JP4083194B2 - Method for producing liquid cake - Google Patents

Method for producing liquid cake Download PDF

Info

Publication number
JP4083194B2
JP4083194B2 JP2006197621A JP2006197621A JP4083194B2 JP 4083194 B2 JP4083194 B2 JP 4083194B2 JP 2006197621 A JP2006197621 A JP 2006197621A JP 2006197621 A JP2006197621 A JP 2006197621A JP 4083194 B2 JP4083194 B2 JP 4083194B2
Authority
JP
Japan
Prior art keywords
producing
liquid
enzyme
koji
liquid medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006197621A
Other languages
Japanese (ja)
Other versions
JP2007125002A (en
Inventor
利和 杉本
博志 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Original Assignee
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd filed Critical Asahi Breweries Ltd
Priority to JP2006197621A priority Critical patent/JP4083194B2/en
Publication of JP2007125002A publication Critical patent/JP2007125002A/en
Application granted granted Critical
Publication of JP4083194B2 publication Critical patent/JP4083194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Alcoholic Beverages (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、液体麹の製造方法に関し、詳しくは酵素活性の増強された液体麹の製造方法に関する。   The present invention relates to a method for producing a liquid koji, and more particularly to a method for producing a liquid koji having enhanced enzyme activity.

酒類等の製造に用いられる麹は、蒸煮等の処理後の原料に糸状菌の胞子を接種して培養する固体麹と、水に原料及びその他の栄養源を添加して液体培地を調製し、これに麹菌の胞子又は前培養した菌糸等を接種して培養する液体麹がある。   The koji used in the production of alcoholic beverages, etc., is prepared by inoculating and cultivating spores of filamentous fungi on the raw material after processing such as cooking, and preparing a liquid medium by adding the raw material and other nutrients to water, There is a liquid koji that inoculates and cultivates gonococcal spores or precultured hyphae.

従来の酒類などの発酵飲食品、例えば、日本酒、焼酎、しょうゆ、みそ、みりん等の製造では、固体培養法により製麹された、いわゆる固体麹が広く利用されている。この固体培養法は、アスペルギルス・カワチ(Aspergillus kawachii)、アスペルギルス・アワモリ(Aspergillus awamori)、アスペルギルス・ニガー(Aspergillus niger)、アスペルギルス・オリーゼ(Aspergillus oryzae)、アスペルギルス・ソーヤ(Aspergillus sojae)等の麹菌の胞子を、蒸煮した穀類等の固体原料へ散布し、その表面で麹菌を増殖させる培養方法である。   In the production of conventional fermented foods and beverages such as alcoholic beverages, such as sake, shochu, soy sauce, miso, mirin, etc., so-called solid koji made by a solid culture method is widely used. Aspergillus kawachii, Aspergillus awamori, Aspergillus niger (Aspergillus niger), Aspergillus sperm, Aspergillus sperm Is sprayed onto a solid raw material such as steamed cereals, and the koji mold is grown on the surface thereof.

例えば、焼酎の製造では、アスペルギルス・カワチ(Aspergillus kawachii)やアスペルギルス・アワモリ(Aspergillus awamori)等の固体麹が広く用いられている。しかしながら、固体培養法は、原料や麹菌が不均一に分散する培養系であるため、温度や水分含量、各種栄養成分といった因子を均一にすることが困難であり、その培養制御は大変煩雑である。また、開放状態で製麹されることも多く、この場合は、雑菌による汚染といった品質管理面での注意も要する。そのため、大規模製造には不向きな方法とも言える。   For example, in the production of shochu, solid soot such as Aspergillus kawachii and Aspergillus awamori is widely used. However, since the solid culture method is a culture system in which raw materials and koji molds are dispersed non-uniformly, it is difficult to make uniform factors such as temperature, water content, and various nutrient components, and the culture control is very complicated. . In addition, iron is often produced in an open state, and in this case, attention is required in terms of quality control such as contamination by various bacteria. Therefore, it can be said that the method is not suitable for large-scale manufacturing.

これに対して、液体培養法は、培養制御や品質管理が容易であり、効率的な生産に適した培養形態である。しかし、例えば、焼酎醸造に必要な酵素活性が十分に得られない等の理由から、麹菌を液体培養して得られる培養物を、実際に焼酎麹として用いた例は少ない。ここで、液体培養法で得られる培養物とは、液体培養法で得られる培養物そのもの(以下、液体麹と称することがある)の他、培養液、菌体、それらの濃縮物又はそれらの乾燥物であってもよい。   On the other hand, the liquid culture method is easy to control culture and quality control, and is a culture form suitable for efficient production. However, there are few examples in which a culture obtained by liquid culture of koji mold is actually used as shochu because, for example, the enzyme activity necessary for shochu brewing cannot be sufficiently obtained. Here, the culture obtained by the liquid culture method refers to the culture itself obtained by the liquid culture method (hereinafter sometimes referred to as “liquid koji”), a culture solution, microbial cells, a concentrate thereof, or their It may be a dry product.

液体培養法で得られる培養物が焼酎等の発酵飲食品の製造に利用されない大きな理由として、上記理由の他に、液体培養では麹菌のアミラーゼ、セルラーゼ等の酵素生産挙動が固体培養と大きく異なるばかりか、全般的に生産性が低下することが知られている(非特許文献1、2参照)。   As a major reason why the culture obtained by the liquid culture method is not used for the production of fermented foods and beverages such as shochu, in addition to the above reasons, the enzyme production behavior of amylase, cellulase, etc. of Aspergillus is significantly different in liquid culture Moreover, it is known that productivity generally decreases (see Non-Patent Documents 1 and 2).

通常、焼酎をはじめとする酒類の製造では、並行複発酵によりアルコールが生成される。従って、麹菌へのグルコース供給に影響を与える麹菌の糖質分解関連酵素、特にグルコアミラーゼや耐酸性α−アミラーゼは、アルコール発酵における鍵酵素である。しかしながら、液体培養法で得られる培養物において、グルコアミラーゼの活性は著しく低く、生産挙動も固体培養とは大きく異なることが知られている(非特許文献3〜6参照)。   Usually, in the production of alcoholic beverages including shochu, alcohol is produced by parallel double fermentation. Therefore, the saccharide-degrading-related enzymes of koji mold that affect glucose supply to koji molds, in particular glucoamylase and acid-resistant α-amylase, are key enzymes in alcohol fermentation. However, it is known that in the culture obtained by the liquid culture method, the activity of glucoamylase is remarkably low, and the production behavior is also greatly different from that of solid culture (see Non-Patent Documents 3 to 6).

麹菌のグルコアミラーゼ活性を向上させる方法として、菌糸の生育にストレスを与えながら麹菌を培養する方法(特許文献1参照)や焙焼した穀類を麹菌培養液に添加する方法(特許文献2参照)が報告されている。特許文献1に開示の方法は、多孔性膜上又は空隙を有する包括固定化剤中で培養してグルコアミラーゼをコードする新規遺伝子glaBを発現させて同酵素活性を高めるもので、厳密な制御又は特殊な培養装置が必要であり、実用的ではない。また、特許文献2に開示の方法は、原料の少なくとも一部に焙焼した穀類を用いた液体培地で麹菌を培養するもので、穀類を焙焼するという、新たな製造工程が加わることになる。   As a method for improving the glucoamylase activity of Aspergillus oryzae, a method of cultivating Aspergillus oryzae while stressing the growth of mycelia (see Patent Document 1) or a method of adding roasted cereals to an Aspergillus culture medium (see Patent Document 2) It has been reported. The method disclosed in Patent Document 1 is a method in which a novel gene glaB encoding glucoamylase is expressed by culturing in a entrapping immobilization agent on a porous membrane or having voids, thereby enhancing the enzyme activity. Special culture equipment is required and is not practical. In addition, the method disclosed in Patent Document 2 is a method for culturing koji molds in a liquid medium using cereals roasted as at least a part of the raw material, and adds a new manufacturing process of roasting cereals. .

そこで、本発明者らは、麹菌にとって難分解性の糖質を含有する液体培地を用いた麹菌の培養方法に関する発明を提案した(特許文献3参照)。この発明によれば、麹菌の液体培養において、酒類などの発酵飲食品の製造に使用可能な、グルコアミラーゼ等の糖質分解関連酵素の活性が高い麹菌培養物を、簡便、且つ安価に得ることができる。   Therefore, the present inventors have proposed an invention relating to a method for culturing koji molds using a liquid medium containing a saccharide that is hardly degradable for koji molds (see Patent Document 3). According to this invention, in a liquid culture of Aspergillus, it is possible to easily and inexpensively obtain an Aspergillus culture that has a high activity of a saccharide degradation-related enzyme such as glucoamylase that can be used in the production of fermented foods and drinks such as alcoholic beverages. Can do.

一方、耐酸性α−アミラーゼについては、最近、分子生物学的な解析が詳細に行なわれ始めている(非特許文献7参照)。それによれば、白麹菌は非耐酸性α−アミラーゼと耐酸性α−アミラーゼという性質の異なる2種類のアミラーゼ遺伝子を有しているが、その発現様式は大きく異なっており、液体培養においては、非耐酸性α−アミラーゼは十分に生産されるものの、焼酎醸造の鍵酵素である耐酸性α−アミラーゼはほとんど生産されないことが報告されている。   On the other hand, regarding acid-resistant α-amylase, molecular biological analysis has recently started in detail (see Non-Patent Document 7). According to it, white mold has two types of amylase genes with different properties, non-acid-resistant α-amylase and acid-resistant α-amylase, but their expression patterns are greatly different. Although acid-resistant α-amylase is sufficiently produced, it is reported that acid-resistant α-amylase, which is a key enzyme for shochu brewing, is hardly produced.

焼酎製造では、焼酎もろみの腐造防止のために低pH環境下で醸造する。しかし、非耐酸性α−アミラーゼは、低pH条件では速やかに失活してしまうため、焼酎醸造の糖質分解にはほとんど貢献しない。そのため、焼酎醸造の糖質分解に寄与していると考えられる耐酸性α−アミラーゼを、麹菌の液体培養で大量に生成させることが、焼酎製造のために不可欠である。   In shochu production, brewing is performed under a low pH environment in order to prevent the shochu mash from becoming rotted. However, non-acid resistant α-amylase is rapidly inactivated under low pH conditions, and therefore hardly contributes to the degradation of carbohydrates in shochu brewing. For this reason, it is indispensable for producing shochu to produce a large amount of acid-resistant α-amylase, which is thought to contribute to the degradation of carbohydrates in shochu brewing, by liquid culture of koji mold.

過去には、麹菌の液体培養における耐酸性α−アミラーゼの生産挙動を詳細に検討した報告があるものの、その方法はペプトンやクエン酸緩衝液を含む合成培地を用いている上に、培養時間が100時間以上かかるなど、実際の焼酎醸造に適用できるような液体麹の製造方法であるとは言い難い(非特許文献8〜10参照)。
このように、耐酸性α−アミラーゼは、基本的に液体培養では生成されない酵素であると一般的に考えられており、これまでに耐酸性α−アミラーゼの活性が高い液体麹は開発されていない。
In the past, although there have been reports that have examined in detail the production behavior of acid-resistant α-amylase in liquid culture of Aspergillus oryzae, the method uses a synthetic medium containing peptone or citrate buffer, and the culture time is It is difficult to say that it is a method for producing liquid koji that can be applied to actual shochu brewing, such as taking more than 100 hours (see Non-Patent Documents 8 to 10).
Thus, it is generally considered that acid-resistant α-amylase is basically an enzyme that is not produced in liquid culture, and a liquid koji with high activity of acid-resistant α-amylase has not been developed so far. .

特開平11−225746号公報Japanese Patent Laid-Open No. 11-225746 特開2001−321154号公報JP 2001-321154 A 特開2003−265165号公報JP 2003-265165 A Iwashita K. et a1:Biosci. Biotechno1. Bioche.,62,1938-1946(1998)Iwashita K. et a1: Biosci. Biotechno1. Bioche., 62, 1938-1946 (1998) 山根雄一ら:日本醸造協会誌.,99,84-92(2004)Yuichi Yamane et al .: Japan Brewing Association Journal, 99, 84-92 (2004) Hata Y. et. Al.:J. Ferment. Bioeng.,84,532-537(1997)Hata Y. et. Al .: J. Ferment. Bioeng., 84, 532-537 (1997) Hata Y. et. a1.:Gene.,207,127-134(1998)Hata Y. et. A1 .: Gene., 207, 127-134 (1998) Ishida H. et. al.:J. Ferment. Bioeng.,86,301-307(1998)Ishida H. et. Al .: J. Ferment. Bioeng., 86, 301-307 (1998) Ishida H. et. a1:Curr. Genet.,37,373-379(2000)Ishida H. et. A1: Curr. Genet., 37, 373-379 (2000) Nagamine K. et.a1.:Biosci. Biotechno1. Biochem.,67,2194-2202(2003)Nagamine K. et.a1 .: Biosci. Biotechno1. Biochem., 67, 2194-2202 (2003) Sudo S. et al:J. Ferment. Bioeng.,76,105-110(1993)Sudo S. et al: J. Ferment. Bioeng., 76, 105-110 (1993) Sudo S. et al:J. Ferment. Bioeng.,77,483-489(1994)Sudo S. et al: J. Ferment. Bioeng., 77, 483-489 (1994) 須藤茂俊ら:日本醸造協会誌,89,768-774(1994)Shigetoshi Sudo et al .: Journal of the Japan Brewing Association, 89, 768-774 (1994)

本発明者らは、表面の全部又は一部が少なくとも穀皮で覆われた穀類を培養原料として含む液体培地で麹菌を培養することにより、グルコアミラーゼや耐酸性α−アミラーゼといった焼酎等の製造に必要な酵素活性を十分に含有する液体麹が製造できることを見出し、既に特許出願した(特願2004−350661号明細書、特願2004−352320号明細書参照)。
しかしながら、これらの方法によるグルコアミラーゼや耐酸性α−アミラーゼ以外の酵素生産挙動はこれまで不明であった。
The inventors of the present invention can produce shochu such as glucoamylase and acid-resistant α-amylase by culturing koji molds in a liquid medium containing, as a raw material, cereals whose surfaces are all or partly covered with husks. It has been found that a liquid soot sufficiently containing the necessary enzyme activity can be produced, and patent applications have already been filed (see Japanese Patent Application Nos. 2004-350661 and 2004-352320).
However, enzyme production behaviors other than glucoamylase and acid-resistant α-amylase by these methods have not been known so far.

本発明の目的は、液体麹において、グルコアミラーゼ及び耐酸性α−アミラーゼといったデンプン分解酵素、並びに、それ以外の酵素活性を増強させる方法を開発することであり、特に、液体培地の組成を最適化することにより、酵素活性の高い液体麹を製造する方法を提供することである。   The object of the present invention is to develop a method for enhancing amylolytic enzymes such as glucoamylase and acid-resistant α-amylase and other enzyme activities in liquid koji, and in particular, optimizing the composition of the liquid medium. By doing so, it is providing the method of manufacturing a liquid rice cake with high enzyme activity.

本発明者らは、液体麹における更なる酵素高生産を目指し、上記培養原料と種々の栄養源との併用効果について鋭意検討を重ねた結果、液体培地中に特定の窒素源を含有させることにより、さらには、硫酸塩およびリン酸塩を共存させることによって、デンプン分解酵素であるグルコアミラーゼ、セルロース分解酵素であるセルラーゼ、並びに、タンパク分解酵素である酸性カルボキシペプチダーゼの生産性が向上することを見出し、本発明を完成したのである。   As a result of intensive studies on the combined effect of the above-mentioned culture raw materials and various nutrient sources, the present inventors aim to further increase enzyme production in liquid koji, and as a result, the liquid medium contains a specific nitrogen source. Furthermore, it has been found that the coexistence of sulfate and phosphate improves the productivity of amylolytic enzyme glucoamylase, cellulase cellulose degrading enzyme, and acid carboxypeptidase proteolytic enzyme. The present invention has been completed.

すなわち、請求項1に係る本発明は、表面の全部が穀皮で覆われた穀類並びに硝酸カリウム、硝酸ナトリウム、酵母菌体、酵母菌体処理物、穀類穀皮及び穀類糠から選ばれる1種以上の窒素源を含有する液体培地で白麹菌または黒麹菌を培養することを特徴とする酵素活性の増強された液体麹の製造方法である。
請求項2に係る本発明は、酵素が、少なくともグルコアミラーゼおよび耐酸性α−アミラーゼである請求項1に記載の酵素活性の増強された液体麹の製造方法である。
請求項3に係る本発明は、液体培地が、表面の全部が穀皮で覆われた穀類と、硝酸カリウム及び硝酸ナトリウムから選ばれる1種又は2種と、リン酸2水素カリウム及びリン酸アンモニウムから選ばれる1種又は2種と、硫酸マグネシウム7水和物、硫酸鉄7水和物及び硫酸アンモニウムから選ばれる1種ないし3種と、を含有することを特徴とする請求項1に記載の酵素活性の増強された液体麹の製造方法である。
請求項4に係る本発明は、液体培地が、硝酸カリウム及び硝酸ナトリウムから選ばれる1種又は2種を0.1〜2.0%(w/vol)の濃度で含有する請求項に記載の酵素活性の増強された液体麹の製造方法である。
請求項5に係る本発明は、液体培地が、リン酸2水素カリウム及びリン酸アンモニウムから選ばれる1種又は2種を0.05〜1.0%(w/vol)の濃度で含有する請求項に記載の酵素活性の増強された液体麹の製造方法である。
請求項6に係る本発明は、液体培地が、硫酸マグネシウム7水和物、硫酸鉄7水和物及び硫酸アンモニウムから選ばれる1種ないし3種を0.01〜0.5%(w/vol)の濃度で含有する請求項に記載の酵素活性の増強された液体麹の製造方法である。
That is, the present invention according to claim 1 is one or more kinds selected from cereals whose surfaces are entirely covered with cereals , and potassium nitrate, sodium nitrate, yeast cells, processed yeast cells, cereal husks, and cereals. A method for producing a liquid koji with enhanced enzyme activity, comprising culturing white koji mold or black koji mold in a liquid medium containing a nitrogen source.
The present invention according to claim 2 is the method for producing a liquid koji having enhanced enzyme activity according to claim 1, wherein the enzymes are at least glucoamylase and acid-resistant α-amylase.
In the present invention according to claim 3, the liquid medium is composed of cereals whose entire surface is covered with husk, one or two kinds selected from potassium nitrate and sodium nitrate, potassium dihydrogen phosphate and ammonium phosphate. 2. The enzyme activity according to claim 1, comprising one or two selected, and one or three selected from magnesium sulfate heptahydrate, iron sulfate heptahydrate, and ammonium sulfate. This is a method for producing an enhanced liquid koji .
The present invention according to claim 4, liquid medium, according to one or two elements selected from potassium nitrate and sodium nitrate to claim 3 containing at a concentration of 0.1 ~2.0% (w / vol) This is a method for producing a liquid koji with enhanced enzyme activity.
In the present invention according to claim 5 , the liquid medium contains one or two selected from potassium dihydrogen phosphate and ammonium phosphate at a concentration of 0.05 to 1.0% (w / vol). Item 4. A method for producing a liquid koji having enhanced enzyme activity according to Item 3 .
In the present invention according to claim 6 , the liquid medium is 0.01 to 0.5% (w / vol) of one to three selected from magnesium sulfate heptahydrate, iron sulfate heptahydrate and ammonium sulfate. It is a manufacturing method of the liquid rice cake with which the enzyme activity was enhanced of Claim 3 contained in the density | concentration.

請求項に係る本発明は、表面の全部が穀皮で覆われた穀類が、玄米、籾殻が全部又は一部付いている米および未精白から精白歩合92%以上の麦である請求項1に記載の酵素活性の増強された液体麹の製造方法である。
請求項に係る本発明は、白麹菌がアスペルギルス・カワチであることを特徴とする請求項1に記載の酵素活性の増強された液体麹の製造方法である。
請求項に係る本発明は、黒麹菌がアスペルギルス・アワモリおよびアスペルギルス・ニガーから選ばれる1種又は2種であることを特徴とする請求項1に記載の酵素活性の増強された液体麹の製造方法である。
請求項10に係る本発明は、穀類が大麦である請求項1に記載の酵素活性の増強された液体麹の製造方法である。
In the present invention according to claim 7 , the cereals whose surfaces are entirely covered with husks are brown rice, rice with all or part of rice husks, and wheat with an unpolished to polished ratio of 92% or more. 4. A method for producing a liquid koji having an enhanced enzyme activity.
The present invention according to claim 8 is the method for producing a liquid koji with enhanced enzyme activity according to claim 1, wherein the white mold is Aspergillus kawachi.
The present invention according to claim 9 is the production of a liquid koji having enhanced enzyme activity according to claim 1, wherein the black koji mold is one or two selected from Aspergillus awamori and Aspergillus niger. Is the method.
The present invention according to claim 10 is the method for producing a liquid koji having enhanced enzyme activity according to claim 1, wherein the cereal is barley.

請求項11に係る本発明は、表面の全部が穀皮で覆われた穀類並びに硝酸カリウム、硝酸ナトリウム、酵母菌体、酵母菌体処理物、穀類穀皮及び穀類糠から選ばれる1種以上の窒素源を含む液体培地で、白麹菌または黒麹菌を培養して酵素を生産することを特徴とする、グルコアミラーゼおよび耐酸性α−アミラーゼから選ばれる1種以上の酵素の生産方法である。
請求項12に係る本発明は、表面の全部が穀皮で覆われた穀類と、硝酸カリウム及び硝酸ナトリウムから選ばれる1種又は2種と、リン酸2水素カリウム及びリン酸アンモニウムから選ばれる1種又は2種と、硫酸マグネシウム7水和物、硫酸鉄7水和物及び硫酸アンモニウムから選ばれる1種ないし3種と、を含む液体培地で、白麹菌または黒麹菌を培養して酵素を生産することを特徴とする、グルコアミラーゼ、耐酸性α−アミラーゼ、セルラーゼおよび酸性カルボキシペプチダーゼから選ばれる1種以上の酵素の生産方法である。
請求項13に係る本発明は、液体培地が、硝酸カリウム及び硝酸ナトリウムから選ばれる1種又は2種を0.1〜2.0%(w/vol)の濃度で含有する請求項12に記載の酵素の生産方法である。
請求項14に係る本発明は、液体培地が、リン酸2水素カリウム及びリン酸アンモニウムから選ばれる1種又は2種を0.05〜1.0%(w/vol)の濃度で含有する請求項12に記載の酵素の生産方法である。
請求項15に係る本発明は、液体培地が、硫酸マグネシウム7水和物、硫酸鉄7水和物及び硫酸アンモニウムから選ばれる1種ないし3種を0.01〜0.5%(w/vol)の濃度で含有する請求項12に記載の酵素の生産方法である。
請求項16に係る本発明は、表面の全部が穀皮で覆われた穀類が、玄米、籾殻が全部又は一部付いている米および未精白から精白歩合92%以上の麦である請求項11又は12に記載の酵素の生産方法である。
請求項17に係る本発明は、白麹菌がアスペルギルス・カワチであることを特徴とする請求項11又は12に記載の酵素の生産方法である。
請求項18に係る本発明は、黒麹菌がアスペルギルス・アワモリおよびアスペルギルス・ニガーから選ばれる1種又は2種であることを特徴とする請求項11又は12に記載の酵素の生産方法である。
請求項19に係る本発明は、穀類が大麦である請求項11又は12に記載の酵素の生産方法である。
The present invention according to claim 11 is a cereal whose entire surface is covered with husk, and at least one nitrogen selected from potassium nitrate, sodium nitrate, yeast cells, processed yeast cells, cereal husks and cereal straws. A method for producing one or more enzymes selected from glucoamylase and acid-resistant α-amylase, wherein the enzyme is produced by culturing white koji mold or black koji mold in a liquid medium containing a source.
The present invention according to claim 12 is a cereal whose entire surface is covered with husk, one or two selected from potassium nitrate and sodium nitrate, and one selected from potassium dihydrogen phosphate and ammonium phosphate Or, an enzyme is produced by culturing white or black koji molds in a liquid medium containing two kinds and one to three kinds selected from magnesium sulfate heptahydrate, iron sulfate heptahydrate and ammonium sulfate. Is a method for producing one or more enzymes selected from glucoamylase, acid-resistant α-amylase, cellulase and acid carboxypeptidase .
The present invention according to claim 13, a liquid medium, according to claim 12 containing a concentration of one or two elements selected from potassium nitrate and sodium nitrate 0.1 ~2.0% (w / vol) This is an enzyme production method.
In the present invention according to claim 14 , the liquid medium contains one or two selected from potassium dihydrogen phosphate and ammonium phosphate at a concentration of 0.05 to 1.0% (w / vol). Item 13. A method for producing the enzyme according to Item 12 .
In the present invention according to claim 15 , in the liquid medium, 0.01 to 0.5% (w / vol) of one to three kinds selected from magnesium sulfate heptahydrate, iron sulfate heptahydrate and ammonium sulfate It is a manufacturing method of the enzyme of Claim 12 contained in the density | concentration.
The present invention according to claim 16, cereals entire surface is covered with grain skins, brown rice, claim 11 chaff is the polishing ratio of 92% or more of wheat from the United States and untreated polished marked with all or part Or the method for producing an enzyme according to 12 .
The present invention according to claim 17 is the method for producing an enzyme according to claim 11 or 12 , wherein the white mold is Aspergillus kawachi.
The present invention according to claim 18 is the method for producing an enzyme according to claim 11 or 12 , wherein the black koji mold is one or two selected from Aspergillus awamori and Aspergillus niger.
The present invention according to claim 19 is the method for producing an enzyme according to claim 11 or 12, wherein the cereal is barley.

本発明によれば、表面の全部又は一部が少なくとも穀皮で覆われた穀類を培養原料とする液体培地に窒素源として特定の有機物及び/又は無機物を添加し、さらに硫酸塩およびリン酸塩を添加して、該液体培地で麹菌を培養することで、液体麹におけるデンプン分解酵素の生産性を著しく向上することができるだけでなく、セルロース分解酵素およびタンパク分解酵素が高生産された液体麹を製造することができる。また、上記の酵素以外にも、麹菌が生産する酵素全般について生産性が増大するものと考えられる。   According to the present invention, a specific organic substance and / or inorganic substance is added as a nitrogen source to a liquid medium using at least a part of the surface covered with cereal as a culture raw material, and further sulfate and phosphate are added. And culturing the koji mold in the liquid medium not only can significantly improve the productivity of starch-degrading enzyme in the liquid koji, but also a liquid koji with high production of cellulolytic enzyme and proteolytic enzyme. Can be manufactured. In addition to the above enzymes, the productivity of all enzymes produced by Aspergillus is considered to increase.

本発明により製造した液体麹を用いて焼酎等の発酵飲食品を製造すると、セルロース分解酵素活性が高いことから、モロミ粘度の低下により良好な発酵が行われ、アルコール収量の増大が期待できる。また、高いタンパク分解酵素活性によりアミノ酸生成量が増大し、華やかな香りを有する発酵飲食品を製造することができる。   When fermented foods and drinks such as shochu are produced using the liquid koji produced according to the present invention, cellulolytic enzyme activity is high, so that favorable fermentation is performed due to a decrease in moromi viscosity, and an increase in alcohol yield can be expected. Moreover, the amount of amino acid production increases by high proteolytic enzyme activity, and the fermented food / beverage products which have a gorgeous fragrance can be manufactured.

さらに、液体培養は、固体培養に比べ厳密な培養コントロールが可能であるため、品質が安定した液体麹を安価に製造することができる。
しかも、本発明において使用される穀類は、未精白、或いは少なくとも穀皮が穀粒の表面に残されている程度までに精白されたものであるので、原料利用率や歩留まりの向上が期待できる。
Furthermore, since liquid culture allows stricter culture control than solid culture, a liquid koji with stable quality can be produced at low cost.
Moreover, since the cereals used in the present invention are not whitened or have been at least polished to the extent that the husk is left on the surface of the grain, an improvement in raw material utilization rate and yield can be expected.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明における液体麹の製造方法は、穀類及び窒素源等の原料を添加して調製された液体培地で麹菌の培養を行ない、酵素活性を増強した液体麹を製造する工程を包含するものである。
すなわち、本発明においては、培養原料として表面の全部又は一部が少なくとも穀皮で覆われた穀類を含む液体培地を使用して麹菌を培養するため、当該穀類中のでん粉の糖化に時間がかかり、培養系への糖の放出速度が抑制され、液体麹の酵素活性が増強される。さらに、特定の栄養源を含有する液体培地を用いるため、麹菌により種々の酵素が高生産される。
The method for producing liquid koji in the present invention includes a step of culturing koji molds in a liquid medium prepared by adding raw materials such as cereals and nitrogen sources to produce liquid koji having enhanced enzyme activity. .
That is, in the present invention, the koji mold is cultured using a liquid medium containing cereals whose whole or part of the surface is covered with husks as a culture raw material, so it takes time to saccharify starch in the cereals. The sugar release rate to the culture system is suppressed, and the enzyme activity of the liquid koji is enhanced. Furthermore, since a liquid medium containing a specific nutrient source is used, various enzymes are highly produced by Aspergillus.

ここで、麹菌が生産する酵素としては、グルコアミラーゼ、α−アミラーゼ等のデンプン分解酵素や、セルラーゼ、β-グルコシダーゼ等のセルロース分解酵素、酸性カルボキシペプチダーゼ、酸性プロテアーゼ等のタンパク分解酵素などが挙げられるが、必ずしもこれらに限定されない。   Here, examples of the enzyme produced by Aspergillus include starch-degrading enzymes such as glucoamylase and α-amylase, cellulose-degrading enzymes such as cellulase and β-glucosidase, and proteolytic enzymes such as acid carboxypeptidase and acid protease. However, it is not necessarily limited to these.

本発明において、培養原料として用いる穀類としては大麦、米、小麦、そば、ヒエ、アワ、キビ、コウリャン、トウモロコシ等を挙げることができる。これらの培養原料の形状としては、表面の全部又は一部が少なくとも穀皮で覆われていることが必要であって、未精白物、または少なくとも穀皮が穀粒の表面に残されている程度までに精白された精白歩合以上のもの等を用いることができ、玄米、玄麦なども使用できる。また、米の場合には、玄米はもちろんのこと、籾殻が全部付いているものでもよいし、籾殻が一部付いているものでもよい。
例えば、穀類が大麦の場合には、未精白の精白歩合100%のもの、或いは未精白の精白歩合を100%とし、この未精白の精白歩合(100%)から大麦の穀皮歩合(一般的には7〜8%)を差し引いた割合、すなわち、92〜93%程度の精白歩合以上のものである。
In the present invention, examples of cereals used as a culture raw material include barley, rice, wheat, buckwheat, millet, millet, millet, cucumber, and corn. As the shape of these culture raw materials, it is necessary that all or a part of the surface is covered with at least the husk, and the degree to which the unmilled product or at least the husk is left on the surface of the grain More than the whitening ratio that has been refined until now can be used, and brown rice, brown wheat and the like can also be used. In the case of rice, not only brown rice but also rice husks may be attached, or rice husks may be partly attached.
For example, when the cereal is barley, the unpolished milling rate is 100%, or the unpolished milling rate is 100%, and the unmilled milling rate (100%) is used to obtain the barley grain ratio (general Is a ratio obtained by subtracting 7-8%), that is, a fineness ratio of about 92-93% or more.

ここで、精白歩合とは穀類を精白して残った穀類の割合を言い、例えば精白歩合90%とは、穀類の表層部の穀皮等を10%削り取ることを意味する。また、本発明において玄麦とは、未精白の大麦から、穀皮が穀粒の表面に残されている程度までに精白されたものまで、すなわち精白歩合90%以上のものを含む。また、穀皮とは穀類の粒の表面を覆っている外側部位のことを言う。   Here, the milling ratio refers to the ratio of cereals left after cerealing, and for example, the milling ratio of 90% means that 10% of the skin of the surface layer of the cereal is scraped off. Moreover, in the present invention, the unpolished barley includes unpolished barley to those that have been refined to such an extent that the husk remains on the surface of the grain, that is, those having a milling ratio of 90% or more. Moreover, a grain skin means the outer side part which has covered the surface of the grain of cereals.

上記の培養原料は、単独あるいは2種以上を組み合わせて、以下の液体培地の調製に用いる。すなわち、培養原料の穀類は、後述する窒素源とともに水と混合して液体培地を調製する。穀類の配合割合は、麹菌培養物中にデンプン分解酵素やセルロース分解酵素、タンパク分解酵素などの酵素が選択的に生成、蓄積される程度のものに調製される。   The above culture raw materials are used alone or in combination of two or more for preparing the following liquid medium. That is, the cultivated raw material grain is mixed with water together with a nitrogen source described later to prepare a liquid medium. The blending ratio of cereals is adjusted so that enzymes such as amylolytic enzymes, cellulose degrading enzymes, and proteolytic enzymes are selectively generated and accumulated in the koji mold culture.

例えば、大麦を培養原料とした場合には、水に対して玄麦を1〜20%(w/vo1)添加した液体培地に調製される。また、玄麦として未精白の大麦を用いた場合には、さらに好ましくは8〜10%(w/vol)添加した液体培地に調製され、玄麦として95%精白した大麦を原料とした場合には、さらに好ましくは1〜4%(w/vo1)添加した液体培地に調製される。
また、籾殻を除いた玄米を培養原料とした場合には、水に対して玄米を1〜20%(w/vo1)、好ましくは5〜13%(w/vo1)、より好ましくは8〜10%(w/vo1)を添加した液体培地に調製される。
その他の穀類を使用する場合も、同様に水に対して1〜20%(w/vo1)添加した液体培地に調製される。
For example, when barley is used as a culture raw material, it is prepared in a liquid medium in which 1 to 20% (w / vo1) of brown barley is added to water. Moreover, when unpolished barley is used as brown wheat, it is more preferably prepared in a liquid medium with 8 to 10% (w / vol) added. More preferably, it is prepared in a liquid medium supplemented with 1 to 4% (w / vo1).
Moreover, when brown rice except rice husk is used as a culture raw material, brown rice is 1 to 20% (w / vo1), preferably 5 to 13% (w / vo1), more preferably 8 to 10% with respect to water. Prepared in a liquid medium supplemented with% (w / vo1).
Similarly, when other cereals are used, they are prepared in a liquid medium supplemented with 1 to 20% (w / vo1) of water.

このように、使用する原料の精白度、使用する麹菌株、培養原料の種類等によって、最適な配合使用量は異なるので、これらを考慮して適宜に選択すればよい。
培養原料の使用量が上限値より多くなると、培養液の粘性が高くなり、麹菌を好気培養するために必要な酸素や空気の供給が不十分となり、培養物中の酸素濃度が低下して、培養が進み難くなるので好ましくない。一方、該原料の使用量が下限値に満たないと、目的とする酵素が高生産されない。
As described above, the optimum blending amount varies depending on the degree of milling of the raw material used, the koji strain used, the type of the culture raw material, and the like.
If the amount of culture raw material used exceeds the upper limit, the viscosity of the culture solution becomes high, the supply of oxygen and air necessary for aerobic culture of Neisseria gonorrhoeae becomes insufficient, and the oxygen concentration in the culture decreases. This is not preferable because the culture is difficult to proceed. On the other hand, if the amount of the raw material used is less than the lower limit, the target enzyme will not be produced at a high rate.

培養原料に含まれるデンプンは、培養前にあらかじめ糊化しておいてもよい。デンプンの糊化方法については特に限定はなく、蒸きょう法、焙焼法等常法に従って行なえばよい。後述する液体培地の殺菌工程において、高温高圧滅菌等によりデンプンの糊化温度以上に加熱する場合は、この処理によりデンプンの糊化も同時に行なわれる。   The starch contained in the culture raw material may be gelatinized before the culture. The starch gelatinization method is not particularly limited, and may be performed according to a conventional method such as a steaming method or a roasting method. In the sterilization step of the liquid medium described later, when heating is performed at a temperature higher than the gelatinization temperature of starch by high-temperature high-pressure sterilization or the like, gelatinization of starch is simultaneously performed by this treatment.

液体培地には、前述の培養原料の他に窒素源として有機物、無機物等を添加し含有させる。これらの窒素源は、麹菌が増殖し、目的とする酵素が十分に生産されるものであれば特に限定はない。有機物としては、例えば、酵母菌体又はその処理物(例えば、酵母菌体分解物、酵母エキスなど)、穀類穀皮、穀類糠等が挙げられ、無機物としては、例えば、硝酸塩が挙げられる。
硝酸塩としては硝酸カリウム、硝酸ナトリウムなどを用いることができ、特に硝酸カリウムが好ましい。
In the liquid medium, an organic substance, an inorganic substance, or the like is added and contained as a nitrogen source in addition to the above-described culture raw material. These nitrogen sources are not particularly limited as long as the koji mold grows and the target enzyme is sufficiently produced. Examples of the organic substance include yeast cells or processed products thereof (for example, yeast cell decomposition products, yeast extract and the like), cereal husks, cereals and the like, and examples of inorganic substances include nitrates.
As the nitrate, potassium nitrate, sodium nitrate or the like can be used, and potassium nitrate is particularly preferable.

これらの窒素源は、単独で用いる他、2種類以上の有機物及び/又は無機物を組み合せて使用してもよい。
窒素源の添加量は、麹菌の増殖を促進する程度であれば特に限定はないが、有機物としては0.1〜2%(w/vol)、好ましくは0.5〜1.0%(w/vol)である。また、無機物としての硝酸塩の添加量は0.05〜2.0%(w/vol)、好ましくは0.1〜2.0%(w/vol)、もっとも好ましくは0.2〜1.5%(w/vol)である。
上限値を超えて窒素源を添加した場合は、麹菌の増殖を阻害するため好ましくない。また、添加量が下限値未満である場合は、酵素生産が促されないため、やはり好ましくない。
These nitrogen sources may be used alone or in combination of two or more organic substances and / or inorganic substances.
The amount of nitrogen source added is not particularly limited as long as it promotes the growth of Aspergillus, but it is 0.1 to 2% (w / vol), preferably 0.5 to 1.0% (w / Vol). Moreover, the addition amount of nitrate as an inorganic substance is 0.05 to 2.0% (w / vol), preferably 0.1 to 2.0% (w / vol), most preferably 0.2 to 1.5. % (W / vol).
When a nitrogen source is added exceeding the upper limit, growth of koji mold is inhibited, which is not preferable. Moreover, when the addition amount is less than the lower limit, enzyme production is not promoted, which is also not preferable.

本発明で窒素源の一種として用いられる酵母は、醸造工程や食品製造で用いられるビール酵母、ワイン酵母、ウイスキー酵母、焼酎酵母、清酒酵母、パン酵母のほかにサッカロマイセス(Saccharomyces)属、キャンディダ(Candida)属、トルロプシス(Torulopsis)属、ハンゼニアスポラ(Hanseniaspora)属、ハンゼヌラ(Hansenula)属、デバリオマイセス(Debaryomyces)属、サッカロマイコプシス(Saccharomycopsis)属、サッカロマイコデス(Saccharomycodes)属、ピヒア(Pichia)属、パキィソレン(Pachysolen)属等の酵母菌体を挙げることができる。   Yeasts used as a kind of nitrogen source in the present invention include beer yeasts, wine yeasts, whiskey yeasts, shochu yeasts, sake yeasts, baker's yeasts used in brewing processes and food production, as well as Saccharomyces genus, Candida ( Candida, Torulopsis, Hanseniaspora, Hansenula, Debaryomyces, Saccharomycopsis, Saccharomycos, Saccharomycos Examples include yeast cells of the genus Pichia and Pachysolen.

これらの酵母は、菌体そのものを窒素源として用いることもできるが、酵母菌体分解物や酵母エキスとして用いることもできる。酵母菌体分解物あるいは酵母エキスは、酵母菌体を自己消化法(酵母菌体内に本来あるタンパク質分解酵素を利用して菌体を可溶化する方法)、酵素分解法(微生物由来や植物由来の酵素製剤等を添加して可溶化する方法)、熱水抽出物法(熱水中に酵母菌体を一定時間浸漬して可溶化する方法)、酸あるいはアルカリ分解法(種々の酸あるいはアルカリを添加して可溶化する方法)、物理的破砕法(超音波処理や高圧ホモジナイズ法、ガラスビーズ等の固形物を混合して混合・攪拌することにより破砕する方法)、凍結融解法(凍結・融解を1回以上行なうことにより破砕する方法)等により処理することで得られる。   These yeasts can be used as a nitrogen source, but can also be used as a yeast cell decomposition product or yeast extract. Yeast cell degradation products or yeast extracts are produced by self-digestion of yeast cells (method of solubilizing cells using the proteolytic enzyme inherent in yeast cells), enzyme decomposition methods (from microorganisms and plants) (Methods of solubilization by adding enzyme preparations, etc.), hot water extract method (method of soaking yeast cells in hot water for a certain period of time), acid or alkali decomposition method (various acids or alkalis) Additive solubilization method), physical crushing method (sonication, high-pressure homogenization method, crushing method by mixing and stirring solid materials such as glass beads), freeze-thawing method (freezing / thawing) For example, by crushing once or more).

また、窒素源として米糠等の穀類糠を用いることもでき、これは穀類を精白した時にできる副産物である。穀類の種子は表皮部、胚芽部、胚乳部と、それらを保護するモミガラからできているが、このうち胚芽と表皮部を合わせたものが糠である。
さらに、本発明においては、穀類穀皮、すなわち穀類の表皮部を窒素源として用いることもでき、通常は培養原料の穀類と同一種類の穀類穀皮を用いる。これらの穀類糠や穀類穀皮は他の窒素源と併用することができる。
Moreover, cereal meals, such as rice bran, can also be used as a nitrogen source, and this is a by-product produced when grain is refined. Cereal seeds are made up of the epidermis, embryo, and endosperm, and the rice hulls that protect them. Of these, the combination of the embryo and the epidermis is the cocoon.
Furthermore, in the present invention, the cereal husk, that is, the skin of the cereal, can be used as a nitrogen source, and usually the same kind of cereal husk as the cultivated raw material cereal is used. These cereal meals and cereal husks can be used in combination with other nitrogen sources.

本発明に用いる液体培地には、前述の培養原料や窒素源の他に、硫酸塩およびリン酸塩を添加し含有させることができる。これらの無機塩類を併用することにより、デンプン分解酵素、セルロース分解酵素およびタンパク分解酵素などの酵素活性を増強させることが可能となる。
たとえば、硫酸塩としては硫酸マグネシウム7水和物、硫酸鉄7水和物、硫酸アンモニウムなどを用いることができ、特に硫酸マグネシウム7水和物が好ましい。リン酸塩としてはリン酸2水素カリウム、リン酸アンモニウムなどを用いることができ、特にリン酸2水素カリウムが好ましい。
これらの無機塩類は、単独で用いることもでき、2種以上を組み合わせて用いることもできる。
The liquid medium used in the present invention can contain sulfate and phosphate in addition to the aforementioned culture raw material and nitrogen source. By using these inorganic salts in combination, it is possible to enhance enzyme activities such as amylolytic enzymes, cellulolytic enzymes, and proteolytic enzymes.
For example, as the sulfate, magnesium sulfate heptahydrate, iron sulfate heptahydrate, ammonium sulfate and the like can be used, and magnesium sulfate heptahydrate is particularly preferable. As the phosphate, potassium dihydrogen phosphate, ammonium phosphate or the like can be used, and potassium dihydrogen phosphate is particularly preferable.
These inorganic salts can be used alone or in combination of two or more.

また、液体培地における上記の無機塩類の濃度は、麹菌培養物中にデンプン分解酵素やセルロース分解酵素、タンパク分解酵素などの酵素が選択的に生成、蓄積される程度のものに調整される。たとえば、硫酸塩の場合は0.01〜0.5%、好ましくは0.02〜0.1%、リン酸塩の場合は0.05〜1.0%、好ましくは0.1〜0.5%(いずれもw/vol)とする。
上記の無機塩類は、単独で用いる他、2種類以上を組み合わせて使用してもよい。
The concentration of the inorganic salts in the liquid medium is adjusted to such a level that enzymes such as amylolytic enzymes, cellulolytic enzymes, and proteolytic enzymes are selectively generated and accumulated in the koji mold culture. For example, in the case of sulfate, 0.01 to 0.5%, preferably 0.02 to 0.1%, and in the case of phosphate, 0.05 to 1.0%, preferably 0.1 to 0.00. 5% (all w / vol).
The above inorganic salts may be used alone or in combination of two or more.

液体培地には、前述の窒素源や無機塩類以外の有機物や無機塩類等も、栄養源として適宜添加することができる。これらの添加物は麹菌の培養に一般に使用されているものであれば特に限定はないが、有機物としては小麦麩、コーンスティープリカー、大豆粕、脱脂大豆等を、無機塩類としてはアンモニウム塩、カリウム塩、カルシウム塩、マグネシウム塩等の水溶性の化合物を挙げることができ、2種類以上の有機物及び/又は無機塩類を同時に使用してもよい。
これらの添加量は麹菌の増殖を促進する程度であれば特に限定はないが、有機物としては0.1〜5%(w/vol)程度、無機塩類としては0.1〜1%(w/vol)程度添加するのが好ましい。
上限値を超えてこれらの栄養源を添加した場合は、麹菌の増殖を阻害するため好ましくない。また、添加量が下限値未満である場合は、酵素生産が促されないため、やはり好ましくない。
To the liquid medium, organic substances other than the aforementioned nitrogen source and inorganic salts, inorganic salts, and the like can be appropriately added as nutrient sources. These additives are not particularly limited as long as they are generally used for culturing koji molds, but organic substances such as wheat koji, corn steep liquor, soybean koji, defatted soybeans, etc., and inorganic salts such as ammonium salt and potassium Water-soluble compounds such as salts, calcium salts and magnesium salts can be mentioned, and two or more kinds of organic substances and / or inorganic salts may be used simultaneously.
These addition amounts are not particularly limited as long as they promote the growth of Neisseria gonorrhoeae, but are about 0.1 to 5% (w / vol) as organic substances and 0.1 to 1% (w / vol.) As inorganic salts. It is preferable to add about vol).
When these nutrient sources are added in excess of the upper limit value, the growth of koji mold is inhibited, which is not preferable. Moreover, when the addition amount is less than the lower limit, enzyme production is not promoted, which is also not preferable.

上記の培養原料および窒素源を水と混合することにより得られる麹菌の液体培地は、必要に応じて滅菌処理を行なってもよく、処理方法には特に限定はない。例としては、高温高圧滅菌法を挙げることができ、121℃で15分間行なえばよい。   The liquid medium of Aspergillus oryzae obtained by mixing the above culture raw material and nitrogen source with water may be sterilized as necessary, and the treatment method is not particularly limited. As an example, a high-temperature and high-pressure sterilization method can be mentioned, which may be performed at 121 ° C. for 15 minutes.

滅菌した液体培地を培養温度まで冷却後、白麹菌および/または黒麹菌を液体培地に接種する。
本発明で用いる麹菌としては、グルコアミラーゼ、耐酸性α−アミラーゼ、α−アミラーゼなどのデンプン分解酵素、セルラーゼ、β−グルコシダーゼなどのセルロース分解酵素、酸性カルボキシペプチダーゼ、酸性プロテアーゼなどのタンパク分解酵素等の生産能を有する麹菌が好ましい。具体的には、白麹菌としてはアスペルギルス・カワチ(Aspergillus kawachii)等、黒麹菌としてはアスペルギルス・アワモリ(Aperigillus awamori)やアスペルギルス・ニガー(Aspergillus niger)等が挙げられる。
また、培地に接種する麹菌の形態は任意であり、胞子又は菌糸を用いることができる。
After the sterilized liquid medium is cooled to the culture temperature, white and / or black koji molds are inoculated into the liquid medium.
As the koji mold used in the present invention, glucoamylase, acid-resistant α-amylase, starch-degrading enzyme such as α-amylase, cellulolytic enzyme such as cellulase and β-glucosidase, proteolytic enzyme such as acid carboxypeptidase, acid protease, etc. Neisseria gonorrhoeae having productivity is preferred. Specifically, Aspergillus kawachii and the like as white mold, and Aspergillus awamori and Aspergillus niger and the like as black gonorrhoeae.
Moreover, the form of the koji mold inoculated into the medium is arbitrary, and spores or hyphae can be used.

これらの麹菌は1種類の菌株による培養、又は同種若しくは異種の2種類以上の菌株による混合培養のどちらでも用いることができる。これらは胞子又は前培養により得られる菌糸のいずれの形態のものを用いても問題はないが、菌糸を用いる方が対数増殖期に要する時間が短くなるので好ましい。
麹菌の液体培地への接種量には特に制限はないが、液体培地1ml当り、胞子であれば1×10〜1×10個程度、菌糸であれば前培養液を0.1〜10%程度接種することが好ましい。
These koji molds can be used either by culturing with one kind of strain or by mixed culturing with two or more kinds of the same or different kinds. There is no problem with using any form of spores or hyphae obtained by preculture, but it is preferable to use hyphae because the time required for the logarithmic growth phase is shortened.
There is no particular limitation on the amount of koji mold inoculated into the liquid medium, but about 1 × 10 4 to 1 × 10 6 spores per 1 ml of the liquid medium, and 0.1 to 10 preculture solution for mycelia. It is preferable to inoculate about 1%.

麹菌の培養温度は、生育に影響を及ぼさない限りであれば特に限定はないが、好ましくは25〜45℃、より好ましくは30〜40℃で行なうのがよい。培養温度が低いと、麹菌の増殖が遅くなるため雑菌による汚染が起きやすくなる。培養時間は24〜72時間が適当である。
培養装置は、液体培養を行なうことができるものであればよいが、麹菌は好気培養を行なう必要があるので、酸素や空気を培地中に供給できる好気的条件下で行なう必要がある。また、培養中は培地中の原料、酸素、及び麹菌が装置内に均一に分布するように撹拌をするのが好ましい。撹拌条件や通気量については、培養環境を好気的に保つことができる条件であればいかなる条件でもよく、培養装置、培地の粘度等により適宜選択すればよい。
The culture temperature of the koji mold is not particularly limited as long as it does not affect the growth, but it is preferably 25 to 45 ° C, more preferably 30 to 40 ° C. When the culture temperature is low, the growth of Aspergillus is delayed, and contamination with various bacteria is likely to occur. The culture time is suitably 24 to 72 hours.
Any culture apparatus may be used as long as it can perform liquid culture. However, since Neisseria gonorrhoeae needs to perform aerobic culture, it needs to be performed under aerobic conditions in which oxygen and air can be supplied into the medium. Moreover, it is preferable to stir so that the raw material, oxygen, and koji mold in the medium are uniformly distributed in the apparatus during the culture. The stirring conditions and the aeration amount may be any conditions as long as the culture environment can be maintained aerobically, and may be appropriately selected depending on the culture apparatus, the viscosity of the medium, and the like.

上記の培養法で培養することにより、デンプン分解酵素、セルロース分解酵素、タンパク分解酵素などの酵素が高生産され、焼酎等の製造に使用できる酵素活性を有する液体麹が得られる。
尚、本発明において液体麹とは、培養したそのものの他に、培養物を遠心分離等することにより得られる培養液、それらの濃縮物又はそれらの乾燥物等も包含するものとする。
By culturing by the above culture method, enzymes such as starch degrading enzyme, cellulose degrading enzyme, and proteolytic enzyme are produced at high yield, and liquid koji having enzyme activity that can be used for the production of shochu and the like is obtained.
In addition, in this invention, the liquid koji shall also include the culture solution obtained by centrifuging a culture, those concentrates, those dry matters, etc. besides the culture itself.

上述の通り、上記の培養法によれば、デンプン分解酵素、セルロース分解酵素、タンパク分解酵素などの酵素を高生産することができる。
したがって、請求項14に記載の酵素の生産方法は、上記した液体麹の製造方法と同様である。
As described above, according to the culture method described above, enzymes such as starch degrading enzymes, cellulose degrading enzymes, and proteolytic enzymes can be produced at a high rate.
Therefore, the method for producing the enzyme according to claim 14 is the same as the method for producing the liquid koji described above.

本発明の製造方法で得られた液体麹は、焼酎等の発酵飲食品の製造に好適に用いることができる。例えば、清酒を製造する場合には、酒母や各もろみ仕込み段階において、焼酎を製造する場合には、もろみ仕込み段階において、しょうゆを製造する場合には、盛り込みの段階において、味噌を製造する場合には、仕込み段階において、みりんを製造する場合は、仕込み段階において、甘酒を製造する場合には、仕込みの段階において、液体麹を固体麹の代わりに用いることができる。
また、得られた液体麹の一部を次の液体麹製造におけるスターターとして用いることもできる。このように液体麹を連続的に製造することにより、安定的な生産が可能になると同時に、生産効率の向上も図ることができる。
The liquid koji obtained by the production method of the present invention can be suitably used for the production of fermented foods and drinks such as shochu. For example, when producing sake, when producing shochu at the mash mother and each mash preparation stage, when producing soy sauce at the mash preparation stage, when producing miso at the preparation stage In the preparation stage, when producing mirin, in the preparation stage, when producing amazake, in the preparation stage, liquid rice cake can be used instead of solid rice cake.
Moreover, a part of the obtained liquid soot can also be used as a starter in the next liquid soot production. Thus, by continuously producing the liquid soot, stable production is possible, and at the same time, production efficiency can be improved.

また、上記した液体麹を用いて焼酎等の発酵飲食品を製造する場合には、全工程を液相で行なうことができる。全工程を液相で行なう発酵飲食品の製造方法としては、例えば、焼酎を製造する場合、トウモロコシ、麦、米、いも、さとうきび等を掛け原料に用い、該原料を約80℃の高温で耐熱性酵素剤を使用して溶かして液化した後、これに上記した液体麹、及び酵母を添加することでアルコール発酵させたもろみを、常圧蒸留法又は減圧蒸留法等により蒸留して製造する方法が挙げられる。   Moreover, when manufacturing fermented food / beverage products, such as shochu, using the above-mentioned liquid koji, all processes can be performed in a liquid phase. As a method for producing fermented foods and beverages in which the entire process is performed in a liquid phase, for example, when producing shochu, corn, wheat, rice, potatoes, sugar cane, etc. are used as raw materials, and the raw materials are heat-resistant at a high temperature of about 80 ° C. A method for producing a mash that has been liquefied by dissolving it using a sexual enzyme agent, and then the above-mentioned liquid koji and moromi fermented with alcohol by adding yeast, by distillation using an atmospheric distillation method or a vacuum distillation method, etc. Is mentioned.

本発明の方法で得られた液体麹は、その高い酵素活性から、酵素製剤、並びに消化剤などの医薬品などとしての利用も可能である。この場合、得られた麹菌培養物を所望の程度に濃縮・精製し、適当な賦形剤、増粘剤、甘味料などを添加して常法により製剤化すればよい。
また、麹菌のデンプン分解酵素などの遺伝子のプロモーター領域を利用することにより、麹菌培養物中に目的の異種タンパク質を高生産させることが可能である。
Due to its high enzyme activity, the liquid koji obtained by the method of the present invention can also be used as an enzyme preparation and a pharmaceutical product such as a digestive agent. In this case, the obtained koji mold culture may be concentrated and purified to a desired degree, and an appropriate excipient, thickener, sweetener and the like may be added to prepare a preparation by a conventional method.
In addition, by using a promoter region of a gene such as starch-degrading enzyme of Aspergillus oryzae, it is possible to produce a desired heterologous protein at high production in the Aspergillus culture.

以下、本発明を実施例によってより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

実施例1(液体麹の製造における無機窒素物の添加)
液体培地に無機窒素物として硝酸カリウムを添加した場合の効果を以下の方法で調べた。
すなわち、無添加(対照)、0.2%(w/vol)又は0.4%(w/vol)の硝酸カリウムを添加した水に、原料となる玄麦を2%(w/vol)となるように加えた3種類の液体培地を調製した。
それぞれの液体培地100mlを容量500mlのバッフル付三角フラスコに入れ、オートクレーブ滅菌後、あらかじめ液体培地で前培養した白麹菌(Aspergillus
kawachii IFO4308)を液体培地に対して1%(v/vol)になるように接種した。尚、玄麦はオーストラリア産スターリング95%精白のものを使用した(以下の実施例も基本的に同様)。
Example 1 (Addition of inorganic nitrogen in the production of liquid soot)
The effect of adding potassium nitrate as an inorganic nitrogen to the liquid medium was examined by the following method.
In other words, the raw brown wheat used as a raw material becomes 2% (w / vol) in water added with no addition (control), 0.2% (w / vol) or 0.4% (w / vol) potassium nitrate. Three types of liquid media added to were prepared.
100 ml of each liquid medium is placed in a 500 ml baffled Erlenmeyer flask, sterilized by autoclave and then pre-cultured in liquid medium (Aspergillus)
Kawachii IFO4308) was inoculated to 1% (v / vol) with respect to the liquid medium. The brown barley used was an Australian Stirling 95% polished white (the following examples are also basically the same).

その後、温度37℃、振とう速度100rpmにて48時間培養を行なった。培養終了後、得られたそれぞれの培養物について、グルコアミラーゼ、耐酸性α−アミラーゼの活性を測定した。そして、表1及び図1に硝酸カリウムの使用量別の液体培地で麹菌を培養して得られた培養物のグルコアミラーゼ、及び耐酸性α−アミラーゼの活性について示した。
尚、グルコアミラーゼの酵素活性の測定には、糖化力分別定量キット(キッコーマン製)を用いた。また、耐酸性α−アミラーゼの酵素活性の測定は、非特許文献7に記載の方法を若干改良し、培養物を酸処理することで非耐酸性α−アミラーゼを失活させた後、α−アミラーゼ測定キット(キッコーマン製)を用いて耐酸性α−アミラーゼ活性を測定した。より具体的には、培養液1mlに9mlの100mM酢酸緩衝液(pH3)を添加して37℃で1時間酸処理を行なった後に、α−アミラーゼ測定キット(キッコーマン製)を用いて測定した。
Thereafter, the cells were cultured for 48 hours at a temperature of 37 ° C. and a shaking speed of 100 rpm. After completion of the culture, the activities of glucoamylase and acid-resistant α-amylase were measured for each of the obtained cultures. Table 1 and FIG. 1 show the activities of glucoamylase and acid-resistant α-amylase in the cultures obtained by culturing koji molds in liquid media according to the amount of potassium nitrate used.
In addition, the saccharification power fractionation determination kit (made by Kikkoman) was used for the measurement of the enzyme activity of glucoamylase. In addition, the enzyme activity of acid-resistant α-amylase was measured by slightly improving the method described in Non-Patent Document 7, inactivating the non-acid-resistant α-amylase by acid treatment of the culture, Acid resistance α-amylase activity was measured using an amylase measurement kit (manufactured by Kikkoman). More specifically, 9 ml of 100 mM acetate buffer (pH 3) was added to 1 ml of the culture solution, and acid treatment was performed at 37 ° C. for 1 hour, followed by measurement using an α-amylase measurement kit (manufactured by Kikkoman).

表1及び図1に示すとおり、無機窒素物である硝酸カリウムを液体培地に添加して培養したものは0.2%添加区、0.4%添加区とも無添加の対象区と比較してグルコアミラーゼと耐酸性α−アミラーゼの両酵素の活性が大幅に増加しており、しかもグルコアミラーゼと耐酸性α−アミラーゼのバランスも良好であることが分かる。   As shown in Table 1 and FIG. 1, the cultures obtained by adding potassium nitrate, which is an inorganic nitrogenous substance, to the liquid medium and cultivating both the 0.2% added group and the 0.4% added group compared to the target group without addition. It can be seen that the activities of both amylase and acid-resistant α-amylase are greatly increased, and that the balance between glucoamylase and acid-resistant α-amylase is good.

Figure 0004083194
Figure 0004083194

実施例2(液体麹の製造における複数の無機物の添加)
次に、複数の無機物を添加した場合の効果を以下のようにして調べた。
すなわち、無機窒素物として硝酸カリウム又は硝酸ナトリウム、無機塩としてリン酸2水素カリウムを表2に記載する配合で水に添加した。硝酸ナトリウムの添加量は硝酸カリウム2.0%に相当するモル濃度である20mMから算出し、硝酸イオン濃度が等しくなるように1.7%配合した。対照としては、無機窒素物と無機塩無添加の水を用いた。
上記のように調製した原料水に、培養原料となる玄麦を2%(w/vol)となるように加えた4種類の液体培地を調製し、実施例1と同じ条件で白麹菌の液体培養を行なった。その後、グルコアミラーゼ活性、耐酸性α−アミラーゼ活性を実施例1と同じ方法で測定した。結果を表2及び図2に示す。
Example 2 (Addition of a plurality of inorganic substances in the production of liquid soot)
Next, the effect of adding a plurality of inorganic substances was examined as follows.
That is, potassium nitrate or sodium nitrate as an inorganic nitrogen substance and potassium dihydrogen phosphate as an inorganic salt were added to water in the formulation shown in Table 2. The amount of sodium nitrate added was calculated from 20 mM, which is a molar concentration corresponding to 2.0% potassium nitrate, and 1.7% was blended so that the nitrate ion concentrations were equal. As a control, inorganic nitrogen and water containing no inorganic salt were used.
Four types of liquid culture media were prepared by adding the raw wheat as a culture raw material to 2% (w / vol) to the raw material water prepared as described above, and liquid culture of white koji molds under the same conditions as in Example 1 Was done. Thereafter, glucoamylase activity and acid resistant α-amylase activity were measured in the same manner as in Example 1. The results are shown in Table 2 and FIG.

Figure 0004083194
Figure 0004083194

表2及び図2に示すとおり、無機窒素物と無機塩を添加した場合も、無添加の対照区と比較してグルコアミラーゼと耐酸性α−アミラーゼの両酵素の活性が増加した。   As shown in Table 2 and FIG. 2, the activity of both enzymes, glucoamylase and acid-resistant α-amylase, increased when inorganic nitrogen and inorganic salt were added as compared to the control group without addition.

実施例3(液体麹の製造における酵母菌体又は酵母自己消化物の添加)
酵母菌体又は酵母自己消化物(酵母エキス)を添加した液体培地を用いて液体麹を製造した。
Example 3 (Addition of yeast cells or yeast autolysate in the production of liquid koji)
A liquid koji was produced using a liquid medium supplemented with yeast cells or yeast autolysate (yeast extract).

(1)添加する酵母菌体又は酵母自己消化物の調製
ビール醸造工程から回収されたビール酵母を、以下の条件で処理し、液体麹製造で使用するビール酵母菌体及び酵母自己消化物(1)、(2)とした。
(1) Preparation of yeast cell to be added or yeast autolysate The brewer's yeast recovered from the beer brewing process is treated under the following conditions to beer yeast cells and yeast autolysate (1 ), (2).

酵母菌体:ビール酵母を5,000×g、15分間の遠心分離により水分含量70%程度にまで脱水して得たビール酵母菌体
酵母自己消化物(1):ビール酵母菌体を等量の水に懸濁後、52℃で18時間処理して得た酵母自己消化物
酵母自己消化物(2):ビール酵母菌体を等量の1%乳酸に懸濁後、52℃で18時間処理して得た酵母自己消化物
Yeast cell: beer yeast cell autolysate obtained by dehydrating beer yeast to a water content of about 70% by centrifugation at 5,000 × g for 15 minutes (1): equivalent amount of water Yeast autolysate obtained by treatment at 52 ° C. for 18 hours after suspension in yeast (2): beer yeast cells suspended in an equal amount of 1% lactic acid and then treated at 52 ° C. for 18 hours Yeast autolysate obtained

(2)酵母を添加した液体培地を用いた液体麹の調製
調製した酵母菌体ならびに酵母自己消化物(1)〜(2)を、それぞれ0.20%、0.50%、1%(v/vol)になるように水に添加し、原料水を調製した。これらの原料水に、培養原料の玄麦を2%(w/vol)となるように加えて液体培地を調製したのち、実施例1と同じ条件で白麹菌の液体培養を行なった。その後、グルコアミラーゼ活性と耐酸性α−アミラーゼ活性を実施例1と同じ方法で測定した。
(2) Preparation of liquid koji using liquid medium supplemented with yeast The prepared yeast cells and yeast autolysates (1) to (2) were 0.20%, 0.50%, 1% (v), respectively. / Vol) was added to water to prepare raw water. A liquid medium was prepared by adding cultivated raw barley to these raw waters to 2% (w / vol), and then liquid culture of white koji molds was performed under the same conditions as in Example 1. Thereafter, glucoamylase activity and acid-resistant α-amylase activity were measured in the same manner as in Example 1.

一方、対照区として、水に玄麦を2%(w/vol)のみ添加して調製した液体培地(No.1)についても、実施例1と同様に白麹菌を接種して液体培養を行ない、得られた液体麹のグルコアミラーゼ活性と耐酸性α−アミラーゼ活性を同様に測定した。結果を表3及び図3に示す。   On the other hand, as a control group, liquid culture (No. 1) prepared by adding only 2% (w / vol) of brown barley to water was inoculated with white birch and liquid culture was performed as in Example 1. The glucoamylase activity and acid-resistant α-amylase activity of the obtained liquid koji were measured in the same manner. The results are shown in Table 3 and FIG.

Figure 0004083194
*:単位はv/vol
Figure 0004083194
*: Unit is v / vol

(3)結果
表3及び図3に示した通り、酵母菌体そのものを添加した試験区、酵母自己消化物を添加した試験区のいずれも、無添加の対照区(No.1)よりもグルコアミラーゼ活性、及び耐酸性α−アミラーゼ活性ともに増加している。特に、No.7 の試験区は良好な結果を示した。また、どの試験区においても、酵母菌体又は酵母自己消化物の添加量に比例して、グルコアミラーゼ活性と耐酸性α−アミラーゼ活性が増加している。
(3) Results As shown in Table 3 and FIG. 3, both the test group to which the yeast cells themselves were added and the test group to which the yeast autolysate was added were more glucosylated than the non-added control group (No. 1). Both amylase activity and acid-resistant α-amylase activity are increased. In particular, the No. 7 test plot showed good results. Moreover, in any test section, glucoamylase activity and acid-resistant α-amylase activity are increased in proportion to the amount of yeast cells or yeast autolysate added.

実施例4(無機窒素物及び/又は無機塩と酵母菌体の組み合わせの添加)
硝酸カリウム、リン酸2水素カリウム及び酵母菌体を表4に示した通りに組み合わせて水に添加し、原料水を調製した。使用した酵母菌体は、ビール醸造工程から回収したビール酵母を遠心分離により水分含量70%程度にまで脱水した酵母菌体そのもの(実施例3の酵母菌体)である。なお、対照(No.1)として、無添加の原料水を用いた。
表4の組み合わせで調製した原料水に、玄麦を2%(w/vol)添加して調製した液体培地を用いて、実施例1と同様にそれぞれ白麹菌を接種して液体培養を行ない、それぞれのグルコアミラーゼ活性と耐酸性α−アミラーゼ活性を測定した。結果を表4及び図4に示す。
Example 4 (Addition of a combination of inorganic nitrogen and / or inorganic salt and yeast)
Potassium nitrate, potassium dihydrogen phosphate and yeast cells were combined as shown in Table 4 and added to water to prepare raw water. The yeast cells used were yeast cells themselves (yeast cells of Example 3) obtained by dehydrating beer yeast recovered from the beer brewing process to a water content of about 70% by centrifugation. As a control (No. 1), additive-free raw water was used.
Using the liquid medium prepared by adding 2% (w / vol) of barley to the raw water prepared in the combination of Table 4, inoculating white birch fungi in the same manner as in Example 1, and performing liquid culture, The glucoamylase activity and acid-resistant α-amylase activity were measured. The results are shown in Table 4 and FIG.

Figure 0004083194
Figure 0004083194

表4及び図4から、全ての試験区において、無添加の対照区(No.1)よりグルコアミラーゼ活性と耐酸性α−アミラーゼ活性ともに非常に高いことが分かる。特に、試験区No.15〜18は両酵素とも活性が非常に高かった。このことから、無機窒素物及び/又は無機塩と酵母菌体の併用により液体培地中の栄養バランスが改善され、糸状菌による酵素生産が活発に行なわれたと考えられる。   From Table 4 and FIG. 4, it can be seen that in all the test groups, both the glucoamylase activity and the acid-resistant α-amylase activity are much higher than the control group without addition (No. 1). In particular, the test groups No. 15 to 18 had very high activity for both enzymes. From this, it is considered that the nutrient balance in the liquid medium was improved by the combined use of inorganic nitrogen and / or inorganic salt and yeast cells, and enzyme production by filamentous fungi was actively performed.

実施例5(大麦糠、酵母菌体、無機物の組み合わせ)
大麦糠及び酵母菌体、硝酸カリウム、リン酸2水素カリウムを表5に示した通りに組み合わせて水に添加し、液体培地の原料水とした。使用した大麦糠は、70%精白大麦(オーストラリア産スターリング)の搗精工程から回収されたものであり、大麦穀皮及び糠を含むものである。また、使用した酵母菌体は、ビール醸造工程から回収したビール酵母を遠心分離により水分含量70%程度にまで脱水した酵母菌体そのもの(実施例3の酵母菌体)である。一方、対照としては無添加の原料水を用いた。
表5の組み合わせで調製した原料水に、玄麦を2%(w/vol)添加して調製した液体培地を用いて、実施例1と同様にそれぞれ白麹菌を接種して液体培養し、それぞれのグルコアミラーゼ活性及び耐酸性α−アミラーゼ活性を同様にして測定した。結果を表5及び図5に示す。
Example 5 (combination of barley meal, yeast cells, inorganic substances)
Barley koji, yeast cells, potassium nitrate, and potassium dihydrogen phosphate were combined as shown in Table 5 and added to water to obtain raw material water for the liquid medium. The barley koji used was recovered from the koji process of 70% refined barley (Australian Stirling) and contains barley husk and koji. Moreover, the used yeast cell is the yeast cell itself (yeast cell of Example 3) which dehydrated the beer yeast collect | recovered from the beer brewing process to about 70% of water content by centrifugation. On the other hand, additive-free raw water was used as a control.
Using the liquid medium prepared by adding 2% (w / vol) of barley to the raw water prepared in the combination of Table 5, inoculated with white birch fungi in the same manner as in Example 1, Glucoamylase activity and acid resistant α-amylase activity were measured in the same manner. The results are shown in Table 5 and FIG.

Figure 0004083194
○:硝酸カリウム0.2%(w/vol)とリン酸2水素カリウム0.3%(w/vol)を添加した試験区
Figure 0004083194
○: Test group to which potassium nitrate 0.2% (w / vol) and potassium dihydrogen phosphate 0.3% (w / vol) were added

表5及び図5から、全ての試験区において、無添加の対照区(No.1)よりもグルコアミラーゼ活性及び耐酸性α−アミラーゼ活性とも非常に高いことが分かる。特に、試験区No.4は両酵素とも活性が非常に高く、バランスも良かった。このことから、大麦糠と酵母菌体の併用により液体培地中の栄養バランスが改善され、糸状菌による酵素生産が活発に行なわれたと考えられる。
なお、大麦糠又は酵母菌体と無機窒素物及び無機塩との併用(No.8 、No.9)も良好な結果を示した。
From Table 5 and FIG. 5, it can be seen that, in all the test groups, both the glucoamylase activity and the acid-resistant α-amylase activity are much higher than the control group without addition (No. 1). In particular, in test group No. 4, both enzymes were very active and well balanced. From this, it is considered that the nutritional balance in the liquid medium was improved by the combined use of barley koji and yeast cells, and enzyme production by filamentous fungi was actively performed.
In addition, combined use (No. 8, No. 9) of barley koji or yeast cells with inorganic nitrogen compounds and inorganic salts also showed good results.

実施例6(大麦穀皮と酵母菌体の組み合わせの添加)
硝酸カリウム、リン酸2水素カリウム、大麦穀皮及び酵母菌体を表6に示した通りに組み合わせて原水に添加し、液体培地の原料水とした。使用した大麦穀皮は、70%精白大麦の搗精工程から得られた大麦糠を2mmメッシュのふるいに通して、大麦穀皮のみを回収したものである。また、使用した圧搾酵母は、ビール醸造工程から回収したビール酵母を遠心分離により水分含量70%程度にまで脱水した酵母菌体そのもの(実施例3の酵母菌体)である。一方、対照として、無添加の原水(No.1)を用いた。
表6の組み合わせで調製した原料水に、玄麦を2%(w/vol)添加して調製した液体培地を用いて、実施例1と同様にそれぞれ白麹菌を接種して液体培養し、得られた液体麹のグルコアミラーゼ活性と耐酸性α−アミラーゼ活性を測定した。結果を表6及び図6に示す。
Example 6 (Addition of a combination of barley husk and yeast cells)
Potassium nitrate, potassium dihydrogen phosphate, barley husk and yeast cells were combined as shown in Table 6 and added to the raw water to obtain raw water for the liquid medium. The barley husk used was obtained by passing the barley husk obtained from the milling process of 70% white barley through a 2 mm mesh sieve and collecting only the barley husk. Moreover, the used press yeast is the yeast cell itself (yeast cell of Example 3) which dehydrated the beer yeast collect | recovered from the beer brewing process to about 70% of water content by centrifugation. On the other hand, as a control, additive-free raw water (No. 1) was used.
Using the liquid medium prepared by adding 2% (w / vol) of barley to the raw water prepared in the combination of Table 6, inoculated with white birch fungi in the same manner as in Example 1 and obtained by liquid culture The glucoamylase activity and acid-resistant α-amylase activity of the liquid koji were measured. The results are shown in Table 6 and FIG.

Figure 0004083194
Figure 0004083194

表6及び図6から、全ての試験区において、無添加の対照区(No.1)よりもグルコアミラーゼ活性と耐酸性α−アミラーゼ活性ともに非常に高いことが分かる。特に、試験区No.6〜9は両酵素とも活性が非常に高く、バランスも良かった。このことから、大麦穀皮と酵母菌体の併用により液体培地中の栄養バランスが改善され、糸状菌による酵素生産が活発に行なわれたと考えられる。   From Table 6 and FIG. 6, it can be seen that both the glucoamylase activity and the acid-resistant α-amylase activity are much higher in all the test groups than in the control group without addition (No. 1). In particular, in test plots Nos. 6-9, both enzymes were very active and well balanced. From this, it is considered that the nutritional balance in the liquid medium was improved by the combined use of barley husk and yeast cells, and enzyme production by filamentous fungi was actively performed.

実施例7(液体麹製造における硫酸塩添加効果)
以下のような方法で液体麹を製造し、それらの酵素活性を測定した。
1.前培養方法
65%精白麦(オーストラリア産スターリング)8gと水100mlを500mlバッフル付三角フラスコに張り込み、121℃で15分間オートクレーブ滅菌した。放冷後、この前培養培地に白麹菌(Aspergillus kawachii NBRC4308)を1×10個/mlになるように植菌し、37℃、24時間、100rpmで振盪培養し、前培養液とした。
Example 7 (Sulfate addition effect in liquid koji production)
Liquid rice cakes were produced by the following method, and their enzyme activities were measured.
1. Pre-culture method
8 g of 65% white wheat (Australian Stirling) and 100 ml of water were put into a 500 ml Erlenmeyer flask with a baffle, and autoclaved at 121 ° C. for 15 minutes. After standing to cool, this preculture medium was inoculated with 1 × 10 6 white aspergillus (Aspergillus kawachii NBRC4308) / ml and shake-cultured at 37 ° C. for 24 hours at 100 rpm to prepare a preculture solution.

2.本培養方法
98%精白麦(玄麦、オーストラリア産スターリング)2.0%(w/vol)と、硝酸カリウム0.2%(w/vol)、リン酸2水素カリウム0.3%(w/vol)、硫酸マグネシウム7水和物0.1%(w/vol)及び塩化マグネシウム6水和物0.082(w/vol)を表7に示す組成比で含む5試験区の液体培地100mlを調製した。これらの液体培地を500mlバッフル付三角フラスコに張り込み、121℃で15分間オートクレーブ滅菌した。
放冷後、この本培養培地へ前培養液1mlを植菌し、37℃、48時間、100rpmで振盪培養した。なお、塩化マグネシウム6水和物の添加量は、硫酸マグネシウム7水和物0.1%に相当するモル濃度である8.12mMから算出し、各試験区の培地中のマグネシウム濃度が等しくなるように配合した。
2. Main culture method
98% refined wheat (brown wheat, Australian Stirling) 2.0% (w / vol), potassium nitrate 0.2% (w / vol), potassium dihydrogen phosphate 0.3% (w / vol), magnesium sulfate 100 ml of a liquid medium of 5 test sections containing 0.1% (w / vol) of heptahydrate and 0.082 (w / vol) of magnesium chloride hexahydrate in the composition ratio shown in Table 7 was prepared. These liquid media were put in a 500 ml baffled conical flask and autoclaved at 121 ° C. for 15 minutes.
After standing to cool, 1 ml of the preculture was inoculated into this main culture medium, and cultured with shaking at 37 ° C. for 48 hours at 100 rpm. The amount of magnesium chloride hexahydrate added was calculated from 8.12 mM, which is a molar concentration corresponding to 0.1% of magnesium sulfate heptahydrate, so that the magnesium concentration in the medium of each test group was equal. Blended into

Figure 0004083194
Figure 0004083194

3.酵素活性測定法
培養終了後、デンプン分解酵素であるグルコアミラーゼ活性(GA)と耐酸性α−アミラーゼ活性(ASAA)について測定した。
グルコアミラーゼ活性(GA)の測定は、糖化力分別定量キット(キッコーマン製)を用いて行った。
耐酸性α−アミラーゼ活性(ASAA)の測定は、<Sudo S. et al: J. Ferment. Bioeng.,76,105-110(1993)、Sudo S. et al: J. Ferment. Bioeng.,77,483-489(1994)、須藤茂俊ら: 日本醸造協会誌.,89,768-774(1994)>に記載の方法を若干改良し、培養物を酸処理することで非耐酸性α−アミラーゼ活性を失活させた後、α−アミラーゼ測定キット(キッコーマン製)を用いて行なった。より具体的には、培養液1mlに9mlの100mM 酢酸緩衝液(pH3)を添加し、37℃で1時間酸処理を行なった後に、α−アミラーゼ測定キット(キッコーマン製)を用いて測定した。
3. Enzyme activity measurement method After completion of the culture, glucoamylase activity (GA) and acid-resistant α-amylase activity (ASAA), which are amylolytic enzymes, were measured.
The glucoamylase activity (GA) was measured using a saccharification power fractionation kit (manufactured by Kikkoman).
Measurement of acid-resistant α-amylase activity (ASAA) is <Sudo S. et al: J. Ferment. Bioeng., 76, 105-110 (1993), Sudo S. et al: J. Ferment. Bioeng., 77, 483 -489 (1994), Shigetoshi Sudo et al .: Japan Brewing Association Journal., 89, 768-774 (1994)> slightly improved, non-acid-resistant α-amylase activity by acid treatment of the culture After inactivation, an α-amylase measurement kit (manufactured by Kikkoman) was used. More specifically, 9 ml of 100 mM acetate buffer (pH 3) was added to 1 ml of the culture solution, and after acid treatment at 37 ° C. for 1 hour, measurement was performed using an α-amylase measurement kit (manufactured by Kikkoman).

また、セルロース分解酵素であるセルラーゼ活性(CEL)と、タンパク分解酵素のひとつである酸性カルボキシペプチダーゼ活性(ACP)の測定も同時に行なった。
セルラーゼ活性(CEL)は、カルボキシメチルセルロース(CMC)を基質として加水分解により生じた還元糖量を、ジニトロサリチル酸(Dinitrosalicylic acid; DNS)法により定量する方法により行なった。より具体的には、1%CMC基質溶液(シグマ社製low viscosity(商品名)を100mM 酢酸緩衝液(pH5)に溶解)1mlに培養液1mlを加えて、40℃にて正確に10分間酵素反応を行なわせた後、DNS試薬(0.75%ジニトロサリチル酸、1.2%水酸化ナトリウム、22.5%酒石酸ナトリウムカリウム4水和物、0.3%乳糖1水和物を含む)4mlを加えてよく混合し、反応を停止した。反応停止液に含まれる還元糖量を定量するために、反応停止液を沸騰水浴中で15分間正確に加熱した。続いて、室温まで冷却した後、540nmの吸光度を測定することでグルコースに相当する還元糖量として定量した。1単位のセルラーゼ活性(CEL)は、1分間に1μmolのグルコースに相当する還元糖を生成する酵素量として表した。
酸性カルボキシペプチダーゼ活性(ACP)の測定は、酸性カルボキシペプチダーゼ測定キット(キッコーマン製)を用いて行なった。
測定結果を図7に示す。
Cellulase activity (CEL), which is a cellulolytic enzyme, and acid carboxypeptidase activity (ACP), which is one of proteolytic enzymes, were also measured at the same time.
Cellulase activity (CEL) was determined by quantifying the amount of reducing sugar produced by hydrolysis using carboxymethylcellulose (CMC) as a substrate by the dinitrosalicylic acid (DNS) method. More specifically, 1 ml of 1% CMC substrate solution (dissolved by Sigma low viscosity (trade name) in 100 mM acetate buffer (pH 5)) was added to 1 ml of the culture solution, and the enzyme was accurately incubated at 40 ° C. for 10 minutes. After the reaction, add 4 ml of DNS reagent (including 0.75% dinitrosalicylic acid, 1.2% sodium hydroxide, 22.5% sodium potassium tartrate tetrahydrate, 0.3% lactose monohydrate) and mix well. Stopped. In order to quantify the amount of reducing sugar contained in the reaction stop solution, the reaction stop solution was accurately heated in a boiling water bath for 15 minutes. Subsequently, after cooling to room temperature, the amount of reducing sugar corresponding to glucose was quantified by measuring the absorbance at 540 nm. One unit of cellulase activity (CEL) was expressed as the amount of enzyme that produces reducing sugar corresponding to 1 μmol of glucose per minute.
Acid carboxypeptidase activity (ACP) was measured using an acid carboxypeptidase measurement kit (manufactured by Kikkoman).
The measurement results are shown in FIG.

4.結果
図7(A)に示すように、硫酸マグネシウム添加区である試験区2で、グルコアミラーゼ活性が顕著に上昇した。また、図7(C)や図7(D)に示すように、硫酸マグネシウム添加区である試験区2では、セルラーゼや酸性カルボキシペプチダーゼ活性も上昇した。一方、同じマグネシウム塩である塩化マグネシウムを添加した試験区3では活性が上昇しなかったことから、これらの酵素生産性増大効果の本体が、硫酸根にあることが示唆された。
また、硫酸マグネシウムが添加されているが、硝酸カリウムやリン酸2水素カリウムが欠乏している試験区4、5では、酵素生産性増大効果が確認されなかったことから、硝酸塩、リン酸塩および硫酸塩が共に含まれているときに、顕著に酵素生産性が向上することが分かった。
4). Result As shown to FIG. 7 (A), the glucoamylase activity rose notably in the test group 2 which is a magnesium sulfate addition group. Moreover, as shown in FIG.7 (C) and FIG.7 (D), in the test group 2 which is a magnesium sulfate addition group, cellulase and acidic carboxypeptidase activity also rose. On the other hand, activity did not increase in test group 3 to which magnesium chloride, which is the same magnesium salt, was added, suggesting that the main body of these enzyme productivity increasing effects is sulfate groups.
In addition, in the test sections 4 and 5 in which magnesium sulfate was added but potassium nitrate or potassium dihydrogen phosphate was deficient, the effect of increasing enzyme productivity was not confirmed. It was found that enzyme productivity was significantly improved when both salts were included.

このように、表面が穀皮で覆われた穀類(玄麦)と、硝酸塩、リン酸塩ならびに硫酸塩を加えた液体培地を用いて麹菌を培養することで、グルコアミラーゼや耐酸性α−アミラーゼといった焼酎等の製造に必要な酵素群に加えて、セルロース分解酵素であるセルラーゼや、タンパク分解酵素である酸性カルボキシペプチダーゼが同時に高生産された液体麹が製造できる。
セルロース分解酵素が高生産されることで、焼酎製造におけるもろみ粘度の低下やアルコール収量の増大が期待できるし、また、タンパク分解酵素が高生産されることで、焼酎もろみのアミノ酸成分が増大すれば、華やかな香りを持つ焼酎製造も可能となる。
また、本発明の方法により、今回測定された酵素以外のデンプン分解酵素群やセルロース分解酵素群、タンパク質分解酵素群など、麹菌の生産する酵素群が全般的に高生産されている可能性が高いと思われる。
In this way, by culturing koji mold using cereals (brown wheat) whose surface is covered with husks and a liquid medium containing nitrate, phosphate and sulfate, glucoamylase and acid-resistant α-amylase, etc. In addition to the enzyme group necessary for the production of shochu, etc., a liquid koji can be produced in which cellulase, which is a cellulose-degrading enzyme, and acidic carboxypeptidase, which is a proteolytic enzyme, are produced at the same time.
High production of cellulose-degrading enzyme can be expected to reduce mash viscosity and increase alcohol yield in shochu production, and high production of proteolytic enzyme will increase the amino acid component of shochu mash. It also becomes possible to produce shochu with a gorgeous scent.
In addition, by the method of the present invention, it is highly likely that enzyme groups produced by koji molds such as starch-degrading enzyme groups, cellulose-degrading enzyme groups, and proteolytic enzyme groups other than the enzymes measured this time are generally produced at high yield I think that the.

本発明によれば、液体麹におけるデンプン分解酵素の生産性を著しく向上することができるだけでなく、セルロース分解酵素およびタンパク分解酵素が高生産された液体麹を製造することができる。しかも、液体培養は、固体培養に比べ厳密な培養コントロールが可能であるため、品質が安定した液体麹を効率よく、かつ安価に製造することができる。
本発明により製造した液体麹を焼酎等の発酵飲食品の製造に用いることにより、アルコール収量やアミノ酸生成量が増大し、華やかな香味の発酵飲食品を効率よく製造することができる。
しかも、本発明において使用される穀類は、未精白、或いは少なくとも穀皮が穀粒の表面に残されている程度までに精白されたものであるので、原料利用率や歩留まりの向上が期待できる。
According to the present invention, not only can the productivity of amylolytic enzymes in liquid koji be remarkably improved, but also a liquid koji with high production of cellulolytic enzymes and proteolytic enzymes can be produced. In addition, since liquid culture allows stricter culture control than solid culture, a liquid koji with stable quality can be produced efficiently and inexpensively.
By using the liquid koji produced according to the present invention for the production of fermented foods and beverages such as shochu, the alcohol yield and the amount of amino acids produced are increased, and a gorgeous flavored fermented food and beverages can be efficiently produced.
Moreover, since the cereals used in the present invention are not whitened or have been at least polished to the extent that the husk is left on the surface of the grain, an improvement in raw material utilization rate and yield can be expected.

窒素源として硝酸カリウムを使用した液体培地で培養して得られた培養物のグルコアミラーゼ、及び耐酸性α−アミラーゼの活性を示す。また、黒棒はグルコアミラーゼ活性(U/ml)を、白棒は耐酸性α−アミラーゼ活性(U/ml)を示す。The activity of glucoamylase and acid-resistant α-amylase of a culture obtained by culturing in a liquid medium using potassium nitrate as a nitrogen source is shown. The black bars indicate glucoamylase activity (U / ml), and the white bars indicate acid-resistant α-amylase activity (U / ml). 無機窒素物と無機塩を使用した液体培地で培養して得られた培養物のグルコアミラーゼ、及び耐酸性α−アミラーゼの活性を示す。また、黒棒はグルコアミラーゼ活性(U/ml)を、白棒は耐酸性α−アミラーゼ活性(U/ml)を示す。The activity of glucoamylase and acid-resistant α-amylase of the culture obtained by culturing in a liquid medium using inorganic nitrogen and inorganic salt is shown. The black bars indicate glucoamylase activity (U / ml), and the white bars indicate acid-resistant α-amylase activity (U / ml). 窒素源として酵母菌体又は酵母自己消化物を使用した液体培地で培養して得られた培養物のグルコアミラーゼ、及び耐酸性α−アミラーゼの活性を示す。また、黒棒はグルコアミラーゼ活性(U/ml)を、白棒は耐酸性α−アミラーゼ活性(U/ml)を示す。The activity of glucoamylase and acid-resistant α-amylase of a culture obtained by culturing in a liquid medium using yeast cells or yeast autolysate as a nitrogen source is shown. The black bars indicate glucoamylase activity (U / ml), and the white bars indicate acid-resistant α-amylase activity (U / ml). 無機窒素物と無機塩と酵母菌体を組み合わせて使用した液体培地で培養して得られた培養物のグルコアミラーゼ、及び耐酸性α−アミラーゼの活性を示す。また、黒棒はグルコアミラーゼ活性(U/ml)を、白棒は耐酸性α−アミラーゼ活性(U/ml)を示す。The activity of glucoamylase and acid-resistant α-amylase of a culture obtained by culturing in a liquid medium using a combination of inorganic nitrogen, inorganic salt and yeast cells is shown. Moreover, a black bar shows glucoamylase activity (U / ml) and a white bar shows acid-resistant α-amylase activity (U / ml). 窒素源として大麦糠、酵母菌体及び無機窒素物を組み合わせて使用した液体培地で培養して得られた培養物のグルコアミラーゼ、及び耐酸性α−アミラーゼの活性を示す。また、黒棒はグルコアミラーゼ活性(U/ml)を、白棒は耐酸性α−アミラーゼ活性(U/ml)を示す。The activity of glucoamylase and acid-resistant α-amylase of a culture obtained by culturing in a liquid medium using a combination of barley meal, yeast cells and inorganic nitrogen as a nitrogen source is shown. The black bars indicate glucoamylase activity (U / ml), and the white bars indicate acid-resistant α-amylase activity (U / ml). 窒素源として大麦穀皮と酵母菌体を組み合わせて使用した液体培地で培養して得られた培養物のグルコアミラーゼ、及び耐酸性α−アミラーゼの活性を示す。また、黒棒はグルコアミラーゼ活性(U/ml)を、白棒は耐酸性α−アミラーゼ活性(U/ml)を示す。The activity of glucoamylase and acid-resistant α-amylase of a culture obtained by culturing in a liquid medium using a combination of barley husk and yeast cells as a nitrogen source is shown. The black bars indicate glucoamylase activity (U / ml), and the white bars indicate acid-resistant α-amylase activity (U / ml). 硫酸塩、硝酸塩、リン酸塩を使用した液体培地で培養して得られた麹菌培養物における各種酵素活性を示すグラフである。(A)はグルコアミラーゼ(GA)、(B)は耐酸性α−アミラーゼ(ASAA)、(C)はセルラーゼ(CEL)、(D)は酸性カルボキシペプチダーゼ(ACP)の活性(U/ml)をそれぞれ示す。It is a graph which shows the various enzyme activities in the koji mold culture obtained by culture | cultivating with the liquid culture medium which uses a sulfate, nitrate, and a phosphate. (A) is glucoamylase (GA), (B) is acid-resistant α-amylase (ASAA), (C) is cellulase (CEL), (D) is acid carboxypeptidase (ACP) activity (U / ml). Each is shown.

Claims (19)

表面の全部が穀皮で覆われた穀類並びに硝酸カリウム、硝酸ナトリウム、酵母菌体、酵母菌体処理物、穀類穀皮及び穀類糠から選ばれる1種以上の窒素源を含有する液体培地で白麹菌または黒麹菌を培養することを特徴とする酵素活性の増強された液体麹の製造方法。 Bacillus subtilis in a liquid medium containing one or more nitrogen sources selected from cereals whose entire surface is covered with cereals and potassium nitrate, sodium nitrate, yeast cells, processed yeast cells, cereal husks and cereals Alternatively, a method for producing a liquid koji having enhanced enzyme activity, comprising culturing black koji mold. 酵素が、少なくともグルコアミラーゼおよび耐酸性α−アミラーゼである請求項1に記載の酵素活性の増強された液体麹の製造方法。   The method for producing a liquid koji with enhanced enzyme activity according to claim 1, wherein the enzymes are at least glucoamylase and acid-resistant α-amylase. 液体培地が、表面の全部が穀皮で覆われた穀類と、硝酸カリウム及び硝酸ナトリウムから選ばれる1種又は2種と、リン酸2水素カリウム及びリン酸アンモニウムから選ばれる1種又は2種と、硫酸マグネシウム7水和物、硫酸鉄7水和物及び硫酸アンモニウムから選ばれる1種ないし3種と、を含有することを特徴とする請求項1に記載の酵素活性の増強された液体麹の製造方法。The liquid medium is a cereal whose entire surface is covered with husk, one or two selected from potassium nitrate and sodium nitrate, one or two selected from potassium dihydrogen phosphate and ammonium phosphate, The method for producing a liquid koji with enhanced enzyme activity according to claim 1, comprising one to three kinds selected from magnesium sulfate heptahydrate, iron sulfate heptahydrate and ammonium sulfate. . 液体培地が、硝酸カリウム及び硝酸ナトリウムから選ばれる1種又は2種を0.1〜2.0%(w/vol)の濃度で含有する請求項に記載の酵素活性の増強された液体麹の製造方法。 The liquid medium having enhanced enzyme activity according to claim 3 , wherein the liquid medium contains one or two kinds selected from potassium nitrate and sodium nitrate at a concentration of 0.1 to 2.0% (w / vol). Production method. 液体培地が、リン酸2水素カリウム及びリン酸アンモニウムから選ばれる1種又は2種を0.05〜1.0%(w/vol)の濃度で含有する請求項に記載の酵素活性の増強された液体麹の製造方法。 The enhancement of enzyme activity according to claim 3 , wherein the liquid medium contains one or two kinds selected from potassium dihydrogen phosphate and ammonium phosphate at a concentration of 0.05 to 1.0% (w / vol). Method for producing a liquid bowl. 液体培地が、硫酸マグネシウム7水和物、硫酸鉄7水和物及び硫酸アンモニウムから選ばれる1種ないし3種を0.01〜0.5%(w/vol)の濃度で含有する請求項に記載の酵素活性の増強された液体麹の製造方法。 Liquid medium, the magnesium sulfate heptahydrate to claim 3 in a concentration of from one not selected from iron sulfate heptahydrate and ammonium sulfate Three 0.01~0.5% (w / vol) A method for producing a liquid koji with enhanced enzyme activity. 表面の全部が穀皮で覆われた穀類が、玄米、籾殻が全部又は一部付いている米および未精白から精白歩合92%以上の麦である請求項1に記載の酵素活性の増強された液体麹の製造方法。   2. The enzyme activity according to claim 1, wherein the cereals having the entire surface covered with husk are brown rice, rice with all or part of rice husks, and wheat with an unpolished to polished ratio of 92% or more. A method for producing a liquid bag. 白麹菌がアスペルギルス・カワチであることを特徴とする請求項1に記載の酵素活性の増強された液体麹の製造方法。   2. The method for producing a liquid koji with enhanced enzyme activity according to claim 1, wherein the white mold is Aspergillus kawachi. 黒麹菌がアスペルギルス・アワモリおよびアスペルギルス・ニガーから選ばれる1種又は2種であることを特徴とする請求項1に記載の酵素活性の増強された液体麹の製造方法。   The method for producing a liquid koji with enhanced enzyme activity according to claim 1, wherein the black koji mold is one or two selected from Aspergillus awamori and Aspergillus niger. 穀類が大麦である請求項1に記載の酵素活性の増強された液体麹の製造方法。The method for producing a liquid koji with enhanced enzyme activity according to claim 1, wherein the cereal is barley. 表面の全部が穀皮で覆われた穀類並びに硝酸カリウム、硝酸ナトリウム、酵母菌体、酵母菌体処理物、穀類穀皮及び穀類糠から選ばれる1種以上の窒素源を含む液体培地で、白麹菌または黒麹菌を培養して酵素を生産することを特徴とする、グルコアミラーゼおよび耐酸性α−アミラーゼから選ばれる1種以上の酵素の生産方法。 In a liquid medium containing one or more nitrogen sources selected from cereals whose entire surface is covered with cereals and potassium nitrate, sodium nitrate, yeast cells, processed yeast cells, cereals cereals and cereal meals, Alternatively, a method for producing at least one enzyme selected from glucoamylase and acid-resistant α-amylase, wherein the enzyme is produced by culturing black koji mold. 表面の全部が穀皮で覆われた穀類と、硝酸カリウム及び硝酸ナトリウムから選ばれる1種又は2種と、リン酸2水素カリウム及びリン酸アンモニウムから選ばれる1種又は2種と、硫酸マグネシウム7水和物、硫酸鉄7水和物及び硫酸アンモニウムから選ばれる1種ないし3種と、を含む液体培地で、白麹菌または黒麹菌を培養して酵素を生産することを特徴とする、グルコアミラーゼ、耐酸性α−アミラーゼ、セルラーゼおよび酸性カルボキシペプチダーゼから選ばれる1種以上の酵素の生産方法。Cereals whose entire surface is covered with husk, one or two selected from potassium nitrate and sodium nitrate, one or two selected from potassium dihydrogen phosphate and ammonium phosphate, and magnesium sulfate 7 water A glucoamylase, acid-resistant, characterized in that an enzyme is produced by culturing white or black koji molds in a liquid medium containing one or three kinds selected from Japanese, iron sulfate heptahydrate and ammonium sulfate A method for producing at least one enzyme selected from sex α-amylase, cellulase and acid carboxypeptidase. 液体培地が、硝酸カリウム及び硝酸ナトリウムから選ばれる1種又は2種を0.1〜2.0%(w/vol)の濃度で含有する請求項12に記載の酵素の生産方法。 The method for producing an enzyme according to claim 12 , wherein the liquid medium contains one or two selected from potassium nitrate and sodium nitrate at a concentration of 0.1 to 2.0% (w / vol). 液体培地が、リン酸2水素カリウム及びリン酸アンモニウムから選ばれる1種又は2種を0.05〜1.0%(w/vol)の濃度で含有する請求項12に記載の酵素の生産方法。 The method for producing an enzyme according to claim 12 , wherein the liquid medium contains one or two selected from potassium dihydrogen phosphate and ammonium phosphate at a concentration of 0.05 to 1.0% (w / vol). . 液体培地が、硫酸マグネシウム7水和物、硫酸鉄7水和物及び硫酸アンモニウムから選ばれる1種ないし3種を0.01〜0.5%(w/vol)の濃度で含有する請求項12に記載の酵素の生産方法。 Liquid medium, the magnesium sulfate heptahydrate to claim 12 containing in a concentration of from one not selected from iron sulfate heptahydrate and ammonium sulfate Three 0.01~0.5% (w / vol) A method for producing the described enzyme. 表面の全部が穀皮で覆われた穀類が、玄米、籾殻が全部又は一部付いている米および未精白から精白歩合92%以上の麦である請求項11又は12に記載の酵素の生産方法。 The method for producing an enzyme according to claim 11 or 12 , wherein the cereals whose entire surface is covered with husk are brown rice, rice with all or part of rice husks, and wheat with an unpolished to unpolished ratio of 92% or more. . 白麹菌がアスペルギルス・カワチであることを特徴とする請求項11又は12に記載の酵素の生産方法。 The method for producing an enzyme according to claim 11 or 12 , wherein the white mold is Aspergillus kawachi. 黒麹菌がアスペルギルス・アワモリおよびアスペルギルス・ニガーから選ばれる1種又は2種であることを特徴とする請求項11又は12に記載の酵素の生産方法。 The method for producing an enzyme according to claim 11 or 12 , wherein the black koji mold is one or two selected from Aspergillus awamori and Aspergillus niger. 穀類が大麦である請求項11又は12に記載の酵素の生産方法。The method for producing an enzyme according to claim 11 or 12, wherein the cereal is barley.
JP2006197621A 2005-07-22 2006-07-20 Method for producing liquid cake Active JP4083194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006197621A JP4083194B2 (en) 2005-07-22 2006-07-20 Method for producing liquid cake

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005212290 2005-07-22
JP2005290651 2005-10-04
JP2006197621A JP4083194B2 (en) 2005-07-22 2006-07-20 Method for producing liquid cake

Publications (2)

Publication Number Publication Date
JP2007125002A JP2007125002A (en) 2007-05-24
JP4083194B2 true JP4083194B2 (en) 2008-04-30

Family

ID=38148205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006197621A Active JP4083194B2 (en) 2005-07-22 2006-07-20 Method for producing liquid cake

Country Status (1)

Country Link
JP (1) JP4083194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3369806A1 (en) 2014-02-10 2018-09-05 Kirishima Highland Beer Co., Ltd. Koji fermented composition based on tea

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5666455B2 (en) * 2009-09-10 2015-02-12 キッコーマン株式会社 Powder seasoning and method for producing the same
WO2012049737A1 (en) * 2010-10-12 2012-04-19 アサヒグループホールディングス株式会社 Method for manufacturing liquid malt enhanced in starch-degrading enzyme activity and dietary fiber-degrading enzyme activity
JP6337366B2 (en) * 2013-12-06 2018-06-06 三和油脂株式会社 Method for producing rice bran, saccharified rice bran using the same, and method for producing saccharified rice bran grain powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3369806A1 (en) 2014-02-10 2018-09-05 Kirishima Highland Beer Co., Ltd. Koji fermented composition based on tea

Also Published As

Publication number Publication date
JP2007125002A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP4966346B2 (en) Method for producing filamentous fungus culture
JP4113252B2 (en) Method for producing liquid koji with enhanced plant fiber-dissolving enzyme, liquid koji obtained by the method and use thereof
TWI422679B (en) Method of producing liquid koji
WO2005097967A1 (en) Process for producing liquid rice malt
JP4083194B2 (en) Method for producing liquid cake
JP3718677B2 (en) Method for producing liquid cake
JP4906648B2 (en) Method for producing filamentous fungus culture
JP4723340B2 (en) Method for producing sake using liquid koji
JP4908815B2 (en) Production method of liquid rice cake
JP3718681B1 (en) Method for producing liquid koji using millet
JP3718678B1 (en) Method for producing liquid rice bran using brown rice
JP4482366B2 (en) Method for producing liquid seed cake and method for producing liquid seed cake using the liquid seed cake
JP3718679B1 (en) Method for producing liquid koji using beans or koji
JP5080730B2 (en) Continuous production method of liquid cake
JP4482365B2 (en) Method for producing liquid cake
JP4068649B2 (en) Method for producing liquid koji using yellow koji mold
JP4906649B2 (en) Method for producing filamentous fungus culture
WO2012049737A1 (en) Method for manufacturing liquid malt enhanced in starch-degrading enzyme activity and dietary fiber-degrading enzyme activity
JP4489488B2 (en) Method for producing liquid sake mother and method for producing alcoholic beverages using the same
JP2011078366A (en) Method for producing liquid malt enhanced in starch-degrading enzyme activity and in edible fiber-degrading enzyme activity
JP2006180809A (en) Method for producing liquors using liquid koji and solid koji in combination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070403

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080212

R150 Certificate of patent or registration of utility model

Ref document number: 4083194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250