JP4083300B2 - Processing method of used HEPA filter media sheet - Google Patents

Processing method of used HEPA filter media sheet Download PDF

Info

Publication number
JP4083300B2
JP4083300B2 JP21058998A JP21058998A JP4083300B2 JP 4083300 B2 JP4083300 B2 JP 4083300B2 JP 21058998 A JP21058998 A JP 21058998A JP 21058998 A JP21058998 A JP 21058998A JP 4083300 B2 JP4083300 B2 JP 4083300B2
Authority
JP
Japan
Prior art keywords
glass fibers
molded body
glass fiber
filter medium
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21058998A
Other languages
Japanese (ja)
Other versions
JP2000046997A (en
Inventor
健一 川俣
元康 磯部
英雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP21058998A priority Critical patent/JP4083300B2/en
Publication of JP2000046997A publication Critical patent/JP2000046997A/en
Application granted granted Critical
Publication of JP4083300B2 publication Critical patent/JP4083300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ウラン等の放射性廃棄物の塵の濾過に使用することにより、汚染されたHEPA(High Efficiency Particulate Air)フィルタのろ材シートを処理する方法に関するものである。
【0002】
【従来の技術】
核燃料施設等において、ウラン等の放射性廃棄物の塵を濾過するためにHEPAフィルタが多用されている。例えば、図5及び図6に示すように、HEPAフィルタ1は木製の支持枠2内にAl等の金属からなるセパレータ3が設けられ、このセパレータ3の間をガラス繊維からなるフィルタのろ材シート4がジグザグのアコーディオン状に屈曲挿入された構造を有している。図7に示すようにフィルタ1の上部及び下部にはそれぞれ上蓋6及び下蓋7が形成され、汚染された使用済のろ材シート4を処理する場合には、フィルタ1から上蓋6及び下蓋7を取外した後、ウラン等の放射性廃棄物の塵を捕捉したガラス繊維からなるろ材シート4が取出される。
このようにして支持枠2から取出された使用済のHEPAフィルタ1のろ材シート4は保管スペースを節約するため、セパレータ3と一緒に圧縮により減容処理された後、管理区域内に保管される。
【0003】
【発明が解決しようとする課題】
しかし、圧縮後、保管されたろ材シート4は除染されていないため、ウラン等も十分に回収されておらず、資源として有効利用できない問題がある。また圧縮により減容処理されたろ材シート4からウラン等を回収し、最終的に埋設等の処分をするためには、Al等の金属との分離や除染等多くの処理工程が必要となり、処理コストが将来的に増大する問題点がある。また圧縮により減容処理されたろ材シートの放射能を測定する場合、圧縮状態のろ材シートは不均質体かつ高密度であるため、測定方法も複雑となり、測定精度も低い不具合がある。一方、圧縮処理を行わないろ材シートを除染した後、放射能を測定す場合には、ろ材シートはアコーディオン状を示すため、除染後の表面汚染密度の測定は大面積となり、多大な測定時間が必要となる問題点がある。
本発明の目的は、減容及び除染の処理が容易であり、ウラン等の放射性元素を十分に回収でき、放射能を容易に測定できる使用済みHEPAフィルタのろ材シートの処理方法を提供することにある。
【0004】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、放射性廃棄物の塵を捕捉したガラス繊維からなるろ材シートを切断して微細片にする工程12と、この微細片を硝酸溶液中で粉砕してスラリー化を促しながらガラス繊維を除染する工程14と、上記スラリー化を開始したガラス繊維をろ別してそのガラス繊維を水洗する工程16,18と、上記水洗したガラス繊維をろ別してそのガラス繊維を水中で粉砕して完全にスラリーにする工程19,22と、上記スラリーをろ過しながら成形してガラス繊維を所定の形状のバルク成形体にする工程23と、上記バルク成形体を脱水乾燥する工程24と、上記乾燥したバルク成形体を有底容器に収容する工程26とを含み、上記バルク成形体の外形が上記容器の内部形状に相応するようにろ過しながら成形することを特徴とする使用済みHEPAフィルタのろ材シートの処理方法である。
【0005】
硝酸溶液によるガラス繊維の除染の際に機械的なスラリー化が同時に実施されるため、ガラス繊維に付着しているウラン等の放射性元素の粒子はガラス繊維から効率的に硝酸溶液中に溶出する。その結果、埋設処分可能なレベルまで除染が可能となる。また上記スラリーをろ過しながら成形してガラス繊維を所定の形状のバルク成形体を形成し、脱水乾燥するようにしたため、放射能がバルク成形体の一部に偏在せずに均等化する。従って、得られたバルク成形体の放射能を測定する場合には、その測定精度は高く、かつ容易に実施される。また得られたバルク成形体は埋設処分可能な容積に減容される。
【0006】
請求項2に係る発明は、請求項1に係る発明であって、工程12と工程14の間に、切断した微細片を300〜500℃の温度で加熱してガラス繊維同士を相互に接着している有機バインダを蒸発させる工程13を含む処理方法である。
微細片に含まれている有機バインダを蒸発して除去することにより微細片のスラリー化がより一層効率的に促進される。
【0007】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
使用済みHEPAフィルタのろ材シートを処理するには、先ず図7に示すようにフィルタ1から上蓋6及び下蓋7を取外す。次いで図1に示すように、ウラン等の放射性廃棄物の塵を捕捉したガラス繊維からなるろ材シートを取外す(工程11)。次いでろ材シートを切断して微細片にする(工程12)。この微細片を予め60〜80℃に加熱した除染液である5Nの硝酸溶液に投入し、例えば微細片を回転する切断歯を用いて粉砕し、スラリー化を促しながらガラス繊維を除染する(工程14)。微細片を硝酸溶液に投入する前処理として、切断した微細片を300〜500℃、好ましくは400℃の温度で加熱してガラス繊維同士を相互に接着しているアクリル酸樹脂等の有機バインダを蒸発させておくと(工程13)、微細片のスラリー化が一層効率良く促進され、好ましい。ここで加熱温度が300℃未満の場合には、有機バインダの蒸発が不十分となり、500℃を超えるとろ材シートを構成するガラス繊維が溶融する不具合がある。
【0008】
次いで上記有機バインダが蒸発した微細片を除染液である60〜80℃の5N硝酸溶液に投入し、この硝酸溶液中で微細片を例えば回転する切断歯を用いて粉砕し、スラリー化を促しながらガラス繊維を除染する(工程14)。次いでスラリー化を開始したガラス繊維をろ別する(工程16)。ろ別により生じたろ液は後述するNH4OH添加によるADU沈殿の生成工程(工程17)に送られる。
【0009】
次いでろ別したガラス繊維を水洗する(工程18)。この水洗により硝酸成分と硝酸によりイオン化して溶出した汚染物が除去される。水洗したガラス繊維をろ別する(工程19)。ろ別により生じたろ液は後述する吸着剤への放射性元素の吸着工程(工程21)に送られる。次いでろ別したガラス繊維をボールミルを併用したミキサー等を使用して水中で粉砕してスラリー化を促進し、完全にスラリーにする(工程22)。このスラリーをろ過しながら成形してガラス繊維を所定の形状のバルク成形体にする(工程23)。ろ別により生じたろ液は後述する吸着剤への放射性元素の吸着工程(工程21)に送られる。なお、上記工程23において、ろ過しながら成形されるバルク成形体はその外形が後に収容される有底容器の内部形状に相応するように形成される。容器の形状は特に限定されない。容器が例えばドラム缶のような円筒状であればバルク成形体はディスク状又は円柱状となるように成形される。また容器が有底四角筒状であればバルク成形体は四角板状又は角柱状となるように成形される。円柱状又は角柱状に成形した場合には、処理バッチ量は大きくなるけれども、放射能測定のための成形体の均質性をより一層向上できる。次いで上記ガラス繊維のバルク成形体を脱水乾燥する(工程24)。乾燥したバルク成形体を有底容器に収容する(工程26)。次いで有底容器に収容されたバルク成形体の放射能を測定する(工程27)。
【0010】
上述したように工程16において、ろ別により生じたろ液はNH4OH添加によるADU沈殿の生成工程(工程17)に送られる。工程17では、ろ別により生じたろ液とNH4OH(アンモニア水)とが反応してADU(重ウラン酸アンモン)の沈殿が生成する。次いで生成したADU沈殿をろ別する(工程28)。ろ別により生じたろ液は前述した吸着剤への放射性元素の吸着工程(工程21)に送られる。ろ別したADU沈殿を乾燥し、焙焼する(工程29)。その結果、U38粉末が生成し、回収される(工程31)。
前述したように、水洗したガラス繊維のろ過工程(工程19)で生じたろ液と、スラリーをろ過しながらガラス繊維の成形工程(工程23)で生じたろ液と、ADU沈殿のろ過工程(工程28)で生じたろ液とはそれぞれ吸着剤への放射性元素の吸着工程(工程21)に送られ、ここでタンニン系吸着剤が添加される。その結果、これらのろ液に含まれる放射性元素がタンニン系吸着剤に吸着される。放射性元素を吸着した吸着剤は焙焼される(工程32)。次いで焙焼された吸着剤から酸化ウランが回収される(工程33)。
【0011】
【実施例】
次に本発明の具体的態様を示すために、本発明の実施例を説明する。
<実施例1>
先ず、ガラス繊維からなるろ材シートを切断した5種類の微細片の試料をフィルタ1台のガラス繊維部分(約2Kg)の1/20の重量となるように約100g用意した。即ち、試料A、B及びCはウランを含む放射性塵を濾過するためのHEPAフィルタであって湿式系統(湿潤工程を含む工程)で使用されたフィルタから取出されたろ材シートを切断した微細片である。試料D及びEは同様のHEPAフィルタであって乾式系統(湿潤工程を含まない工程、例えばウラン燃料ペレットの成形工程、U38粉末の加熱工程等)で使用されたフィルタから取出されたろ材シートを切断した微細片である。
【0012】
これら5種類の微細片をそれぞれ400℃の温度で約1時間加熱してガラス繊維同士を相互に接着しているアクリル酸樹脂バインダを蒸発させた。上記バインダが蒸発した微細片を70℃の5N硝酸溶液中に投入し、この硝酸溶液中で微細片を回転切断歯を用いて粉砕し、スラリー化を促しながらガラス繊維を除染した。この除染処理は試料A〜Eについてフレッシュ硝酸で60分間の処理を2回繰返すことにより行った。次いでスラリー化を開始したガラス繊維をろ別した。ろ別したガラス繊維を水洗した後、ろ別した。次いでろ別したガラス繊維をボールミルを併用したミキサーを使用して水中で粉砕してスラリー化を促進し、完全にスラリーにした。このスラリーをろ過しながら成形してガラス繊維を所定の形状のバルク成形体にした。この成形に際しては、ろ過しながら成形されるバルク成形体は後に収容される円柱状容器缶のサイズとなるように成形した。次いでこのバルク成形体を脱水乾燥した。乾燥後のバルク成形体の容積は微細片にする前のろ材シートの約1/3に減容した。また乾燥後のバルク成形体の密度は0.2g/cm3程度となり、そのままの状態で放射能を測定した。
【0013】
<比較試験及び評価>
(a) 加熱処理による微細片の重量減少率
上記実施例1の5種類の試料と未使用のガラス繊維(以下、試料Fという。)を400℃の温度で合計90分まで加熱して、加熱時間と試料の重量減少率との関係を調べた。その結果を図2に示す。図2から明らかなように未使用の試料Fもガラス繊維の接着にアクリル酸樹脂が使用されているため、この樹脂が加熱により約5%除去され30分から60分で平衡に達することが判る。これに対し、湿式系統又は乾式系統で使用された試料A〜Eは重量減少率が約7%から最大約20%と未使用の試料Fよりも大きい。これはアクリル酸樹脂バインダ以外に揮発性の汚染物質がろ材シートに捕捉され、この汚染物質が加熱で除去されたからである。
【0014】
(b) 微細片の加熱処理の有無による除染効果の差異
上記試料Aの微細片を加熱処理しないで除染処理した。即ち試料Aの微細片を70℃の5N硝酸溶液に投入し、全てフレッシュな硝酸溶液中で微細片を回転切断歯を用いて粉砕し、スラリー化を促しながらガラス繊維をそれぞれ15分、30分、60分、90分、120分、150分及び300分の除染処理を2回繰返し、7水準で各々単独に除染処理した。上記7回の除染時間をパラメータとした際のスラリーの除染後バルク成形体の放射能レベル(γ線計数率)を図3の矢印Xに示す。
また上記試料Aの微細片を加熱処理した後、除染処理した。即ち試料Aの微細片を400℃の温度で約1時間加熱してガラス繊維同士を相互に接着しているアクリル酸樹脂バインダを蒸発させた後、この微細片を硝酸溶液に投入し、上記と同様にして60分間除染処理し、この除染処理を2回繰返した。この際の除染後バルク成形体の放射能レベル(γ線計数率)を図3の矢印Yに示す。
【0015】
図3の矢印Xより明らかなように、加熱処理しないで除染処理した場合には、300分の除染処理を2回繰返すことにより、ようやく初期の値の約1/170のレベルに相当する578cph(count/hr)まで放射能レベルが低下する。これに対し、図3の矢印Yより明らかなように、加熱処理した後、除染処理した場合には、60分の除染処理を2回繰返すだけで、同レベル(601cph)まで放射能レベルが低下することが判る。
【0016】
(c) 除染処理の結果(その1:γ線計数率での評価)
上記試料Fを除く試料A〜Eについて、除染処理する前の段階の微細片の放射能レベル(γ線計数率)を測定した。またこれらの試料A〜Eについて、除染処理した後の段階の微細片の放射能レベル(γ線計数率)を測定した。これらの測定結果を図4に示す。
図4より明らかなように、試料Aの微細片は除染処理することにより90,000cphの放射能レベルから700cphのレベルまで放射能レベルが低下し、試料Bの微細片は同様に2,000,000cphから8,000cphまで低下し、試料Cの微細片は3,000cphから700cphまで低下し、試料Dの微細片は3,000,000cphから2,000cphまで低下し、また試料Eの微細片は20,000cphから2,000cphまで低下することが判る。
【0017】
(d) 除染処理の結果(その2:比放射能での評価)
次に上記γ線計数率(cph)で測定した試料A〜Eのデータをより一般的な放射能レベルで評価するためにこれらのデータを比放射能(Bq/g)で求めた。
先ず濃縮度5%の235Uの100g標準試料のγ線計数率から単位がBqの放射能を求めて図8に示す検量線を作成し、この検量線から次式(1)の回帰式を求めた。
【0018】
y=0.0115x1.0477 ……(1)
ここでxは235Uのγ線計数率(cph)を、yは235Uの放射能(Bq)をそれぞれ示す。
上記式(1)のxに上記(c)で求めたγ線計数率(cph)を代入してyの放射能(Bq)を求めた。求めた放射能に対して、濃縮ウランとして放射能に与える別の同位体(234U及び238U)を考慮した計算を行って総放射能を算出した後、これを上記試料A〜Eのバルク成形体の重量で除算することにより比放射能(Bq/g)を求めた。その結果を表1に示す。
【0019】
【表1】

Figure 0004083300
【0020】
表1より明らかなように、除染処理前に高い放射能レベルであった試料においても上述した実施例の処理を行うことにより、除染処理前に低い放射能レベルであった試料C及びEと同等又はそれ以下の極めて低いレベルまで除染されたことが判る。
【0021】
【発明の効果】
以上述べたように、本発明によれば、ウラン等の放射性廃棄物の塵を捕捉したガラス繊維からなるろ材シートを切断して微細片にした後、好ましくは400℃で加熱してガラス繊維同士を相互に接着している有機バインダを蒸発させた後、この微細片を70℃の5N硝酸溶液中で粉砕してスラリー化を促しながらガラス繊維を除染し、除染したガラス繊維をろ別した後、水洗し、水洗したガラス繊維をろ別してそのガラス繊維を水中で粉砕して完全にスラリーにし、このスラリーをろ過しながら成形してガラス繊維を所定の形状のバルク成形体とし、このバルク成形体を脱水乾燥した後、有底容器に収容するようにしたから、減容及び除染の処理が容易となり、ウラン等の放射性元素を十分に回収できる。また使用済みHEPAフィルタのろ材シートの放射能を容易に測定できる。
【図面の簡単な説明】
【図1】本発明の使用済みHEPAフィルタのろ材シートの処理方法を工程順に示す図。
【図2】微細片の加熱時間と試料の重量減少率との関係を示す図。
【図3】微細片の除染処理時間とγ線計数率との関係を示す図。
【図4】除染処理前と除染処理後のγ線計数率を示す図。
【図5】従来のHEPAフィルタの構造を示す図6のB−B線断面図。
【図6】図5のA−A線断面図。
【図7】従来のHEPAフィルタを取外す状態を示す斜視図。
【図8】235Uの標準試料のγ線計数率から放射能(Bq)を求めた検量線を示す図。
【符号の説明】
12 ろ材シートの微細片化工程
13 微細片中のバインダの蒸発工程
14 硝酸溶液中での微細片の粉砕によるスラリー化と除染工程
16,18 スラリー化を開始したガラス繊維のろ別及び水洗工程
18 ガラス繊維の水洗工程
19,22 ガラス繊維のろ別及び水中でのスラリー化
23 スラリーをろ過しながらガラス繊維の成形
24 バルク成形体の脱水乾燥工程
26 バルク成形体を有底円筒容器に収容する工程[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating a filter medium sheet of a contaminated HEPA (High Efficiency Particulate Air) filter by being used for filtering dust of radioactive waste such as uranium.
[0002]
[Prior art]
In nuclear fuel facilities and the like, HEPA filters are frequently used to filter radioactive waste dust such as uranium. For example, as shown in FIGS. 5 and 6, the HEPA filter 1 is provided with a separator 3 made of a metal such as Al in a wooden support frame 2, and a filter medium sheet 4 of a filter made of glass fiber between the separators 3. Is bent and inserted in a zigzag accordion shape. As shown in FIG. 7, an upper lid 6 and a lower lid 7 are formed on the upper and lower portions of the filter 1, respectively, and when the contaminated used filter material sheet 4 is processed, the upper lid 6 and the lower lid 7 are removed from the filter 1. After removing the filter medium sheet 4, the filter medium sheet 4 made of glass fibers capturing the dust of radioactive waste such as uranium is taken out.
In order to save storage space, the filter medium sheet 4 of the used HEPA filter 1 taken out from the support frame 2 in this way is subjected to volume reduction processing by compression together with the separator 3 and then stored in the management area. .
[0003]
[Problems to be solved by the invention]
However, since the stored filter media sheet 4 is not decontaminated after compression, there is a problem that uranium or the like is not sufficiently recovered and cannot be effectively used as a resource. In addition, in order to recover uranium and the like from the filter material sheet 4 that has been volume-reduced by compression, and finally dispose of it such as embedding, many processing steps such as separation from Al and other metals and decontamination are required. There is a problem that the processing cost will increase in the future. Further, when measuring the radioactivity of a filter medium sheet that has been volume-reduced by compression, the filter medium sheet in a compressed state is inhomogeneous and has a high density, so that the measurement method becomes complicated and the measurement accuracy is low. On the other hand, when the radioactivity is measured after decontamination of the filter medium sheet that is not subjected to compression treatment, the filter medium sheet shows an accordion shape, so the measurement of the surface contamination density after decontamination becomes a large area, and a great deal of measurement There is a problem that requires time.
An object of the present invention is to provide a method for treating a filter medium sheet of a used HEPA filter that can be easily reduced in volume and decontaminated, can sufficiently recover radioactive elements such as uranium, and can easily measure radioactivity. It is in.
[0004]
[Means for Solving the Problems]
As shown in FIG. 1, the invention according to claim 1 includes a step 12 of cutting a filter medium sheet made of glass fibers capturing radioactive waste dust into fine pieces, and pulverizing the fine pieces in a nitric acid solution. Then, the step 14 for decontaminating the glass fiber while promoting the slurrying, the steps 16 and 18 for filtering the glass fiber that has started the slurrying and washing the glass fiber with water, and the glass fiber for washing the glass fiber with the water washed are filtered. Steps 19 and 22 for pulverizing the fibers in water to form a complete slurry, step 23 for forming the glass fibers into a bulk molded body having a predetermined shape by filtering the slurry, and dehydrating and drying the bulk molded body Forming step 24 and storing the dried bulk molded body in a bottomed container, and forming while filtering so that the outer shape of the bulk molded body corresponds to the inner shape of the container A filter media sheet processing method of a spent HEPA filter characterized by Rukoto.
[0005]
Since mechanical slurrying is performed simultaneously with the decontamination of the glass fiber with the nitric acid solution, particles of radioactive elements such as uranium adhering to the glass fiber are efficiently eluted from the glass fiber into the nitric acid solution. . As a result, it is possible to decontaminate to a level that can be buried. Further, the above-mentioned slurry is molded while being filtered to form a glass fiber in a predetermined shape and then dehydrated and dried, so that the radioactivity is equalized without being unevenly distributed in a part of the bulk shape. Therefore, when measuring the radioactivity of the obtained bulk molded article, the measurement accuracy is high and it is easily performed. Further, the obtained bulk compact is reduced to a volume that can be buried and disposed.
[0006]
The invention according to claim 2 is the invention according to claim 1, wherein the cut fine pieces are heated at a temperature of 300 to 500 ° C. to bond the glass fibers to each other between step 12 and step 14. It is a processing method including the process 13 of evaporating the organic binder which has been carried out.
By evaporating and removing the organic binder contained in the fine pieces, slurrying of the fine pieces can be promoted more efficiently.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
In order to process the filter medium sheet of the used HEPA filter, first, the upper lid 6 and the lower lid 7 are removed from the filter 1 as shown in FIG. Next, as shown in FIG. 1, the filter medium sheet made of glass fiber that captures dust of radioactive waste such as uranium is removed (step 11). Next, the filter medium sheet is cut into fine pieces (step 12). This fine piece is put into a 5N nitric acid solution, which is a decontamination solution heated to 60 to 80 ° C. in advance, for example, the fine piece is pulverized using rotating cutting teeth, and glass fiber is decontaminated while promoting slurrying. (Step 14). As a pretreatment for introducing the fine pieces into the nitric acid solution, an organic binder such as an acrylic resin that bonds the glass fibers to each other by heating the cut fine pieces at a temperature of 300 to 500 ° C., preferably 400 ° C. If it is allowed to evaporate (step 13), the slurrying of the fine pieces is promoted more efficiently, which is preferable. Here, when the heating temperature is less than 300 ° C., the evaporation of the organic binder becomes insufficient, and when it exceeds 500 ° C., there is a problem that the glass fibers constituting the filter medium sheet melt.
[0008]
Next, the fine pieces from which the organic binder has evaporated are put into a 5N nitric acid solution at 60 to 80 ° C. which is a decontamination solution, and the fine pieces are pulverized in this nitric acid solution using, for example, rotating cutting teeth to promote slurrying. Then, the glass fiber is decontaminated (step 14). Subsequently, the glass fiber which started the slurrying is separated by filtration (step 16). The filtrate produced by the filtration is sent to an ADU precipitation generation step (step 17) by adding NH 4 OH, which will be described later.
[0009]
Next, the filtered glass fiber is washed with water (step 18). By this washing with water, contaminants ionized and eluted by the nitric acid component and nitric acid are removed. The glass fiber washed with water is separated by filtration (step 19). The filtrate produced by the filtration is sent to a radioactive element adsorption step (step 21) described later. Next, the filtered glass fiber is pulverized in water by using a mixer or the like combined with a ball mill to promote slurrying to complete slurry (step 22). The slurry is molded while being filtered to form a glass fiber into a bulk molded body having a predetermined shape (step 23). The filtrate produced by the filtration is sent to a radioactive element adsorption step (step 21) described later. In addition, in the said process 23, the bulk molded object shape | molded while filtering is formed so that the external shape may correspond to the internal shape of the bottomed container accommodated later. The shape of the container is not particularly limited. If the container has a cylindrical shape such as a drum, for example, the bulk molded body is formed into a disk shape or a columnar shape. Further, if the container is a bottomed rectangular tube shape, the bulk molded body is formed to be a square plate shape or a prism shape. In the case of molding into a columnar shape or a prismatic shape, the processing batch amount increases, but the homogeneity of the molded body for measuring radioactivity can be further improved. Next, the glass fiber bulk molded body is dehydrated and dried (step 24). The dried bulk molded body is accommodated in a bottomed container (step 26). Next, the radioactivity of the bulk molded body accommodated in the bottomed container is measured (step 27).
[0010]
As described above, in step 16, the filtrate produced by filtration is sent to the ADU precipitation generation step (step 17) by adding NH 4 OH. In step 17, the filtrate produced by filtration and NH 4 OH (ammonia water) react with each other to form a precipitate of ADU (ammonium heavy uranate). The produced ADU precipitate is then filtered off (step 28). The filtrate produced by the filtration is sent to the above-described adsorbing step (step 21) of the radioactive element to the adsorbent. The filtered ADU precipitate is dried and roasted (step 29). As a result, U 3 O 8 powder is generated and recovered (step 31).
As described above, the filtrate produced in the glass fiber filtration step (step 19) washed with water, the filtrate produced in the glass fiber molding step (step 23) while filtering the slurry, and the ADU precipitation filtration step (step 28). ) Is sent to a radioactive element adsorption step (step 21) on the adsorbent, where a tannin-based adsorbent is added. As a result, the radioactive elements contained in these filtrates are adsorbed by the tannin-based adsorbent. The adsorbent that has adsorbed the radioactive elements is roasted (step 32). Next, uranium oxide is recovered from the roasted adsorbent (step 33).
[0011]
【Example】
Next, examples of the present invention will be described in order to show specific embodiments of the present invention.
<Example 1>
First, about 100 g of a sample of five kinds of fine pieces obtained by cutting a filter medium sheet made of glass fiber was prepared so as to have a weight of 1/20 of the glass fiber portion (about 2 Kg) of one filter. That is, samples A, B, and C are HEPA filters for filtering radioactive dust containing uranium, and are fine pieces obtained by cutting a filter material sheet taken out from a filter used in a wet system (including a wet process). is there. Samples D and E are similar HEPA filters and filter media taken from a filter used in a dry system (a process not including a wet process, such as a uranium fuel pellet molding process, a U 3 O 8 powder heating process, etc.) It is the fine piece which cut | disconnected the sheet | seat.
[0012]
These five types of fine pieces were each heated at a temperature of 400 ° C. for about 1 hour to evaporate the acrylic resin binder that adhered the glass fibers to each other. The fine piece from which the binder had evaporated was put into a 5N nitric acid solution at 70 ° C., and the fine piece was pulverized in this nitric acid solution using a rotating cutting tooth to decontaminate glass fibers while promoting slurrying. This decontamination treatment was performed by repeating the treatment for 60 minutes with fresh nitric acid for samples A to E twice. Subsequently, the glass fiber which started the slurrying was separated by filtration. The filtered glass fiber was washed with water and then filtered. Subsequently, the filtered glass fiber was pulverized in water using a mixer combined with a ball mill to promote slurrying, and was completely made into a slurry. The slurry was molded while being filtered to form a glass fiber into a bulk molded body having a predetermined shape. In this molding, the bulk molded body molded while filtering was molded so as to be the size of a cylindrical container can accommodated later. Next, this bulk molded body was dehydrated and dried. The volume of the bulk compact after drying was reduced to about 1/3 of the filter medium sheet before it was made into fine pieces. Moreover, the density of the bulk molded body after drying was about 0.2 g / cm 3 , and the radioactivity was measured as it was.
[0013]
<Comparison test and evaluation>
(a) Weight reduction rate of fine pieces by heat treatment Five types of samples of Example 1 and unused glass fibers (hereinafter referred to as Sample F) are heated at a temperature of 400 ° C. for a total of 90 minutes to be heated. The relationship between time and weight loss rate of the sample was investigated. The result is shown in FIG. As is apparent from FIG. 2, since the acrylic resin is used for bonding the glass fiber to the unused sample F, it can be seen that about 5% of the resin is removed by heating and the equilibrium is reached in 30 to 60 minutes. On the other hand, the samples A to E used in the wet system or the dry system have a weight reduction rate of about 7% to a maximum of about 20%, which is larger than the unused sample F. This is because volatile contaminants other than the acrylic resin binder are trapped in the filter medium sheet, and the contaminants are removed by heating.
[0014]
(b) Difference in decontamination effect depending on presence / absence of heat treatment of fine piece The fine piece of sample A was decontaminated without heat treatment. That is, the fine piece of sample A was put into a 5N nitric acid solution at 70 ° C., and the fine piece was pulverized in a fresh nitric acid solution using rotating cutting teeth, and the glass fibers were crushed for 15 minutes and 30 minutes, respectively, while promoting slurrying. , 60 minutes, 90 minutes, 120 minutes, 150 minutes, and 300 minutes, the decontamination treatment was repeated twice, and each of them was decontaminated independently at 7 levels. The radioactivity level (γ-ray count rate) of the bulk molded article after decontamination of the slurry when the above seven decontamination times are used as parameters is indicated by an arrow X in FIG.
Further, the fine piece of the sample A was heat-treated and then decontaminated. That is, after heating the fine piece of sample A at a temperature of 400 ° C. for about 1 hour to evaporate the acrylic resin binder that bonds the glass fibers to each other, the fine piece is put into a nitric acid solution, and Similarly, decontamination treatment was performed for 60 minutes, and this decontamination treatment was repeated twice. The radioactivity level (γ-ray counting rate) of the demolded bulk compact at this time is indicated by an arrow Y in FIG.
[0015]
As is clear from the arrow X in FIG. 3, when the decontamination process is performed without the heat treatment, the decontamination process of 300 minutes is repeated twice, and finally corresponds to a level of about 1/170 of the initial value. The radioactivity level decreases to 578 cph (count / hr). On the other hand, as is clear from the arrow Y in FIG. 3, when the decontamination process is performed after the heat treatment, the radioactivity level is reduced to the same level (601 cph) by repeating the 60-minute decontamination process twice. Can be seen to decrease.
[0016]
(c) Results of decontamination treatment (Part 1: Evaluation with γ-ray counting rate)
For samples A to E excluding the sample F, the radioactivity level (γ-ray count rate) of the fine pieces before the decontamination treatment was measured. Moreover, about these samples AE, the radioactivity level (gamma ray count rate) of the fine piece of the stage after a decontamination process was measured. The measurement results are shown in FIG.
As is clear from FIG. 4, the fine piece of sample A is decontaminated to reduce the radioactive level from 90,000 cph to 700 cph, and the fine piece of sample B is also 2,000. From 3,000 cph to 8,000 cph, the fine piece of sample C from 3,000 cph to 700 cph, the fine piece of sample D from 3,000,000 cph to 2,000 cph, and the fine piece of sample E Is found to decrease from 20,000 cph to 2,000 cph.
[0017]
(d) Results of decontamination treatment (Part 2: Evaluation by specific activity)
Next, in order to evaluate the data of samples A to E measured at the above-mentioned γ-ray counting rate (cph) at a more general radioactivity level, these data were obtained by specific radioactivity (Bq / g).
First, the radioactivity of the unit Bq is determined from the γ-ray counting rate of a 100 g standard sample of 235 U with a concentration of 5%, and a calibration curve shown in FIG. 8 is created. From this calibration curve, the regression equation (1) is obtained. Asked.
[0018]
y = 0.0115x 1.0477 (1)
Where x 235 gamma ray count rate U a (cph), y represents the 235 U radioactivity (Bq), respectively.
The radioactivity (Bq) of y was determined by substituting the γ-ray count rate (cph) determined in (c) above for x in the above formula (1). After calculating the total radioactivity by performing a calculation considering the other isotopes ( 234 U and 238 U) given to the radioactivity as enriched uranium with respect to the obtained radioactivity, this is the bulk of the above samples AE The specific activity (Bq / g) was determined by dividing by the weight of the molded body. The results are shown in Table 1.
[0019]
[Table 1]
Figure 0004083300
[0020]
As is clear from Table 1, samples C and E, which had a low radioactivity level before the decontamination treatment, were obtained by performing the above-described processing on the samples that had a high radioactivity level before the decontamination treatment. It can be seen that it was decontaminated to a very low level equivalent to or lower than.
[0021]
【The invention's effect】
As described above, according to the present invention, after cutting a filter medium sheet made of glass fibers capturing radioactive waste dust such as uranium into fine pieces, the glass fibers are preferably heated at 400 ° C. After evaporating the organic binder adhering to each other, the fine pieces are crushed in a 5N nitric acid solution at 70 ° C. to decontaminate the glass fibers while promoting slurrying, and the decontaminated glass fibers are filtered off. After that, the glass fiber washed with water is filtered, and the glass fiber is pulverized in water to make a complete slurry. The slurry is molded while filtering to form a glass fiber into a bulk molded body having a predetermined shape. Since the molded body is dehydrated and dried and then accommodated in a bottomed container, the volume reduction and decontamination processes are facilitated, and radioactive elements such as uranium can be sufficiently recovered. Moreover, the radioactivity of the filter medium sheet | seat of a used HEPA filter can be measured easily.
[Brief description of the drawings]
FIG. 1 is a view showing a processing method for a filter medium sheet of a used HEPA filter according to the present invention in the order of steps.
FIG. 2 is a diagram showing the relationship between the heating time of a fine piece and the weight reduction rate of a sample.
FIG. 3 is a diagram showing the relationship between the decontamination processing time of fine pieces and the γ-ray count rate.
FIG. 4 is a diagram showing γ-ray count rates before and after decontamination processing.
5 is a cross-sectional view taken along the line BB of FIG. 6 showing the structure of a conventional HEPA filter.
6 is a cross-sectional view taken along line AA in FIG.
FIG. 7 is a perspective view showing a state in which a conventional HEPA filter is removed.
FIG. 8 is a diagram showing a calibration curve for determining the radioactivity (Bq) from the γ-ray counting rate of a 235 U standard sample.
[Explanation of symbols]
12 Fine-cutting process of filter medium sheet 13 Evaporating process of binder in fine piece 14 Slurry and decontamination process by grinding fine pieces in nitric acid solution 16, 18 Filtration and washing process of glass fiber which started slurrying 18 Glass fiber water washing process 19, 22 Filtration of glass fiber and slurrying in water 23 Molding of glass fiber while filtering slurry 24 Dehydration drying process of bulk molded body 26 Bulk molded body is accommodated in bottomed cylindrical container Process

Claims (2)

放射性廃棄物の塵を捕捉したガラス繊維からなるろ材シートを切断して微細片にする工程(12)と、
前記微細片を硝酸溶液中で粉砕してスラリー化を促しながらガラス繊維を除染する工程(14)と、
前記スラリー化を開始したガラス繊維をろ別してそのガラス繊維を水洗する工程(16, 18)と、
前記水洗したガラス繊維をろ別してそのガラス繊維を水中で粉砕して完全にスラリーにする工程(19, 22)と、
前記スラリーをろ過しながら成形してガラス繊維を所定の形状のバルク成形体にする工程(23)と、
前記バルク成形体を脱水乾燥する工程(24)と、
前記乾燥したバルク成形体を有底容器に収容する工程(26)とを含み、
前記バルク成形体の外形が前記容器の内部形状に相応するようにろ過しながら成形することを特徴とする使用済みHEPAフィルタのろ材シートの処理方法。
Cutting the filter medium sheet made of glass fibers capturing radioactive waste dust into fine pieces (12);
A step (14) of decontaminating the glass fibers while pulverizing the fine pieces in a nitric acid solution to promote slurrying;
The step of filtering the glass fibers that have started to be slurried and washing the glass fibers with water (16, 18),
Filtering the washed glass fibers and crushing the glass fibers in water to form a complete slurry (19, 22);
Forming the glass fiber into a bulk molded body having a predetermined shape by shaping the slurry while filtering;
Dehydrating and drying the bulk molded body (24);
Containing the dried bulk molded body in a bottomed container (26),
A processing method for a filter medium sheet of a used HEPA filter, wherein the bulk molded body is molded while being filtered so that an outer shape of the bulk molded body corresponds to an inner shape of the container.
工程(12)と工程(14)の間に、切断した微細片を300〜500℃の温度で加熱してガラス繊維同士を相互に接着している有機バインダを蒸発させる工程(13)を含む請求項1記載の処理方法。Claim (13) including the step (13) of evaporating the organic binder which heats the cut fine piece at a temperature of 300 to 500 ° C. and bonds the glass fibers to each other between the step (12) and the step (14). Item 2. A processing method according to Item 1.
JP21058998A 1998-07-27 1998-07-27 Processing method of used HEPA filter media sheet Expired - Fee Related JP4083300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21058998A JP4083300B2 (en) 1998-07-27 1998-07-27 Processing method of used HEPA filter media sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21058998A JP4083300B2 (en) 1998-07-27 1998-07-27 Processing method of used HEPA filter media sheet

Publications (2)

Publication Number Publication Date
JP2000046997A JP2000046997A (en) 2000-02-18
JP4083300B2 true JP4083300B2 (en) 2008-04-30

Family

ID=16591832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21058998A Expired - Fee Related JP4083300B2 (en) 1998-07-27 1998-07-27 Processing method of used HEPA filter media sheet

Country Status (1)

Country Link
JP (1) JP4083300B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101293780B1 (en) 2011-12-05 2013-08-06 한국수력원자력 주식회사 Leaching equipment and technology for HEPA glass fiber and Leaching method using Thereof
CN108288511A (en) * 2017-06-19 2018-07-17 中国工程物理研究院材料研究所 The pre-treating method and pretreating device of Spent Radioactive filter
CN115815291A (en) * 2022-12-01 2023-03-21 珠海市斗门区永兴盛环保工业废弃物回收综合处理有限公司 Waste filter element treatment method

Also Published As

Publication number Publication date
JP2000046997A (en) 2000-02-18

Similar Documents

Publication Publication Date Title
US5935380A (en) Adsorbent for metal ions and method of making and using
JP5922193B2 (en) NOVEL ADSORBENT, METHOD FOR PRODUCING THE SAME AND USE THEREOF
JP4168172B2 (en) Method for producing hexacyanoferrate
KR101512248B1 (en) Porous adsorbents for trapping radioactive iodine gas and fabrication method thereof
JP4083300B2 (en) Processing method of used HEPA filter media sheet
Rondinella et al. Leaching behaviour of UO2 containing α-emitting actinides
CA1086875A (en) Method of purifying ion exchanger resins spent in the operation of a nuclear reactor
US6472579B1 (en) Method for solidification of radioactive and other hazardous waste
JP2012229998A (en) Radioactive substance decontamination device and decontamination method, from radioactively contaminated water incorporating salt such as seawater
JP2807381B2 (en) Method for producing large-scale fired solid containing cesium and / or strontium, and heating element obtained from the solid
JP6041578B2 (en) Treatment method of radioactive cesium contaminated soil
KR101558739B1 (en) Method for decontamination of radioactive concrete waste
CN106390961B (en) Cigarette ash is except uranium absorption agent and the method for handling low concentration uranium-bearing wastewater
KR101989910B1 (en) Volume reduction treatment method of spent uranium catalyst
McGinnis et al. Caustic leaching of high-level radioactive tank sludge: a critical literature review
JP2014074694A (en) Method for removing radioactive cesium
JP4225659B2 (en) Decontamination method of radioactive liquid waste
Tsukamoto et al. Intraparticle diffusion of cesium and strontium cations into rock materials
Hart et al. Neptunium uptake on Boom Clay-time dependence and association of Np with fine particles
JP2565877B2 (en) Radioactive waste sorter
Al-Suhybani Removal of radiocobalt form aqueous solutions by inorganic exchangers
Hu et al. Studies of the radioactivity of amang effluent
US20080142448A1 (en) Treatment of metal-containing liquids
KR100655586B1 (en) Trapping agent of volatile rhenium or technetium compounds and trapping method using its
JPS61230096A (en) Emergency radioactive gas treater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees