JP4084546B2 - Electrophotographic photoreceptor manufacturing equipment - Google Patents

Electrophotographic photoreceptor manufacturing equipment Download PDF

Info

Publication number
JP4084546B2
JP4084546B2 JP2001153673A JP2001153673A JP4084546B2 JP 4084546 B2 JP4084546 B2 JP 4084546B2 JP 2001153673 A JP2001153673 A JP 2001153673A JP 2001153673 A JP2001153673 A JP 2001153673A JP 4084546 B2 JP4084546 B2 JP 4084546B2
Authority
JP
Japan
Prior art keywords
hood
coating
stretchable
substrate
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001153673A
Other languages
Japanese (ja)
Other versions
JP2002351103A (en
Inventor
健一 斉藤
清 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001153673A priority Critical patent/JP4084546B2/en
Publication of JP2002351103A publication Critical patent/JP2002351103A/en
Application granted granted Critical
Publication of JP4084546B2 publication Critical patent/JP4084546B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Coating Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子写真用感光体の製造装置に関し、詳細に被塗布基体に塗膜を形成するための浸漬塗布装置に関する。
【0002】
【従来の技術】
電子写真用感光体は、ドラム状の感光基体の周面に感光体材料を塗布して製造される。その塗布方法としては、通常、感光体材料の塗布液を収容した容器(浸漬塗布槽)と感光基体とを相対移動させて感光基体を塗布液中に浸漬させたのち引上げ、次いで、引上げた感光基体を静止させて自然乾燥(指触乾燥)し、その後オーブン等で完全に乾燥させる方法が採用される。そして、感光塗膜の厚さが均一な電子写真用感光体を短時間で製造するため、塗布液の溶媒としては、通常速乾性の溶媒が用いられる。
【0003】
ところで、速乾性の溶媒を用いた場合、塗布液の乾燥速度を速めて短時間で固化を行うことができるが、浸漬後、引上げから指触乾燥するまでの間、周囲の微弱な空気流でも、それにより発生した溶媒蒸気の流れが、形成される感光塗膜に厚さむらを与える。このような感光体を用いた場合、画像むら、白ぬけ、トナー付着による地肌汚れといった問題を発生させる原因となる。
【0004】
これらの問題を解決するために、フード内部の溶剤蒸気を排出する方法として、特開昭60−110378号公報(以下従来例1と称す)には、孔を開けた円筒状フードを設けることでフード内部の蒸気濃度を調整する方法が提案されている。また、特開昭59−42060号公報(以下従来例2と称す)では浸漬塗布容器の上に下端部周囲に開孔を設けた筒状フードを設け、遮風と蒸発溶剤の希釈を行い、フード下の側面から排出する方法が提案されている。更に、特開昭63−7873号公報(以下従来例3と称す)には、伸縮性フードを基体保持装置に設置して基体をフードで覆いながら浸漬塗布する方法が提案されている。また、特開平7−104488号公報(以下従来例4と称す)にはフードの大きさを規定して蒸気濃度を調節しようというものである。更に、特許第2,889,513号明細書(以下従来例5と称す)にはフードを塗工槽の上に設置して蒸気を下方向に排出する方法も提案されている。また、特許第2,690,801号明細書(以下従来例6と称す)には蒸気をフードの下から排出する構造になっている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来例1,2によれば、風が穴から吹き込み、直接塗膜に当たるため膜厚むらになるという不具合点がある。また、上記従来例3では、フード上部から下部に向けて風を流す方法を取っているが、流した風がかえって塗膜を乱すという不具合点がある。更に、上記従来例4では、蒸気を外に逃がさないと濃度が上がりすぎて塗膜のタレが発生してしまうという不具合点がある。また、上記従来例5では、フードの外に基体が出てしまうと風の影響を受けて塗膜むらになるという不具合点がある。更に、上記従来例6では、塗工槽装置よりも広くて基体よりも高いフードが必用になるため、設備は大きくなり、コスト高になるという不具合点がある。
【0006】
本発明はこれらの問題点を解決するためのものであり、特別な装置を用いることなく、気流によるむらの発生を抑制できる電子写真用感光体の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記問題点を解決するために、基体周辺の気体の流れを抑制し、伸縮性を有する伸縮性フードが少なくとも基体の周囲を覆う状態で基体を塗工槽に浸漬塗布する、本発明に係る電子写真用感光体の製造装置によれば、伸縮性フードの上端及び下端に、浸漬塗布中に蒸発する有機溶剤を排出可能な開口を設け、かつ基体の下端の下面における開口の内径が基体の外径より10mm以上大きく、塗布前又は塗布終了後の基体の下端と伸縮性フードの下端の位置が同じ高さに存在するか、もしくは伸縮性フードの下端の位置が基体の下端より下部に存在し、伸縮性フードと塗工槽とを隔離するための塗工槽開口蓋の下端と塗工槽の開口端との距離が10mm以上であることに特徴がある。よって、伸縮性フードにより直接の風を受けず、かつ、伸縮性フード内の塗布溶剤蒸気も自然に外に放出されるため、タレもなく、均一な塗膜が得られる。
【0012】
また、開口の外径と伸縮性フード最上端の内径との比が1:2〜1:4であることにより、浸漬塗布中及び指触乾燥中の感光体塗膜面に気流や溶剤蒸気が均等になるため、膜厚の乱れによる画像むらを防ぐことができ、しかも、伸縮性フード内の蒸発した溶剤蒸気を自然に排出することができるので、塗膜むらのタレによる画像むらを防止することができる。
【0015】
更に、伸縮性フードは導電性材料で作成することにより、伸縮性フードが帯電しないため、電気的に不安定な塗布液を使用しても浸漬塗工時に周囲の伸縮性フードの帯電むらに影響されないので、塗布むらのない電子写真用感光体を製造できる。
【0017】
更に、浸漬塗工中に伸縮性フードが最収縮した際、基体の最上端より上部に伸縮性フードの下端の開口が位置することにより、浸漬塗布中及び指触乾燥中の電子写真用感光体の感光塗膜面に均等な気流が流れ、溶剤蒸気も周面が均一に蒸発するため、膜厚むらによる画像むらを防止できる。
【0018】
【発明の実施の形態】
本発明に係る電子写真用感光体の製造装置によれば、伸縮性フードの上端及び下端に、浸漬塗布中に蒸発する有機溶剤を排出可能な開口を設け、かつ基体の下端の下面における開口の内径が基体の外径より10mm以上大きく、塗布前又は塗布終了後の基体の下端と伸縮性フードの下端の位置が同じ高さに存在するか、もしくは伸縮性フードの下端の位置が基体の下端より下部に存在し、伸縮性フードと塗工槽とを隔離するための塗工槽開口蓋の下端と塗工槽の開口端との距離が10mm以上であることに特徴がある。よって、伸縮性フードにより直接の風を受けず、かつ、伸縮性フード内の塗布溶剤蒸気も自然に外に放出されるため、タレもなく、均一な塗膜が得られる。
【0019】
【実施例】
図1は本発明の一実施例に係る電子写真用感光体の製造装置による塗布後の指触乾燥工程の様子を示す概略断面図である。同図において、ベースプレート4には、支持部材3を介してチャック2が固定されている。また、チャック2は基体5を保持している。そして、伸縮性フード1は、複数のフード部材1aを含んで構成され、少なくとも基体5を覆う形で、かつ基体5と連動して動くように、ベースプレート4に固定されており、このときベースプレート4と伸縮性フード1は密閉して固定せず、伸縮性フード1中の蒸気濃度を安定させるための適切な隙間L1が設けられている。また、チャック2に保持された基体5に塗布された塗膜が乱れないように、かつ基体5が伸縮性フード1に被覆されるように、適切な被覆距離L2が設けられている。なお、本実施例における伸縮性フード1は複数のフード部材1aから構成されているが、伸縮性フード1自体の単体が伸縮する部材であってもよい。
【0020】
図2は本実施例に係る電子写真用感光体の製造装置による基体浸漬工程の様子を示す概略断面図である。同図において、ベースプレート4には、ベースプレート4を上下に作動させるために、昇降モータ(図示せず)と昇降ネジ(図示せず)が具備されている。そして、昇降モータ(図示せず)が駆動し昇降ネジ(図示せず)を介してベースプレート4を上下に作動させ、チャック2に保持された基体5を塗工槽6に入った塗布液7に浸漬した後、基体5を引き上げて基体表面に塗膜を形成する。基体浸漬工程後の基体引き上げ工程の様子を示す図3からわかるように、基体5の引き上げに伴って伸縮性フード1は少なくとも基体5を覆うように伸張していく。また、基体5を浸漬する際に伸縮性フード1は一つ上のフード部材1aの内側、あるいは外側に重なり合う形で縮む構造になっている。この際、伸縮性フード1は、後述する塗工槽6を密閉するための開口蓋8によって基体5等に接触しないように適切な隙間L3を設けている。また、塗工槽6の上部には前述した開口蓋8が設置してあり、両者の距離L4は適切な値に設定可能である。なお、伸縮性フード1は、導電性部材で作成したり、アルミ、ステンレス等の耐溶剤性、耐蝕性のある金属、ナイロン、テフロン、ポリカーボネート、ポリエチレン、ポリプロピレン等、耐溶剤性のあるプラスチック類、ガラスなどを用いて作成することができる。また、伸縮性フード1は基体5と同じ円筒状が好ましいが、4角形、6角形等の多角形で構成されていても構わない。
【0021】
ここで使用される基体5としては、アルミニウム、銅、鉄、亜鉛、ニッケルなどの金属のドラム及びシート、紙、プラスチック又はガラス上にアルミニウム、銅、金、銀、白金、パラジウム、チタン、ニッケル−クロム、ステンレス、銅−インジウムなどの金属を蒸着するか、酸化インジウム、酸化錫などの導電性金属酸化物を蒸着するか、金属箔をラミノートするか、又はカーボンブラック、酸化インジウム、酸化錫−酸化アンチモン粉、金属粉、ヨウ化銅などを結着樹脂に分散し、塗布することによっても導電処理したドラム状、シート状、プレート状のものなど、公知の材料を用いることができるが、本発明はこれらに限定されるものではない。
【0022】
更に、必要に応じて導電性支持体の表面は、画質に影響のない範囲で各種の処理を行うことができる。例えば、表面の酸化処理、薬品処理、着色処理等を行うことができる。また、導電性支持体と電荷発生層の間に更に下引き層を設けることができるが、この下引き層は帯電時において、積層構造からなる感光層における導電性支持体から感光層への電荷の注入を阻止するとともに、感光層を導電性支持体に対して一体的に接着保持せしめる接着層としての作用、或いは導電性支持体からの反射光の防止作用等を示す。この下引き層に用いる樹脂は、ポリエチレン、ポリプロピレン、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、エポキシ樹脂、ポリエステル樹脂、アルキド樹脂、ポリカーボネート、ポリウレタン、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル−酢酸ビニル共重合体、ポリビニルアルコール、水溶性ポリエステル、ニトロセルロース又はカゼイン、ゼラチンなど公知な樹脂を用いることができるが、これらに限定されるものではない。また、下引き層の厚みは0.01〜10μm、好ましくは0.3〜7μmが適当である。下引き層を設けときに用いる塗布方法としては、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法などの通常の方法が挙げられる。
【0023】
また、電荷発生層(キャリア発生層)は例えばモノアゾ色素、ジスアゾ色素、トリスアゾ色素などのアゾ系色素、ペリレン酸無水物、ペリレン酸イミドなどのペリレン系色素、インジゴ、チオインジゴなどのインジゴ系色素、アンスラキノン、ピレンキノン及びフラパンスロン類などの多環キノン類、キナグリドン系色素、ビスベンゾイミダゾール系色素、インダスロン系色素、スクエアリリウム系色素、金属フタロシアニン、無金属フタロシアニンなどのフタロシアニン系顔料、ピリリウム塩色素、チアピリリウム塩色素とポリカーボネートから形成される共晶錯体等、公知各種の電荷発生物質(キャリア発生物質)を適当なバインダー樹脂及び必要により電荷輸送物質(キャリア輸送物質)と共に溶媒中に溶解或いは分散し、塗布することによって形成することができる。
【0024】
更に、電荷発生物質を樹脂中に分散させる方法としてはボールミル分散法、アトライター分散法、サンドミル分散法などを用いることができる。この際、電荷発生物質は、体積平均粒径で5μm以下、好ましくは2μm以下、最適には0.5μm以下の粒子サイズにすることが有効である。これらの分散に用いる溶剤として、メタノール、エタノール、n−プロパノール、n−ブタノール、ベンジルアルコール、メチルセルソルブ、エチルセルソルブ、アセトン、メチルエチルケトン、メチルイソプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム1,2−ジクロロエタン、モノクロロベンゼン、キシレンなどの通常の有機溶剤を単独或いは2種類以上混合して用いることができる。
【0025】
本発明で用いる電荷発生層の膜厚は、一般的には0.1〜5μm、好ましくは0.2〜2μmが適当である。
【0026】
また、本発明の電子写真用感光体における電荷輸送層は、電荷輸送物質を適当なバインダー中含有させて形成される。電荷輸送物質としては、2,5−ビス(p−ジエチルアミノフェニル)−1,3,4−オキサジアゾールなどのオキサゾアゾール誘導体、1,3,5−トリフェニル−ピラゾリン、1−〔ピリジル−(2)〕−3−(p−ジエチルアミノスチリル)−5−(p−ジエチルアミノフェニル)ピラゾリンなどのピラゾリン誘導体、トリフェニルアミン、スチリルトリフェニルアミン、ジベンジルアニリンなどの芳香族、第3級アミノ化合物、N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−1,1−ビフェニル−4,4′−ジアミンなどの芳香族第3級ジアミノ化合物、3−(4′−ジメチルアミノフェニル)−5,6−ジ−(4′−メトキシフェニル)−1,2,4−トリアジンなどの1,2,4−トリアジン誘導体、4−ジエチルアミノベンズアル」デヒド−1,1−ジフェニルヒドラゾンなどのヒドラゾン誘導体、2−フェニル−4−スチリル−キンゾリンなどのキナゾリン誘導体、6−ヒドロキシ−2,3−ジ(p−メトキシフェニル)−ベンゾフランなどのベンゾフラン誘導体、p−(2,2−ジフェニルビニル)−N、N−ジフェニルアニリンなどのα−スチルベン誘導体、“Journal of Imaging Science”29:7〜10(1985)に記載されているエナミン誘導体、N−エチルカルバゾールなどのカルバゾール誘導体、ポリ−N−ビニルカルバゾールなどのポリ−N−ビニルカルバゾール及びその誘導体、ポリ−γ−カルバゾリルエチルグルタナート及びその誘導体、更にはピレン、ポリビニルピレン、ポリビニルアントラセン、ポリビニルアクリジン、ポリ−9−ビフェニルアントラセン、ピレン−ホルムアルデヒド樹脂、エチルカルバゾールホルムアルデヒド樹脂などの公知の電荷輸送物質を用いることができるが、これらに限定されるものではない。また、これらの電荷輸送物質は単独或いは2種以上混合して用いることができる。
【0027】
更に、電荷輸送層における結着樹脂としては、ポリカーボネート樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、ブチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ−Nビニルカルバゾールなどの公知の樹脂を用いることができるが、これらに限定されるものではない。また、これらの結着樹脂は単独或いは2種以上混合して用いることができる。
【0028】
ここで、電荷輸送材料と結着樹脂との配合比(重量比)は10:1〜1:5が好ましい。本発明で用いる電荷輸送層の膜厚は一般的には5〜50μm、好ましくは10〜30μmが適当である。
【0029】
更に、電荷輸送層を設ける際に用いる溶剤としては、ベンゼン、トルエン、キシレン、クロルベンゼンなどの芳香族系炭化水素類、アセトン、2−ブタノンなどのケトン類、塩化メチレン、クロロホルム、塩化エチレンなどのハロゲン化脂肪族系炭化水素類、テトラヒドロフラン、エチルエーテルなどの環状若しくは直鎖状のエーテル類などの通常の有機溶剤を単独或いは2種類以上混合して用いることができる。
【0030】
下記に各液の処方を明記し、その液での実験例を挙げ本発明の第1の実施例を詳細に説明する。
【0031】
1.下引き層塗布液の形成
以下の材料を溶解して下引き層塗布液を調合した。
可溶性ナイロン 5重量部(アラミンCM−8000、東レ製)
メタノール 95重量部
【0032】
2.電荷発生層塗布液の作成
構造式1に示す電荷発生剤 10重量部
ポリビニルブチラール 7重量部
テトラヒドロフラン 145重量部
をボールミルに入れ、72時間ミリングした。更にシクロヘキサノン200重量部を加えて、1時間分散を行った。分散を終了した液を更にシクロヘキサノンで希釈、調整し電荷発生層塗布液とした。
【0033】
3.電荷輸送層塗布液の作成
構造式2に示す電荷輸送剤 7重量部
ポリカーボネート 10重量部(パンライトC−1400、帝人化成製)
ジクロロメタン 83重量部
を溶解して電荷輸送層塗布液を調合した。
【0034】
構造式1 電荷発生材料
【0035】
【化1】

Figure 0004084546
【0036】
構造式2 電荷輸送材料
【0037】
【化2】
Figure 0004084546
【0038】
外径(φ1)60mm、長さ360mmのアルミニウム製の円筒状基体に、上で調合した下引き層塗布液を浸漬塗布し、100℃で10分間乾燥して、厚さ0.5μmの下引き層を形成した。次にこの上に電荷発生層(CGL)、電荷輸送層(CTL)を逐次浸漬塗布し積層感光体試料を作成した。尚引き上げ速度は電荷発生層は乾燥膜厚0.2μm、電荷輸送層は28μmになるような条件で行った。
【0039】
[実験例1]
下記の条件で下引層、電荷発生層、電荷輸送層を順次浸漬塗布を行い電子写真用感光体を作成した。いずれの場合もフードの側面に通気口のないものを使用した。下引層、電荷発生層、電荷輸送層の3層を合わせた膜厚を渦電流式膜厚計フィッシャー560Cを用いて測定し、平坦部分の平均膜厚と平坦部分の膜厚バラツキ(R=max−min)を算出し、この電子写真用感光体をコピーマシンに搭載して画像を出した結果を以下の表1に示す。
サンプル[1−a]…L2=0mm、φ2=70mm
サンプル[1−b]…L2=0mm、φ2=120mm
サンプル[1−c]…L2=25mm、φ2=120mm
サンプル[1−d]…L2=50mm、φ2=150mm
サンプル[1−e]…L2=50mm、φ2=180mm
【0040】
【表1】
Figure 0004084546
【0041】
[実験例2]
下記の条件で下引層、電荷発生層、電荷輸送層を順次浸漬塗布を行い電子写真用感光体を作成した。その他の条件は上記サンプル[1−d]と同じ条件とした。下引層、電荷発生層、電荷輸送層の3層を合わせた膜厚を渦電流式膜厚計フィッシャー560Cを用いて測定し、平坦部分の平均膜厚と平坦部分の膜厚バラツキ(R=max−min)を算出し、この電子写真用感光体をコピーマシンに搭載して画像を出した結果を以下の表2に示す。
サンプル[2−a]…L4=10mm
サンプル[2−b]…L4=20mm
サンプル[2−c]…L4=50mm
【0042】
【表2】
Figure 0004084546
【0043】
[実験例3]
下記の条件で下引層、電荷発生層、電荷輸送層を順次浸漬塗布を行い電子写真用感光体を作成した。その他の条件はサンプル[2−b]と同じ条件とした。下引層、電荷発生層、電荷輸送層の3層を合わせた膜厚を、渦電流式膜厚計フィッシャー560Cを用いて測定し、平坦部分の平均膜厚と平坦部分の膜厚バラツキ(R=max−min)を算出し、この電子写真用感光体をコピーマシンに搭載して画像を出した結果を以下の表3に示す。
サンプル[3−a]…フード材質:ナイロン樹脂:除電装置設置
サンプル[3−b]…フード材質:Al
サンプル[3−c]…フード材質:Fe
【0044】
【表3】
Figure 0004084546
【0045】
[比較例1]
下記の条件で下引層、電荷発生層、電荷輸送層を順次浸漬塗布を行い電子写真用感光体を作成した。下引層、電荷発生層、電荷輸送層の3層を合わせた膜厚を、渦電流式膜厚計フィッシャー560Cを用いて測定し、平坦部分の平均膜厚と平坦部分の膜厚バラツキ(R=max−min)を算出し、この電子写真用感光体をコピーマシンに搭載して画像を出した結果を以下の表4に示す。
サンプル[4−a]…L2=−20mm、L4=20mm、φ2=100mm、材質:AL
サンプル[4−b]…L2=−10mm、L4=20mm、φ2=100mm、材質:AL
サンプル[4−c]…L2=20mm、L4=5mm、φ2=70mm、材質:AL
サンプル[4−d]…L2=20mm、L4=3mm、φ2=70mm、材質:AL
サンプル[4−e]…L2=20mm、L4=20mm、φ2=67mm、材質:AL
サンプル[4−f]…L2=20mm、L4=20mm、φ2=63mm、材質:AL
サンプル[4−g]…L2=20mm、L4=20mm、φ2=100mm、材質:ナイロン樹脂
なお、除電装置は設置していない。
【0046】
【表4】
Figure 0004084546
【0047】
[実験例4]
下記の条件で下引層、電荷発生層、電荷輸送層を順次浸漬塗布を行い、電子写真用感光体を作成した。いずれの場合も下端部開口部径より上端部開口径を大である円形フードの伸縮性フードを使用した。更に、伸縮性フードの上端部及び下端部は周面を開口させて設置した。下引層、電荷発生層、電荷輸送層の3層を合わせた膜厚を、渦電流式膜厚計フィッシャー560Cを用いて測定し、平坦部分の平均膜厚と平坦部分の膜厚バラツキ(R=max−min)を算出し、この電子写真用感光体をコピーマシンに搭載して画像を出した結果を以下の表5に示す。
サンプル[5−a]…伸縮性フードの最下端部内径φ2:90mm、伸縮性フードの最上端部内径φ3:120mm、伸縮性フードの下端部開口の高さL2:20mmに設置。
サンプル[5−b]…伸縮性フードの最下端部内径φ2:120mm、伸縮性フードの最上端部内径φ3:180mm、伸縮性フードの下端部開口の高さL2:20mmに設置。
サンプル[5−c]…伸縮性フードの最下端部内径φ2:180mm、伸縮性フードの最上端部内径φ3:240mm、伸縮性フードの下端部開口の高さL2:20mmに設置。
【0048】
【表5】
Figure 0004084546
【0049】
[実験例5]
下記の条件で下引層、電荷発生層、電荷輸送層を順次浸漬塗布を行い電子写真用感光体を作成した。いずれの場合も下端部開口部径より上端部開口径を大である円形フードの伸縮性フードを使用した。更に、伸縮性フードの上端部及び下端部は周面を開口させて設置した。下引層、電荷発生層、電荷輸送層の3層を合わせた膜厚を、渦電流式膜厚計フィッシャー560Cを用いて測定し、平坦部分の平均膜厚と平坦部分の膜厚バラツキ(R=max−min)を算出し、この電子写真用感光体をコピーマシンに搭載して画像を出した結果を以下の表6に示す。
サンプル[6−a]…L1=10mm,L2=10mm,伸縮性フードの最下端部内径φ2:90mm、伸縮性フードの最上端部内径φ3:120mmに設置。
サンプル[6−b]…L1=20mm,L2=30mm,伸縮性フードの最下端部内径φ2:90mm、伸縮性フードの最上端部内径φ3:120mmに設置。
サンプル[6−c]…L1=50mm,L2=50mm,伸縮性フードの最下端部内径φ2:90mm、伸縮性フードの最上端部内径φ3:120mmに設置。
【0050】
【表6】
Figure 0004084546
【0051】
[実験例6]
下記の条件にて下引層、電荷発生層、電荷輸送層を順次浸漬塗布を行い電子写真用感光体を作成した。いずれの場合も円形フードを使用し、L1=20mm、L2=30mmで、しかも伸縮性フードの最上端部内径φ3が180mm、伸縮性フードの最下端部内径φ2が120mmであるものを使用した。更に、伸縮性フードの上下端の開口部は周面を開口させて設置した。下引層、電荷発生層、電荷輸送層の3層を合わせた膜厚を、渦電流式膜厚計フィッシャー560Cを用いて測定し、平坦部分の平均膜厚と平坦部分の膜厚バラツキ(R=max−min)を算出し、この電子写真用感光体をコピーマシンに搭載して画像を出した結果を以下の表7に示す。
サンプル[7−a]…感光体基体開口部より20mm伸縮性フード上端開始部が上端に設置した。
サンプル[7−b]…感光体基体開口部より50mm伸縮性フード上端開始部が上端に設置した。
サンプル[7−c]…感光体基体開口部より80mm伸縮性フード上端開始部が上端に設置した。
【0052】
【表7】
Figure 0004084546
【0053】
[比較例2]
下記の条件で下引層、電荷発生層、電荷輸送層を順次、浸漬塗布を行い、電子写真用感光体を作成した。下引層、電荷発生層、電荷輸送層の3層を合わせた膜厚を、渦電流式膜厚計フィッシャー560Cを用いて測定し、平坦部分の平均膜厚と平坦部分の膜厚バラツキ(R=max−min)を算出し、この電子写真用感光体をコピーマシンに搭載して画像を出した結果を以下の表8に示す。
サンプル[8−a]…フード上端部およびフード下端部に開口部高さを設けない装置。(L1=0、L2=0)
サンプル[8−b]…伸縮性フードの最下端部内径φ2:180mm、伸縮性フードの最上端部内径φ3:90mmで設置した。
サンプル[8−c]…フード最下端開口部と感光体基体上端部が同位置でフード上部装着部と感光体基体開始部が同位置でしかもフード上端装着部と感光体基体開始部が同位置に設置した。更に、浸漬塗布中にフードが最収縮した際、感光体基体最上端とフード最下端部が同位置になるよう設置した。(L1=5、L2=5)
【0054】
【表8】
Figure 0004084546
【0055】
なお、本発明は上記実施例に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。
【0056】
【発明の効果】
以上説明したように、基体周辺の気体の流れを抑制し、伸縮性を有する伸縮性フードが少なくとも基体の周囲を覆う状態で基体を塗工槽に浸漬塗布する、本発明に係る電子写真用感光体の製造装置によれば、伸縮性フードの上端及び下端に、浸漬塗布中に蒸発する有機溶剤を排出可能な開口を設け、かつ基体の下端の下面における開口の内径が基体の外径より10mm以上大きく、塗布前又は塗布終了後の基体の下端と伸縮性フードの下端の位置が同じ高さに存在するか、もしくは伸縮性フードの下端の位置が基体の下端より下部に存在し、伸縮性フードと塗工槽とを隔離するための塗工槽開口蓋の下端と塗工槽の開口端との距離が10mm以上であることに特徴がある。よって、伸縮性フードにより直接の風を受けず、かつ、伸縮性フード内の塗布溶剤蒸気も自然に外に放出されるため、タレもなく、均一な塗膜が得られる。
【0061】
また、開口の外径と伸縮性フード最上端の内径との比が1:2〜1:4であることにより、浸漬塗布中及び指触乾燥中の感光体塗膜面に気流や溶剤蒸気が均等になるため、膜厚の乱れによる画像むらを防ぐことができ、しかも、伸縮性フード内の蒸発した溶剤蒸気を自然に排出することができるので、塗膜むらのタレによる画像むらを防止することができる。
【0064】
更に、伸縮性フードは導電性材料で作成されることにより、伸縮性フードが帯電しないため、電気的に不安定な塗布液を使用しても浸漬塗工時に周囲の伸縮性フードの帯電むらに影響されないので、塗布むらのない電子写真用感光体を製造できる。
【0066】
更に、浸漬塗工中に伸縮性フードが最収縮した際、基体の最上端より上部に伸縮性フードの下端の開口が位置することにより、浸漬塗布中及び指触乾燥中の電子写真用感光体の感光塗膜面に均等な気流が流れ、溶剤蒸気も周面が均一に蒸発するため、膜厚むらによる画像むらを防止できる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る電子写真用感光体の製造装置による塗布後の指触乾燥工程の様子を示す概略断面図である。
【図2】本実施例に係る電子写真用感光体の製造装置による基体浸漬工程の様子を示す概略断面図である。
【図3】本実施例に係る電子写真用感光体の製造装置による基体浸漬工程後の基体引き上げ工程の様子を示す概略断面図である。
【符号の説明】
1;伸縮性フード、1a;フード部材、2;チャック、3;支持部材、
4;ベースプレート、5;基体、6;塗工槽、7;塗布液、8;開口蓋。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photoreceptor manufacturing apparatus, and more particularly to a dip coating apparatus for forming a coating film on a substrate to be coated.
[0002]
[Prior art]
The electrophotographic photoreceptor is manufactured by applying a photoreceptor material to the peripheral surface of a drum-shaped photosensitive substrate. As a coating method, usually, a container (immersion coating tank) containing a photosensitive material coating solution and a photosensitive substrate are moved relative to each other to immerse the photosensitive substrate in the coating solution, and then pulled up. A method is adopted in which the substrate is allowed to stand and air-dried (finger-touch drying), and then completely dried in an oven or the like. Then, in order to produce an electrophotographic photoreceptor having a uniform thickness of the photosensitive coating film in a short time, a fast-drying solvent is usually used as the solvent for the coating solution.
[0003]
By the way, when a fast-drying solvent is used, it can be solidified in a short time by increasing the drying speed of the coating solution. The flow of the solvent vapor generated thereby gives uneven thickness to the formed photosensitive coating film. When such a photoconductor is used, it may cause problems such as image unevenness, whitening, and background contamination due to toner adhesion.
[0004]
In order to solve these problems, as a method for discharging the solvent vapor inside the hood, Japanese Patent Laid-Open No. 60-110378 (hereinafter referred to as Conventional Example 1) is provided with a cylindrical hood having a hole. A method for adjusting the vapor concentration inside the hood has been proposed. Moreover, in JP-A-59-42060 (hereinafter referred to as Conventional Example 2), a cylindrical hood provided with an opening around the lower end portion is provided on the dip coating container, wind shielding and dilution of the evaporation solvent are performed, A method of discharging from the side under the hood has been proposed. Further, Japanese Patent Application Laid-Open No. 63-7873 (hereinafter referred to as Conventional Example 3) proposes a method in which a stretchable hood is installed in a substrate holding device and dip-coated while the substrate is covered with the hood. Japanese Patent Laid-Open No. 7-104488 (hereinafter referred to as Conventional Example 4) attempts to regulate the vapor concentration by defining the size of the hood. Furthermore, Japanese Patent No. 2,889,513 (hereinafter referred to as Conventional Example 5) also proposes a method in which a hood is placed on the coating tank and the steam is discharged downward. Japanese Patent No. 2,690,801 (hereinafter referred to as Conventional Example 6) is configured to discharge steam from under the hood.
[0005]
[Problems to be solved by the invention]
However, according to the conventional examples 1 and 2, the wind blows from the hole and directly hits the coating film. Moreover, in the said prior art example 3, although the method of flowing a wind toward the lower part from the upper part of food | hood is taken, there exists a malfunction that a flowing wind changes and a coating film is disturbed. Furthermore, the above-mentioned conventional example 4 has a disadvantage that the concentration increases excessively unless the vapor is allowed to escape to the outside, and sagging of the coating film occurs. Further, the conventional example 5 has a problem that if the substrate comes out of the hood, the coating film becomes uneven due to the influence of wind. Further, in the conventional example 6, a hood that is wider than the coating tank device and higher than the base is necessary, so that there is a problem that the equipment becomes large and the cost is high.
[0006]
An object of the present invention is to solve these problems, and an object of the present invention is to provide a method for producing an electrophotographic photoreceptor capable of suppressing the occurrence of unevenness due to airflow without using a special apparatus.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the flow of gas around the substrate is suppressed, and the substrate is placed in a state where a stretchable hood having stretchability covers at least the periphery of the substrate. In the coating tank According to the electrophotographic photoreceptor manufacturing apparatus according to the present invention, which is dip-coated, openings are provided at the upper and lower ends of the stretchable hood so that the organic solvent that evaporates during dip coating can be discharged. In addition, the inner diameter of the opening on the lower surface of the lower end of the substrate is 10 mm or more larger than the outer diameter of the substrate, and the lower end of the substrate and the lower end of the stretchable hood are present at the same height before coating or after coating, or is stretchable The lower end of the hood is located below the lower end of the substrate, and the distance between the lower end of the coating tank opening lid for separating the stretchable hood and the coating tank from the opening end of the coating tank is 10 mm or more. is there There is a special feature. Therefore, Elasticity Without direct wind from the hood, and Elasticity Since the coating solvent vapor in the hood is also released naturally, a uniform coating film can be obtained without sagging.
[0012]
Also, the outer diameter of the opening And Shin Since the ratio of the inner diameter of the top end of the retractable hood is 1: 2 to 1: 4, airflow and solvent vapor are evenly applied to the surface of the photoreceptor coating film during dip coating and finger touch drying. Image unevenness due to the turbulence of the film can be prevented, and the evaporated solvent vapor in the stretchable hood can be discharged naturally, so that the image unevenness due to the unevenness of the coating film unevenness can be prevented.
[0015]
Furthermore, because the stretch hood is made of a conductive material, the stretch hood does not become charged, so even if an electrically unstable coating solution is used, the charging unevenness of the surrounding stretch hood is affected during dip coating. Therefore, an electrophotographic photoreceptor without uneven coating can be produced.
[0017]
Further, when the stretchable hood is contracted to the maximum during dip coating, the lower end opening of the stretchable hood is positioned above the uppermost end of the substrate, so that the electrophotographic photoreceptor during dip coating and touch drying A uniform airflow flows on the surface of the photosensitive coating film and the peripheral surface of the solvent vapor is also evaporated uniformly, so that it is possible to prevent image unevenness due to film thickness unevenness.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
According to the electrophotographic photoreceptor manufacturing apparatus according to the present invention, the upper and lower ends of the stretchable hood are provided with openings capable of discharging an organic solvent that evaporates during dip coating. In addition, the inner diameter of the opening on the lower surface of the lower end of the substrate is 10 mm or more larger than the outer diameter of the substrate, and the lower end of the substrate and the lower end of the stretchable hood are present at the same height before coating or after coating, or is stretchable The lower end of the hood is located below the lower end of the substrate, and the distance between the lower end of the coating tank opening lid for separating the stretchable hood and the coating tank from the opening end of the coating tank is 10 mm or more. is there There is a special feature. Therefore, Elasticity Without direct wind from the hood, and Elasticity Since the coating solvent vapor in the hood is also released naturally, a uniform coating film can be obtained without sagging.
[0019]
【Example】
FIG. 1 is a schematic cross-sectional view showing a touch drying process after coating by an electrophotographic photoreceptor manufacturing apparatus according to an embodiment of the present invention. In the figure, a chuck 2 is fixed to a base plate 4 via a support member 3. The chuck 2 holds the base 5. The stretchable hood 1 includes a plurality of hood members 1a and is fixed to the base plate 4 so as to cover at least the base body 5 and move in conjunction with the base body 5. At this time, the base plate 4 The elastic hood 1 is not sealed and fixed, and an appropriate gap L1 for stabilizing the vapor concentration in the elastic hood 1 is provided. Further, an appropriate coating distance L2 is provided so that the coating film applied to the base 5 held by the chuck 2 is not disturbed and the base 5 is covered with the stretchable hood 1. Although the stretchable hood 1 in the present embodiment is composed of a plurality of hood members 1a, the stretchable hood 1 itself may be a member that stretches and contracts.
[0020]
FIG. 2 is a schematic cross-sectional view showing the state of the substrate immersion process by the electrophotographic photoreceptor manufacturing apparatus according to this embodiment. In the figure, the base plate 4 is provided with a lifting motor (not shown) and a lifting screw (not shown) for operating the base plate 4 up and down. Then, an elevating motor (not shown) is driven to operate the base plate 4 up and down via elevating screws (not shown) so that the base 5 held by the chuck 2 is applied to the coating liquid 7 in the coating tank 6. After the immersion, the substrate 5 is pulled up to form a coating film on the substrate surface. As can be seen from FIG. 3 showing the state of the substrate pulling step after the substrate immersing step, the stretchable hood 1 extends to cover at least the substrate 5 as the substrate 5 is pulled up. Moreover, when the base | substrate 5 is immersed, the elastic | stretch hood 1 has a structure which shrink | contracts in the form which overlaps the inner side of the upper hood member 1a, or the outer side. At this time, the stretchable hood 1 is provided with an appropriate gap L3 so as not to come into contact with the base 5 or the like by an opening lid 8 for sealing a coating tank 6 described later. Moreover, the opening lid 8 mentioned above is installed in the upper part of the coating tank 6, and both distance L4 can be set to an appropriate value. The stretch hood 1 is made of a conductive member, or is made of a solvent-resistant plastic such as aluminum, stainless steel or the like, a metal having resistance to corrosion or corrosion, such as nylon, Teflon, polycarbonate, polyethylene or polypropylene, It can be created using glass or the like. The stretchable hood 1 preferably has the same cylindrical shape as that of the base 5, but may be formed of a polygon such as a quadrangle or a hexagon.
[0021]
As the base 5 used here, aluminum, copper, gold, silver, platinum, palladium, titanium, nickel on a drum and sheet of metal such as aluminum, copper, iron, zinc, nickel, paper, plastic or glass Deposit metal such as chromium, stainless steel, copper-indium, deposit conductive metal oxide such as indium oxide and tin oxide, laminate metal foil, or carbon black, indium oxide, tin oxide-oxide Known materials such as drum-like, sheet-like, and plate-like materials that have been subjected to conductive treatment can also be used by dispersing antimony powder, metal powder, copper iodide, and the like in a binder resin and applying them. Is not limited to these.
[0022]
Furthermore, if necessary, the surface of the conductive support can be subjected to various treatments within a range that does not affect the image quality. For example, surface oxidation treatment, chemical treatment, coloring treatment, and the like can be performed. In addition, an undercoat layer can be further provided between the conductive support and the charge generation layer. When the undercoat layer is charged, the charge from the conductive support to the photosensitive layer in the photosensitive layer having a laminated structure is charged. In addition, the function as an adhesive layer for preventing the injection of the photosensitive layer and integrally holding the photosensitive layer to the conductive support, or the effect of preventing the reflected light from the conductive support, and the like are shown. The resin used for this undercoat layer is polyethylene, polypropylene, acrylic resin, methacrylic resin, polyamide resin, vinyl chloride resin, vinyl acetate resin, phenol resin, epoxy resin, polyester resin, alkyd resin, polycarbonate, polyurethane, polyimide resin, chloride Known resins such as vinylidene resin, polyvinyl acetal resin, vinyl chloride-vinyl acetate copolymer, polyvinyl alcohol, water-soluble polyester, nitrocellulose or casein, and gelatin can be used, but are not limited thereto. The thickness of the undercoat layer is 0.01 to 10 μm, preferably 0.3 to 7 μm. Examples of the coating method used when providing the undercoat layer include conventional methods such as blade coating, wire bar coating, spray coating, dip coating, bead coating, air knife coating, and curtain coating. .
[0023]
The charge generation layer (carrier generation layer) is, for example, an azo dye such as a monoazo dye, a disazo dye or a trisazo dye, a perylene dye such as perylene acid anhydride or perylene imide, an indigo dye such as indigo or thioindigo, or an anthra dye. Polycyclic quinones such as quinone, pyrenequinone and flavanthrone, quinagridone dyes, bisbenzimidazole dyes, indanthrone dyes, squarylium dyes, metal phthalocyanine, metal-free phthalocyanine and other phthalocyanine pigments, pyrylium salt dyes, thiapyrylium Various known charge generating materials (carrier generating materials) such as eutectic complexes formed from salt dyes and polycarbonate are dissolved or dispersed in a solvent together with an appropriate binder resin and, if necessary, charge transporting materials (carrier transporting materials). To do It can be formed by.
[0024]
Furthermore, as a method for dispersing the charge generating material in the resin, a ball mill dispersion method, an attritor dispersion method, a sand mill dispersion method, or the like can be used. At this time, it is effective that the charge generation material has a volume average particle size of 5 μm or less, preferably 2 μm or less, and most preferably 0.5 μm or less. As solvents used for these dispersions, methanol, ethanol, n-propanol, n-butanol, benzyl alcohol, methyl cellosolve, ethyl cellosolve, acetone, methyl ethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, dioxane, Ordinary organic solvents such as tetrahydrofuran, methylene chloride, chloroform 1,2-dichloroethane, monochlorobenzene, and xylene can be used alone or in admixture of two or more.
[0025]
The thickness of the charge generation layer used in the present invention is generally 0.1 to 5 μm, preferably 0.2 to 2 μm.
[0026]
The charge transport layer in the electrophotographic photoreceptor of the present invention is formed by containing a charge transport material in a suitable binder. Examples of the charge transport material include oxazoazole derivatives such as 2,5-bis (p-diethylaminophenyl) -1,3,4-oxadiazole, 1,3,5-triphenyl-pyrazoline, 1- [pyridyl- (2 )]-3- (p-diethylaminostyryl) -5- (p-diethylaminophenyl) pyrazolin derivatives such as pyrazoline, aromatics such as triphenylamine, styryltriphenylamine, dibenzylaniline, tertiary amino compounds, N Aromatic tertiary diamino compounds such as N, N'-diphenyl-N, N'-bis (3-methylphenyl) -1,1-biphenyl-4,4'-diamine, 3- (4'-dimethylaminophenyl) ) -5,6-di- (4'-methoxyphenyl) -1,2,4-triazine and other 1,2,4-triazine derivatives, 4-di Hydrazone derivatives such as “tilaminobenzal” dehydr-1,1-diphenylhydrazone, quinazoline derivatives such as 2-phenyl-4-styryl-quinzoline, 6-hydroxy-2,3-di (p-methoxyphenyl) -benzofuran, etc. Benzofuran derivatives, α-stilbene derivatives such as p- (2,2-diphenylvinyl) -N, N-diphenylaniline, enamine derivatives described in “Journal of Imaging Science” 29: 7-10 (1985), Carbazole derivatives such as N-ethylcarbazole, poly-N-vinylcarbazole and derivatives thereof such as poly-N-vinylcarbazole, poly-γ-carbazolylethyl glutanate and derivatives thereof, as well as pyrene, polyvinylpyrene, polyvinylanthra SE , Polyvinyl acridine, poly-9-biphenyl-anthracene, pyrene - formaldehyde resins, but may be a known charge transport material such as ethyl carbazole formaldehyde resin, but is not limited thereto. These charge transport materials can be used alone or in combination of two or more.
[0027]
Further, the binder resin in the charge transport layer includes polycarbonate resin, polyester resin, methacrylic resin, acrylic resin, polyvinyl chloride resin, polyvinylidene chloride resin, polystyrene resin, polyvinyl acetate resin, butylene-butadiene copolymer, vinylidene chloride. -Acrylonitrile copolymer, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone resin, silicone-alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, poly-N vinyl Known resins such as carbazole can be used, but are not limited thereto. These binder resins can be used alone or in combination of two or more.
[0028]
Here, the blending ratio (weight ratio) between the charge transport material and the binder resin is preferably 10: 1 to 1: 5. The thickness of the charge transport layer used in the present invention is generally 5 to 50 μm, preferably 10 to 30 μm.
[0029]
Furthermore, as a solvent used when providing a charge transport layer, aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene, ketones such as acetone and 2-butanone, methylene chloride, chloroform and ethylene chloride are used. Ordinary organic solvents such as halogenated aliphatic hydrocarbons, cyclic or linear ethers such as tetrahydrofuran and ethyl ether can be used alone or in admixture of two or more.
[0030]
The prescription of each liquid is specified below, and an experimental example using the liquid is given to explain the first embodiment of the present invention in detail.
[0031]
1. Formation of undercoat layer coating solution
The following materials were dissolved to prepare an undercoat layer coating solution.
5 parts by weight of soluble nylon (Alamine CM-8000, manufactured by Toray)
95 parts by weight of methanol
[0032]
2. Preparation of charge generation layer coating solution
10 parts by weight of charge generating agent shown in structural formula 1
7 parts by weight of polyvinyl butyral
145 parts by weight of tetrahydrofuran
Was placed in a ball mill and milled for 72 hours. Further, 200 parts by weight of cyclohexanone was added and dispersed for 1 hour. The dispersion-finished liquid was further diluted and adjusted with cyclohexanone to obtain a charge generation layer coating liquid.
[0033]
3. Preparation of charge transport layer coating solution
7 parts by weight of charge transport agent shown in structural formula 2
10 parts by weight of polycarbonate (Panlite C-1400, manufactured by Teijin Chemicals)
83 parts by weight of dichloromethane
Was dissolved to prepare a charge transport layer coating solution.
[0034]
Structural formula 1 Charge generation material
[0035]
[Chemical 1]
Figure 0004084546
[0036]
Structural formula 2 Charge transport material
[0037]
[Chemical 2]
Figure 0004084546
[0038]
The undercoat layer coating solution prepared above is dip-coated on an aluminum cylindrical substrate having an outer diameter (φ1) of 60 mm and a length of 360 mm, dried at 100 ° C. for 10 minutes, and an undercoat of 0.5 μm in thickness. A layer was formed. Next, a charge generation layer (CGL) and a charge transport layer (CTL) were sequentially dipped on the substrate to prepare a laminated photoreceptor sample. The pulling speed was adjusted so that the charge generation layer had a dry thickness of 0.2 μm and the charge transport layer had a thickness of 28 μm.
[0039]
[Experiment 1]
The undercoat layer, the charge generation layer, and the charge transport layer were sequentially dip coated under the following conditions to prepare an electrophotographic photoreceptor. In either case, the side of the hood without vents was used. The total thickness of the undercoat layer, the charge generation layer, and the charge transport layer was measured using an eddy current film thickness meter Fischer 560C, and the average thickness of the flat portion and the thickness variation of the flat portion (R = Table 1 below shows the results of calculating the max-min) and mounting the electrophotographic photoreceptor on a copy machine to produce an image.
Sample [1-a] ... L2 = 0 mm, φ2 = 70 mm
Sample [1-b] ... L2 = 0 mm, φ2 = 120 mm
Sample [1-c] ... L2 = 25 mm, φ2 = 120 mm
Sample [1-d] ... L2 = 50 mm, φ2 = 150 mm
Sample [1-e] ... L2 = 50 mm, φ2 = 180 mm
[0040]
[Table 1]
Figure 0004084546
[0041]
[Experiment 2]
The undercoat layer, the charge generation layer, and the charge transport layer were sequentially dip coated under the following conditions to prepare an electrophotographic photoreceptor. Other conditions were the same as those of the sample [1-d]. The total thickness of the undercoat layer, the charge generation layer, and the charge transport layer was measured using an eddy current film thickness meter Fischer 560C, and the average thickness of the flat portion and the thickness variation of the flat portion (R = Table 2 below shows the result of calculating the maximum-min) and mounting the electrophotographic photoreceptor on a copy machine to produce an image.
Sample [2-a] ... L4 = 10 mm
Sample [2-b] ... L4 = 20mm
Sample [2-c] ... L4 = 50mm
[0042]
[Table 2]
Figure 0004084546
[0043]
[Experiment 3]
The undercoat layer, the charge generation layer, and the charge transport layer were sequentially dip coated under the following conditions to prepare an electrophotographic photoreceptor. Other conditions were the same as those of sample [2-b]. The total thickness of the three layers of the undercoat layer, the charge generation layer, and the charge transport layer is measured using an eddy current film thickness meter Fischer 560C, and the average film thickness of the flat part and the film thickness variation (R Table 3 below shows the results of calculating the image of the electrophotographic photoreceptor mounted on a copy machine and calculating an image.
Sample [3-a]: Hood material: Nylon resin: Installation of static eliminator
Sample [3-b] ... Hood material: Al
Sample [3-c] ... Hood material: Fe
[0044]
[Table 3]
Figure 0004084546
[0045]
[Comparative Example 1]
The undercoat layer, the charge generation layer, and the charge transport layer were sequentially dip coated under the following conditions to prepare an electrophotographic photoreceptor. The total thickness of the three layers of the undercoat layer, the charge generation layer, and the charge transport layer is measured using an eddy current film thickness meter Fischer 560C, and the average film thickness of the flat part and the film thickness variation (R Table 4 below shows the results obtained by calculating (max = min−min) and mounting the electrophotographic photoreceptor on a copy machine to produce an image.
Sample [4-a] ... L2 = -20 mm, L4 = 20 mm, φ2 = 100 mm, material: AL
Sample [4-b] ... L2 = -10 mm, L4 = 20 mm, φ2 = 100 mm, material: AL
Sample [4-c] ... L2 = 20 mm, L4 = 5 mm, φ2 = 70 mm, material: AL
Sample [4-d] ... L2 = 20 mm, L4 = 3 mm, φ2 = 70 mm, material: AL
Sample [4-e] ... L2 = 20 mm, L4 = 20 mm, φ2 = 67 mm, material: AL
Sample [4-f] ... L2 = 20 mm, L4 = 20 mm, φ2 = 63 mm, material: AL
Sample [4-g] ... L2 = 20 mm, L4 = 20 mm, φ2 = 100 mm, material: nylon resin
There is no static eliminator installed.
[0046]
[Table 4]
Figure 0004084546
[0047]
[Experimental Example 4]
An undercoat layer, a charge generation layer, and a charge transport layer were sequentially dip coated under the following conditions to prepare an electrophotographic photoreceptor. In any case, an elastic hood of a circular hood having an upper end opening diameter larger than the lower end opening diameter was used. Furthermore, the upper end part and the lower end part of the stretchable hood were installed with their peripheral surfaces opened. The total thickness of the undercoat layer, the charge generation layer, and the charge transport layer is measured using an eddy current film thickness meter Fischer 560C, and the average film thickness of the flat part and the film thickness variation (R Table 5 below shows the result of calculating the image of the electrophotographic photosensitive member mounted on a copying machine.
Sample [5-a]: Installed at the bottom end inner diameter φ2: 90 mm of the stretchable hood, the top end inner diameter φ3: 120 mm of the stretchable hood, and the height L2: 20 mm of the bottom end opening of the stretchable hood.
Sample [5-b]: Installed at the lowermost end inner diameter φ2: 120 mm of the stretchable hood, the uppermost end inner diameter φ3: 180 mm of the stretchable hood, and the height L2: 20 mm of the lower end opening of the stretchable hood.
Sample [5-c]: Installed at the bottom end inner diameter φ2: 180 mm of the stretchable hood, the top end inner diameter φ3: 240 mm of the stretchable hood, and the height L2 of the bottom end opening of the stretchable hood: 20 mm.
[0048]
[Table 5]
Figure 0004084546
[0049]
[Experimental Example 5]
The undercoat layer, the charge generation layer, and the charge transport layer were sequentially dip coated under the following conditions to prepare an electrophotographic photoreceptor. In any case, a stretchable hood of a circular hood having an upper end opening diameter larger than the lower end opening diameter was used. Furthermore, the upper end part and the lower end part of the stretchable hood were installed with their peripheral surfaces opened. The total thickness of the undercoat layer, the charge generation layer, and the charge transport layer is measured using an eddy current film thickness meter Fischer 560C, and the average film thickness of the flat part and the film thickness variation (R Table 6 below shows the results obtained by calculating (= max−min) and mounting the electrophotographic photoreceptor on a copy machine to produce an image.
Sample [6-a]: L1 = 10 mm, L2 = 10 mm, the bottom end inner diameter φ2: 90 mm of the stretchable hood, and the top end inner diameter φ3: 120 mm of the stretchable hood.
Sample [6-b]: L1 = 20 mm, L2 = 30 mm, the bottom end inner diameter φ2: 90 mm of the stretchable hood, and the top end inner diameter φ3: 120 mm of the stretchable hood.
Sample [6-c]: L1 = 50 mm, L2 = 50 mm, the bottom end inner diameter φ2: 90 mm of the stretchable hood, and the top end inner diameter φ3: 120 mm of the stretchable hood.
[0050]
[Table 6]
Figure 0004084546
[0051]
[Experimental example 6]
The undercoat layer, the charge generation layer, and the charge transport layer were sequentially dip coated under the following conditions to prepare an electrophotographic photoreceptor. In any case, a circular hood was used, and L1 = 20 mm, L2 = 30 mm, and the elastic hood had an uppermost end inner diameter φ3 of 180 mm and an elastic hood having a lowermost end inner diameter φ2 of 120 mm. Furthermore, the openings at the upper and lower ends of the stretchable hood were installed with their peripheral surfaces opened. The total thickness of the undercoat layer, the charge generation layer, and the charge transport layer is measured using an eddy current film thickness meter Fischer 560C, and the average film thickness of the flat part and the film thickness variation (R Table 7 below shows the results obtained by calculating (= max−min) and mounting the electrophotographic photoreceptor on a copy machine to produce an image.
Sample [7-a]: 20 mm stretchable hood upper end start portion was installed at the upper end from the photosensitive substrate opening.
Sample [7-b]: 50 mm stretchable hood upper end start portion was installed at the upper end from the photosensitive substrate opening.
Sample [7-c]... 80 mm stretchable hood upper end start portion was installed at the upper end from the photosensitive member base opening.
[0052]
[Table 7]
Figure 0004084546
[0053]
[Comparative Example 2]
An undercoat layer, a charge generation layer, and a charge transport layer were sequentially dip-coated under the following conditions to prepare an electrophotographic photoreceptor. The total thickness of the three layers of the undercoat layer, the charge generation layer, and the charge transport layer is measured using an eddy current film thickness meter Fischer 560C, and the average film thickness of the flat part and the film thickness variation (R Table 8 below shows the results obtained by calculating (= max−min) and mounting the electrophotographic photoreceptor on a copy machine to produce an image.
Sample [8-a]: An apparatus in which the opening height is not provided at the upper end of the hood and the lower end of the hood. (L1 = 0, L2 = 0)
Sample [8-b]: The elastic hood was installed at the lowermost end inner diameter φ2: 180 mm and the uppermost end inner diameter φ3: 90 mm of the elastic hood.
Sample [8-c]... Hood bottom end opening and photosensitive substrate upper end are in the same position, hood upper mounting portion and photosensitive substrate start portion are in the same position, and hood upper end mounting portion and photosensitive substrate start portion are in the same position. Installed. Further, when the hood contracted most during the dip coating, the uppermost end of the photoreceptor substrate and the lowermost end of the hood were placed at the same position. (L1 = 5, L2 = 5)
[0054]
[Table 8]
Figure 0004084546
[0055]
In addition, this invention is not limited to the said Example, It cannot be overemphasized that various deformation | transformation and substitution are possible if it is description in a claim.
[0056]
【The invention's effect】
As described above, the base is placed in a state in which a gas flow around the base is suppressed and a stretchable hood having stretchability covers at least the circumference of the base. In the coating tank According to the electrophotographic photoreceptor manufacturing apparatus according to the present invention, which is dip-coated, openings are provided at the upper and lower ends of the stretchable hood so that the organic solvent that evaporates during dip coating can be discharged. In addition, the inner diameter of the opening on the lower surface of the lower end of the substrate is 10 mm or more larger than the outer diameter of the substrate, and the lower end of the substrate and the lower end of the stretchable hood are present at the same height before coating or after coating, or is stretchable The lower end of the hood is located below the lower end of the substrate, and the distance between the lower end of the coating tank opening lid for separating the stretchable hood and the coating tank from the opening end of the coating tank is 10 mm or more. is there There is a special feature. Therefore, Elasticity Without direct wind from the hood, and Elasticity Since the coating solvent vapor in the hood is also released naturally, a uniform coating film can be obtained without sagging.
[0061]
Also, the outer diameter of the opening And Shin Since the ratio of the inner diameter of the top end of the retractable hood is 1: 2 to 1: 4, airflow and solvent vapor are evenly applied to the surface of the photoreceptor coating film during dip coating and finger touch drying. Image unevenness due to the turbulence of the film can be prevented, and the evaporated solvent vapor in the stretchable hood can be discharged naturally, so that the image unevenness due to the unevenness of the coating film unevenness can be prevented.
[0064]
Furthermore, since the stretch hood is made of a conductive material, the stretch hood does not become charged. Therefore, even if an electrically unstable coating solution is used, the surrounding stretch hood is unevenly charged during dip coating. Since it is not affected, an electrophotographic photoreceptor having no coating unevenness can be produced.
[0066]
Further, when the stretchable hood is contracted to the maximum during dip coating, the lower end opening of the stretchable hood is positioned above the uppermost end of the substrate, so that the electrophotographic photoreceptor during dip coating and touch drying A uniform airflow flows on the surface of the photosensitive coating film and the peripheral surface of the solvent vapor is also evaporated uniformly, so that it is possible to prevent image unevenness due to film thickness unevenness.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a state of a touch drying process after coating by an electrophotographic photoreceptor manufacturing apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a state of a substrate immersing step by the electrophotographic photoreceptor manufacturing apparatus according to the present embodiment.
FIG. 3 is a schematic cross-sectional view showing a state of a substrate pulling step after a substrate dipping step by the electrophotographic photoreceptor manufacturing apparatus according to the present embodiment.
[Explanation of symbols]
1; Stretchable hood, 1a; Hood member, 2; Chuck, 3; Support member,
4; base plate, 5; substrate, 6; coating tank, 7; coating solution, 8;

Claims (4)

基体周辺の気体の流れを抑制し、伸縮性を有する伸縮性フードが少なくとも基体の周囲を覆う状態で前記基体を塗工槽に浸漬塗布する電子写真用感光体の製造装置において、
前記伸縮性フードの上端及び下端に、浸漬塗布中に蒸発する有機溶剤を排出可能な開口を設け、かつ前記基体の下端の下面における前記開口の内径が前記基体の外径より10mm以上大きく、
塗布前又は塗布終了後の前記基体の下端と前記伸縮性フードの下端の位置が同じ高さに存在するか、もしくは前記伸縮性フードの下端の位置が前記基体の下端より下部に存在し、
前記伸縮性フードと前記塗工槽とを隔離するための塗工槽開口蓋の下端と前記塗工槽の開口端との距離が10mm以上であることを特徴とする電子写真用感光体の製造装置。
In the electrophotographic photoreceptor manufacturing apparatus for suppressing gas flow around the substrate and immersing the substrate in a coating tank in a state in which a stretchable hood having stretchability covers at least the periphery of the substrate,
The upper end and the lower end of the stretchable hood are provided with openings capable of discharging the organic solvent that evaporates during dip coating , and the inner diameter of the opening on the lower surface of the lower end of the base is 10 mm or more larger than the outer diameter of the base,
The lower end of the base and the lower end of the stretchable hood are present at the same height before or after coating, or the lower end of the stretchable hood is present below the lower end of the base,
Production of an electrophotographic photoreceptor , wherein a distance between a lower end of a coating tank opening lid for separating the stretchable hood and the coating tank from an opening end of the coating tank is 10 mm or more. apparatus.
前記基体の外径と前記伸縮性フード最下端部の内径との比が1:1.5〜1:3である請求項1記載の電子写真用感光体の製造装置。 2. The apparatus for producing an electrophotographic photoreceptor according to claim 1 , wherein the ratio of the outer diameter of the substrate to the inner diameter of the lowermost end portion of the stretchable hood is 1: 1.5 to 1: 3 . 前記伸縮性フードは導電性材料で作成する請求項1又は2に記載の電子写真用感光体の製造装置。The stretch hood manufacturing apparatus of an electrophotographic photosensitive member according to claim 1 or 2 to create a conductive material. 浸漬塗工中に前記伸縮性フードが最収縮した際、前記基体の最上端より上部に前記伸縮性フードの下端の開口が位置する請求項1〜3のいずれかに記載の電子写真用感光体の製造装置。 4. The electrophotographic photoreceptor according to claim 1 , wherein an opening at a lower end of the stretchable hood is positioned above an uppermost end of the base when the stretchable hood is contracted to the maximum during dip coating. Manufacturing equipment.
JP2001153673A 2001-05-23 2001-05-23 Electrophotographic photoreceptor manufacturing equipment Expired - Lifetime JP4084546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001153673A JP4084546B2 (en) 2001-05-23 2001-05-23 Electrophotographic photoreceptor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001153673A JP4084546B2 (en) 2001-05-23 2001-05-23 Electrophotographic photoreceptor manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2002351103A JP2002351103A (en) 2002-12-04
JP4084546B2 true JP4084546B2 (en) 2008-04-30

Family

ID=18998157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001153673A Expired - Lifetime JP4084546B2 (en) 2001-05-23 2001-05-23 Electrophotographic photoreceptor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4084546B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494513B2 (en) * 2008-10-15 2010-06-30 キヤノン株式会社 Immersion coating method and method for producing electrophotographic photosensitive member
JP6945989B2 (en) * 2016-11-10 2021-10-06 シャープ株式会社 Immersion coating device and method for manufacturing electrophotographic photosensitive member

Also Published As

Publication number Publication date
JP2002351103A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
EP2349590B1 (en) Dip-coating process
JP4084546B2 (en) Electrophotographic photoreceptor manufacturing equipment
JPH0243175B2 (en)
JP3797532B2 (en) Electrophotographic photoreceptor manufacturing equipment
JP3920546B2 (en) Immersion coating device
JP4360587B2 (en) Electrophotographic photoreceptor manufacturing equipment
JP3901924B2 (en) Electrophotographic photoreceptor manufacturing apparatus and photoreceptor
JP4040837B2 (en) Electrophotographic photoreceptor manufacturing apparatus and electrophotographic photoreceptor manufacturing method
JPH0534934A (en) Electrophotographic sensitive body and production thereof
JP4024133B2 (en) Coating method, coating apparatus, electrophotographic photosensitive member and image forming apparatus manufactured by the coating method
JP4137398B2 (en) Dip coating apparatus and electrophotographic photosensitive member formed thereby
JP2707655B2 (en) Manufacturing method of seamless belt type photoreceptor
JP3943265B2 (en) Immersion coating method
KR100474470B1 (en) An electrophotographic photoconductor and production method of the electrophotographic photoconductor
JP2002296810A (en) Coating device for electrophotographic sensitive body, electrophotographic sensitive body and method for manufacturing it using device thereof
JP5341450B2 (en) Coating apparatus and method for producing electrophotographic photosensitive member
JPH09304949A (en) Overflow type dip coating method and electrophotographic photoreceptor
JP2000321796A (en) Immersion coating method, and device therefor as well as photoreceptor and its production
JPS63303361A (en) Electrophotographic sensitive body
JPH1097088A (en) Inspection method of coating liquid for photoreceptor, its production, production of electrophotographic photoreceptor and electrophotographic photoreceptor
JP2006337759A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor employing the same
JP2003098692A (en) Method of manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JPH11327188A (en) Electrophotographic photoreceptor
JP2017227723A (en) Electrophotographic photoreceptor, method for manufacturing the same, process cartridge, and electrophotographic device
JP2002131947A (en) Apparatus for manufacturing electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4084546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

EXPY Cancellation because of completion of term