuration and exhibits high load resistance, so that it does not break against an impact load.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a kinetic energy absorbing device for a rotating body according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the kinetic energy absorbing device as viewed from the line II-II in FIG.
FIG. 3 is a cross-sectional view showing a state where a rotating body is damaged in the kinetic energy absorbing device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating body 2 Kinetic energy absorber 3 Inner ring member 3a Track 4 Rolling body 5 Outer ring member

Claims (3)

軸支されて回転する回転体の外周に沿って、当該回転体との間に間隙を有して設けられ、当該回転体が回転中に破損したとき、当該回転体又はその破片に衝突されて当該回転体の回転方向に回転する内輪部材と、
前記内輪部材の外周面に転がり摩擦で接触する転動体と、
前記転動体を前記内輪部材との間に保持することにより前記内輪部材を回転自在に支持する外輪部材とを備え、
前記内輪部材及び外輪部材の一方に前記転動体を案内する軌道が設けられ、この軌道の硬度がHRC30〜45であることを特徴とする回転体の運動エネルギー吸収装置。
Along the outer periphery of the rotary body rotating it is pivotally supported, provided with a gap between those said rotating body, when the rotating member is damaged during rotation, is impinging on the rotating body or its fragments An inner ring member that rotates in the rotational direction of the rotating body ,
A rolling element in contact with the outer peripheral surface of the inner ring member by rolling friction;
An outer ring member that rotatably supports the inner ring member by holding the rolling element between the inner ring member,
One of the inner ring member and the outer ring member is provided with a track for guiding the rolling element, and the hardness of the track is HRC 30-45 .
前記内輪部材及び外輪部材の硬度が共にHRC30〜45であることを特徴とする請求項1記載の回転体の運動エネルギー吸収装置。The kinetic energy absorbing device for a rotating body according to claim 1, wherein both the inner ring member and the outer ring member have a hardness of HRC 30 to 45 . 前記転動体はその移動方向にほぼ隙間無く装填されていることを特徴とする請求項記載の回転体の運動エネルギー吸収装置。The rolling element is the rotating body of the kinetic energy absorbing device according to claim 1, characterized in that it is loaded substantially without clearance in its movement direction.
JP12870398A 1998-05-12 1998-05-12 Kinetic energy absorber for rotating body Expired - Fee Related JP4085468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12870398A JP4085468B2 (en) 1998-05-12 1998-05-12 Kinetic energy absorber for rotating body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12870398A JP4085468B2 (en) 1998-05-12 1998-05-12 Kinetic energy absorber for rotating body

Publications (2)

Publication Number Publication Date
JPH11325066A JPH11325066A (en) 1999-11-26
JP4085468B2 true JP4085468B2 (en) 2008-05-14

Family

ID=14991347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12870398A Expired - Fee Related JP4085468B2 (en) 1998-05-12 1998-05-12 Kinetic energy absorber for rotating body

Country Status (1)

Country Link
JP (1) JP4085468B2 (en)

Also Published As

Publication number Publication date
JPH11325066A (en) 1999-11-26

Similar Documents

Publication Publication Date Title
JP4611358B2 (en) Bearing mechanism for rotating shaft and turbine engine provided with such bearing mechanism
US8100638B2 (en) Centering device
US8283825B2 (en) Auxiliary bearing system with plurality of inertia rings for magnetically supported rotor system
US7008173B2 (en) High energy containment device and turbine with same
JP2005503520A (en) Emergency bearings not affected by shaft load
JP2009144615A (en) Variable nozzle mechanism
EP3088744B1 (en) Vacuum exhaust mechanism and compound vacuum pump
US20140072253A1 (en) Bearing arrangement with a back-up bearing, in particular for mounting the rapidly rotating shaft of a compressor
US6799416B2 (en) Device for supporting and recentering the shaft of a turbojet fan after uncoupling
US8065867B2 (en) Radial ball bearing
US6661143B1 (en) Bearing unit with magnetic bearing protection upon rotation stoppage
JP4085468B2 (en) Kinetic energy absorber for rotating body
JP3469055B2 (en) Turbo molecular pump
US4322117A (en) Thrust bearing
JP4895178B2 (en) Turbo molecular pump
US3960034A (en) Flywheel with anti-cracking safeguard for protection against overspeed
JP4218765B2 (en) Turbo molecular pump
JPH11280689A (en) Turbo molecular drag pump
KR20230044426A (en) Bearing systems for rotary atomizers
US4917569A (en) Turbine containment system
EP1440499B1 (en) A method for arranging an electric machime on bearings, and a bearing assembly of an electric machine
JPH0788849B2 (en) Magnetic bearing device
GB2394015A (en) Powerplant shaft with vibration damping device
JP3789411B2 (en) Turbo molecular pump
JP5229499B2 (en) Magnetic bearing device and vacuum pump including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees