JP4081879B2 - Nozzle structure used in polycrystalline silicon rod manufacturing equipment - Google Patents

Nozzle structure used in polycrystalline silicon rod manufacturing equipment Download PDF

Info

Publication number
JP4081879B2
JP4081879B2 JP26770998A JP26770998A JP4081879B2 JP 4081879 B2 JP4081879 B2 JP 4081879B2 JP 26770998 A JP26770998 A JP 26770998A JP 26770998 A JP26770998 A JP 26770998A JP 4081879 B2 JP4081879 B2 JP 4081879B2
Authority
JP
Japan
Prior art keywords
nozzle
supply pipe
polycrystalline silicon
reaction furnace
silicon rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26770998A
Other languages
Japanese (ja)
Other versions
JP2000095513A (en
Inventor
茂 笹岡
俊秀 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP26770998A priority Critical patent/JP4081879B2/en
Publication of JP2000095513A publication Critical patent/JP2000095513A/en
Application granted granted Critical
Publication of JP4081879B2 publication Critical patent/JP4081879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nozzles (AREA)
  • Silicon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体用の高純度多結晶シリコン棒を製造する装置の反応炉に取付けられたステンレス鋼製の供給管の端部を覆うグラファイトからなるノズルの構造に関するものである。
【0002】
【従来の技術】
多結晶シリコンを原料として半導体用のシリコン単結晶を育成させる方法としてチョクラルスキー法及びフロートゾーン法が知られており、この原料となる多結晶シリコンはトリクロロシラン等のハロシラン化合物の熱分解により芯棒上にシリコンを析出させて直径の大きな多結晶シリコン棒を製造している。この多結晶シリコン棒の製造における装置として、芯棒が備えられた反応炉内にシラン化合物を含有するガスを導入するステンレス鋼からなる供給管が貫通して取付けられたものが知られている。ステンレス鋼が炉の内部で露出すると、ステンレス鋼が多結晶シリコン棒の製造中に炉の内部を汚染する。このため、この装置の供給管の反応炉内の端部にはこの端部を覆うようにグラファイトからなるノズルが螺着される。
【0003】
図3に示すように、従来多結晶シリコン棒の製造装置に用いられるノズル1は、雌ねじ2aが内周面に形成された環状部2と、供給管3の端部に螺着状態で供給管3の端縁に当接する覆い部4とを有し、ノズル1はバルク状のグラファイトを切削加工することにより作られる。ノズル1の覆い部4には供給管3に連通する貫通孔4aが環状部2と同心状に形成される。このように構造のノズル1を供給管3の端部に螺着することにより、炉の内部に突出するステンレス鋼の炉の内部への汚染を防止し、かつ供給管3から供給されるシラン化合物を含有するガスを反応炉内に有効に拡散して多結晶シリコン棒を有効に製造し得るようになっている。
【0004】
【発明が解決しようとする課題】
上述した従来のノズル1は、シリコンを析出させた後の反応炉の水洗時に水が付着することを回避するため供給管3から取外している。しかし、このノズル1はグラファイトにより作られているため、ステンレス鋼からなる供給管3に螺着状態でその接触部分にセメンタイト(Fe3C)が生成される不具合がある。即ち、ステンレス鋼におけるFeとノズル1におけるCが多結晶シリコン棒の製造時の熱により反応してセメンタイトが生成され、このセメンタイトの生成に起因して螺着されたノズル1が供給管3の端部に付着し、ノズル1の取外しが困難になる不具合がある。このように、ノズル1が供給管3の端部に付着すると、このノズル1を取外す場合に多大なトルクをノズル1に加える必要があり、この多大なトルクによりノズル1の破損率が比較的高い問題点がある。
【0005】
また、従来のノズル1は上記接触部分の面積が大きいため、反応炉の基板の熱が供給管3を介して直接ノズル1に伝わり高温になる。多結晶シリコン棒を製造した後、反応炉を急冷すると、高温のノズル1も急冷され、ノズル1は熱衝撃(熱応力)を受ける。一方、ノズルを構成するグラファイトの熱伝導率は1000Kの温度で垂直方向64W/m・K、水平方向49W/m・Kと極めて小さく、一般的に熱衝撃は材料の熱伝導率に反比例するため、グラファイトからなるノズル1には多大の熱応力が加わり、表面に微小のクラックを生じていた。
本発明の目的は、ノズルの取外し時又は熱衝撃に起因する破損を有効に軽減しうる多結晶シリコン棒の製造装置に用いられるノズル構造を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、図2に示すように、棒状の多結晶シリコンを製造するための反応炉11に貫通して取付けられシラン化合物を含有するガスを反応炉内に導入するステンレス鋼からなる供給管12の反応炉内の端部にこの端部を覆うように螺着するグラファイトからなるノズル16であって、図1に示すように、ノズル16が、雌ねじ17aが内周面に形成された環状部17と、環状部17と一体的に形成され供給管12に連通する貫通孔18aが環状部17と同心状に形成されかつ螺着状態で供給管12の端縁に当接する覆い部18とを有する多結晶シリコン棒の製造装置に用いられるノズル構造の改良である。
その特徴ある構成は、覆い部18に供給管12の端縁12aに臨みかつ螺着状態でこの端縁12aに先端が当接する環状の膨出部19が貫通孔18aを包囲するように形成されたところにある。
【0007】
多結晶シリコンの生成に際し、グラファイトにより作られたノズル16はステンレス鋼からなる供給管12との接触部分、即ち供給管12の端縁12aに接触している膨出部19の先端部分にのみにセメンタイトが生成し、従来のノズルに比較してセメンタイトの生成面積が小さくなる。セメンタイトの生成面積が縮小することにより供給管12の端部に付着したノズル16の取外しは、従来より小さいトルクで容易に行うことができる。
また、膨出部19の形成により覆い部18と供給管12の端縁12aとの間にガス層が形成され、ガス層がない従来のノズルと比較して直接接触することに起因する熱衝撃が軽減され、ノズル16の熱衝撃によるクラックの発生を抑制することができる。
【0008】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて詳しく説明する。
図2に示すように、多結晶シリコン棒の製造装置10は反応炉11と、この反応炉11に貫通して取付けられた供給管12とを備える。反応炉11は底部を構成する基板11aと、上側がドーム状に閉止された円筒体からなるベルジャ11bとにより構成される。基板11aには逆U字状の芯棒13の下端を保持する一対のチャック11cが設けられ、このチャック11cに保持させることにより芯棒13は反応炉11の内部に固定される。一対のチャック11cには給電装置14の出力端子が配線され、芯棒13は給電装置14からの電力により加熱可能に構成される。供給管12はステンレス鋼により作られ、基板11aを貫通して取付けられる。供給管12の反応炉11内の端部外周面には雄ねじが形成され、供給管12はシラン化合物を含有するガス、例えば三塩化シランと水素の混合ガスを反応炉11内に導入するように構成される。なお、供給管12の反応炉11内の端部における雄ねじにはこの端部を覆うようにノズル16が螺着される。
【0009】
図1に示すように、ノズル16はバルク状のグラファイトを切削加工することにより作られ、雌ねじ17aが内周面に形成された環状部17と、供給管12の端部に螺着状態で供給管12の端縁12aに当接する覆い部18とを有する。ノズル16の覆い部18には供給管12に連通する貫通孔18aが環状部17と同心状に形成され、このノズル16を供給管12の端部に螺着することにより、供給管12により供給される三塩化シランと水素の混合ガスを反応炉11内に有効に拡散し得るように構成される。
本発明の特徴ある構成は、覆い部18に環状の膨出部19が形成されたところにある。膨出部19は供給管12の端縁12aに臨むように形成され、ノズル16が供給管12の端部に螺着状態で供給管12の端縁12aに先端が当接するように先端面が略同一平面に形成される。膨出部19はノズル16の製造における切削加工時に覆い部18とともに一体的に作られ、この実施の形態における環状の膨出部19は貫通孔18aと同一の内径を有し、貫通孔18aを包囲するように貫通孔18aと同心状に形成される。
【0010】
このように構成された多結晶シリコン棒の製造装置に用いられるノズル構造の動作を説明する。
まず、多結晶シリコン棒を製造するために、芯棒13を反応炉11に設置する。芯棒13の設置は、基板11aに設けられたチャック11cに芯棒13の下端を保持させることにより行われる。その後、給電装置14によりチャック11cを介して通電して芯棒13を加熱する。芯棒13の加熱後、三塩化シランと水素の混合ガスを供給管12から反応炉11内に導入する。供給管12に供給されたガスはノズル16の貫通孔18aを介して反応炉11内に導入され、そのガスは芯棒13の加熱により加熱されている反応炉11の内部を上昇し、ガスが上昇している間に三塩化シランガスは水素による還元反応を起し、芯棒13の表面に多結晶シリコン20(図2)が付着して生成される。
【0011】
多結晶シリコン20の生成に際し、グラファイトにより作られたノズル16はステンレス鋼からなる供給管12との接触部分にセメンタイトが生成されるが、セメンタイトの生成は供給管12の端縁12aに接触している膨出部19の先端部分にのみ生成され、図3に示す従来のノズル1におけるセメンタイトの生成面積より少ない面積範囲に限られる。このセメンタイトの生成に起因して螺着されたノズル16は供給管12の端部に付着するが、付着面積が従来より狭いことに起因して取外し時にノズル16に加えるトルクを低減することができる。特に、膨出部19を貫通孔18aと同一の内径をもって貫通孔18aを包囲するように形成したので、ノズル16の回転中心に対する付着部分までの距離を小さくすることができ、ノズル16に加えるトルクが従来より小さくても容易にノズル16を供給管12から取外すことができる。
【0012】
また、供給管12の端縁12aに接触する部分は膨出部19の先端部分であり、その他の覆い部18と供給管12の端縁12aとの間にはガス層が形成される。このため、多結晶シリコン棒が製造された後の反応炉11内の冷却に基づくノズル16が受ける熱衝撃値は、覆い部18と供給管12の端縁12aとの間にガス層がない従来と比較して軽減し、ノズル16の熱衝撃によるクラックの発生を抑制することができる。
【0013】
【発明の効果】
以上述べたように、本発明によれば、ノズルの覆い部に供給管の端縁に臨みかつ螺着状態でこの端縁に先端が当接する環状の膨出部を貫通孔を包囲するように形成したので、ステンレス鋼からなる供給管との接触部分を膨出部の先端部分に限定することができ、接触部分におけるセメンタイトの生成面積を小さくすることができる。このセメンタイトの生成面積の縮小に基づき、供給管の端部に付着したノズルの取外しは、従来より小さいトルクで容易に行うことができる。
また、膨出部を形成することにより覆い部と供給管の端縁との間にガス層が形成され、ガス層がない従来のノズルと比較して直接接触することに起因する熱衝撃を軽減することができる。この結果、使用後のノズルの供給管からの取外し時又は熱衝撃に起因するノズルのクラックに起因する破損を有効に軽減することができる。
【図面の簡単な説明】
【図1】本発明のノズル構造を示す縦断面図。
【図2】そのノズルを使用した多結晶シリコン棒の製造装置の概念図。
【図3】従来のノズル構造を示す図1に対応する縦断面図。
【符号の説明】
11 反応炉
12 供給管
12a 端縁
16 ノズル
17 環状部
17a 雌ねじ
18 覆い部
18a 貫通孔
19 膨出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a nozzle made of graphite covering an end of a stainless steel supply pipe attached to a reaction furnace of an apparatus for producing a high purity polycrystalline silicon rod for semiconductor.
[0002]
[Prior art]
The Czochralski method and the float zone method are known as methods for growing silicon single crystals for semiconductors using polycrystalline silicon as a raw material. The polycrystalline silicon used as the raw material is formed by thermal decomposition of a halosilane compound such as trichlorosilane. A polycrystalline silicon rod having a large diameter is manufactured by depositing silicon on the rod. As an apparatus for manufacturing this polycrystalline silicon rod, there is known a device in which a supply pipe made of stainless steel for introducing a gas containing a silane compound is installed in a reaction furnace provided with a core rod. When stainless steel is exposed inside the furnace, the stainless steel contaminates the interior of the furnace during the manufacture of the polycrystalline silicon rod. For this reason, a nozzle made of graphite is screwed to an end portion of the supply pipe of the apparatus in the reaction furnace so as to cover the end portion.
[0003]
As shown in FIG. 3, a nozzle 1 used in a conventional polycrystalline silicon rod manufacturing apparatus has an annular portion 2 in which an internal thread 2a is formed on an inner peripheral surface, and a supply tube in a screwed state at an end portion of the supply tube 3. The nozzle 1 is made by cutting bulk graphite. A through hole 4 a communicating with the supply pipe 3 is formed concentrically with the annular portion 2 in the cover portion 4 of the nozzle 1. By screwing the nozzle 1 having such a structure to the end of the supply pipe 3, the contamination of the stainless steel protruding into the furnace is prevented and the silane compound supplied from the supply pipe 3 is prevented. It is possible to effectively produce a polycrystalline silicon rod by effectively diffusing a gas containing bismuth into a reaction furnace.
[0004]
[Problems to be solved by the invention]
The above-described conventional nozzle 1 is removed from the supply pipe 3 in order to avoid water from adhering when the reactor is washed with water after silicon is deposited. However, since the nozzle 1 is made of graphite, there is a problem that cementite (Fe 3 C) is generated at the contact portion in a threaded state on the supply pipe 3 made of stainless steel. That is, Fe in stainless steel and C in the nozzle 1 react with heat at the time of manufacturing the polycrystalline silicon rod to generate cementite, and the nozzle 1 screwed due to the generation of the cementite is connected to the end of the supply pipe 3. There is a problem that it is difficult to remove the nozzle 1 due to adhesion to the part. Thus, when the nozzle 1 adheres to the end of the supply pipe 3, it is necessary to apply a great amount of torque to the nozzle 1 when removing the nozzle 1, and the damage rate of the nozzle 1 is relatively high due to this great torque. There is a problem.
[0005]
Further, since the conventional nozzle 1 has a large area of the contact portion, the heat of the substrate of the reaction furnace is directly transferred to the nozzle 1 through the supply pipe 3 and becomes high temperature. When the reaction furnace is rapidly cooled after the polycrystalline silicon rod is manufactured, the high temperature nozzle 1 is also rapidly cooled, and the nozzle 1 is subjected to thermal shock (thermal stress). On the other hand, the thermal conductivity of graphite composing the nozzle is extremely small at a temperature of 1000 K, 64 W / m · K in the vertical direction and 49 W / m · K in the horizontal direction. Generally, thermal shock is inversely proportional to the thermal conductivity of the material. The nozzle 1 made of graphite was subjected to a great amount of thermal stress, resulting in minute cracks on the surface.
An object of the present invention is to provide a nozzle structure used in an apparatus for manufacturing a polycrystalline silicon rod that can effectively reduce breakage caused by removal of a nozzle or thermal shock.
[0006]
[Means for Solving the Problems]
As shown in FIG. 2, the invention according to claim 1 is made of stainless steel that is attached through a reaction furnace 11 for producing rod-shaped polycrystalline silicon and introduces a gas containing a silane compound into the reaction furnace. 1 is a nozzle 16 made of graphite that is screwed onto an end portion of the supply pipe 12 in the reaction furnace so as to cover the end portion. As shown in FIG. 1, the nozzle 16 has an internal thread 17a formed on the inner peripheral surface. The formed annular portion 17 and a through hole 18a that is formed integrally with the annular portion 17 and communicates with the supply pipe 12 are formed concentrically with the annular portion 17 and abuts against the edge of the supply pipe 12 in a screwed state. This is an improvement of the nozzle structure used in the polycrystalline silicon rod manufacturing apparatus having the portion 18.
The characteristic configuration is such that an annular bulging portion 19 that faces the end edge 12a of the supply pipe 12 and that is screwed to the cover portion 18 surrounds the through hole 18a. There is.
[0007]
In the production of polycrystalline silicon, the nozzle 16 made of graphite is only in contact with the supply pipe 12 made of stainless steel, that is, only at the tip of the bulging portion 19 in contact with the edge 12a of the supply pipe 12. Cementite is generated, and the generation area of cementite is smaller than that of the conventional nozzle. The nozzle 16 adhering to the end of the supply pipe 12 can be easily removed with a torque smaller than that of the prior art by reducing the generation area of cementite.
Further, the formation of the bulging portion 19 forms a gas layer between the cover portion 18 and the edge 12a of the supply pipe 12, and thermal shock caused by direct contact as compared with a conventional nozzle having no gas layer. Can be reduced, and the occurrence of cracks due to the thermal shock of the nozzle 16 can be suppressed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 2, the polycrystalline silicon rod manufacturing apparatus 10 includes a reaction furnace 11 and a supply pipe 12 that is attached to the reaction furnace 11 so as to penetrate therethrough. The reaction furnace 11 includes a substrate 11a constituting a bottom portion and a bell jar 11b made of a cylindrical body whose upper side is closed in a dome shape. The substrate 11 a is provided with a pair of chucks 11 c that hold the lower end of the inverted U-shaped core rod 13. The core rod 13 is fixed inside the reaction furnace 11 by being held by the chuck 11 c. The pair of chucks 11 c is wired with an output terminal of the power feeding device 14, and the core bar 13 is configured to be heated by the power from the power feeding device 14. The supply pipe 12 is made of stainless steel and is attached through the substrate 11a. An external thread is formed on the outer peripheral surface of the end of the supply pipe 12 in the reaction furnace 11, and the supply pipe 12 introduces a gas containing a silane compound, for example, a mixed gas of silane trichloride and hydrogen into the reaction furnace 11. Composed. A nozzle 16 is screwed onto the male screw at the end of the supply pipe 12 in the reaction furnace 11 so as to cover this end.
[0009]
As shown in FIG. 1, the nozzle 16 is made by cutting bulk graphite, and a female screw 17 a is supplied to the annular portion 17 formed on the inner peripheral surface and to the end of the supply pipe 12 in a screwed state. And a cover portion 18 that comes into contact with the end edge 12 a of the tube 12. A through-hole 18a communicating with the supply pipe 12 is formed concentrically with the annular part 17 in the cover part 18 of the nozzle 16, and the nozzle 16 is screwed to the end of the supply pipe 12 to be supplied by the supply pipe 12. The mixed gas of silane trichloride and hydrogen to be diffused into the reaction furnace 11 effectively.
The characteristic configuration of the present invention is that an annular bulging portion 19 is formed in the cover portion 18. The bulging portion 19 is formed so as to face the end edge 12 a of the supply pipe 12, and the tip surface thereof is such that the tip contacts the end edge 12 a of the supply pipe 12 when the nozzle 16 is screwed to the end of the supply pipe 12. They are formed on substantially the same plane. The bulging portion 19 is integrally formed with the cover portion 18 during cutting in the manufacture of the nozzle 16, and the annular bulging portion 19 in this embodiment has the same inner diameter as the through hole 18a. It is formed concentrically with the through hole 18a so as to surround it.
[0010]
The operation of the nozzle structure used in the polycrystalline silicon rod manufacturing apparatus configured as described above will be described.
First, in order to produce a polycrystalline silicon rod, the core rod 13 is installed in the reaction furnace 11. The core rod 13 is installed by holding the lower end of the core rod 13 on a chuck 11c provided on the substrate 11a. Thereafter, the core rod 13 is heated by energizing the power supply device 14 via the chuck 11c. After heating the core rod 13, a mixed gas of silane trichloride and hydrogen is introduced into the reaction furnace 11 from the supply pipe 12. The gas supplied to the supply pipe 12 is introduced into the reaction furnace 11 through the through hole 18 a of the nozzle 16, and the gas rises inside the reaction furnace 11 heated by the heating of the core rod 13. While rising, the silane trichloride gas undergoes a reduction reaction with hydrogen, and the polycrystalline silicon 20 (FIG. 2) adheres to the surface of the core rod 13 and is generated.
[0011]
When the polycrystalline silicon 20 is produced, the nozzle 16 made of graphite produces cementite at the contact portion with the supply pipe 12 made of stainless steel. It is generated only at the tip portion of the bulging portion 19 and is limited to an area range smaller than the cementite generation area in the conventional nozzle 1 shown in FIG. The nozzle 16 screwed due to the generation of cementite adheres to the end portion of the supply pipe 12, but the torque applied to the nozzle 16 at the time of removal can be reduced due to the fact that the adhesion area is narrower than before. . In particular, since the bulging portion 19 is formed so as to surround the through hole 18a with the same inner diameter as the through hole 18a, the distance to the adhering portion with respect to the rotation center of the nozzle 16 can be reduced, and the torque applied to the nozzle 16 The nozzle 16 can be easily removed from the supply pipe 12 even if the nozzle is smaller than the conventional one.
[0012]
Further, the portion that contacts the end edge 12 a of the supply pipe 12 is the tip portion of the bulging portion 19, and a gas layer is formed between the other cover portion 18 and the end edge 12 a of the supply pipe 12. For this reason, the thermal shock value received by the nozzle 16 based on the cooling in the reaction furnace 11 after the polycrystalline silicon rod is manufactured is the conventional one in which there is no gas layer between the cover 18 and the edge 12 a of the supply pipe 12. And the occurrence of cracks due to the thermal shock of the nozzle 16 can be suppressed.
[0013]
【The invention's effect】
As described above, according to the present invention, the annular bulging portion that faces the end edge of the supply pipe and is screwed to the cover portion of the nozzle is surrounded by the through hole. Since it formed, the contact part with the supply pipe | tube consisting of stainless steel can be limited to the front-end | tip part of a bulging part, and the production | generation area of the cementite in a contact part can be made small. Based on the reduction of the cementite generation area, the nozzle attached to the end of the supply pipe can be easily removed with a torque smaller than the conventional one.
In addition, by forming a bulge, a gas layer is formed between the cover and the edge of the supply pipe, reducing thermal shock caused by direct contact compared to conventional nozzles without a gas layer can do. As a result, it is possible to effectively reduce breakage caused by nozzle cracks caused by thermal shock when the nozzle is removed from the supply pipe after use.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a nozzle structure of the present invention.
FIG. 2 is a conceptual diagram of a polycrystalline silicon rod manufacturing apparatus using the nozzle.
FIG. 3 is a longitudinal sectional view corresponding to FIG. 1 showing a conventional nozzle structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Reaction furnace 12 Supply pipe 12a End edge 16 Nozzle 17 Annular part 17a Female thread 18 Cover part 18a Through-hole 19 Swelling part

Claims (1)

棒状の多結晶シリコンを製造するための反応炉(11)に貫通して取付けられシラン化合物を含有するガスを前記反応炉内に導入するステンレス鋼からなる供給管(12)の前記反応炉内の端部にこの端部を覆うように螺着するグラファイトからなるノズル(16)であって、
前記ノズル(16)が、雌ねじ(17a)が内周面に形成された環状部(17)と、前記環状部(17)と一体的に形成され前記供給管(12)に連通する貫通孔(18a)が前記環状部(17)と同心状に形成されかつ螺着状態で前記供給管(12)の端縁に当接する覆い部(18)とを有する多結晶シリコン棒の製造装置に用いられるノズル構造において、
前記覆い部(18)に前記供給管(12)の端縁(12a)に臨みかつ螺着状態でこの端縁(12a)に先端が当接する環状の膨出部(19)が前記貫通孔(18a)を包囲するように形成されたことを特徴とする多結晶シリコン棒の製造装置に用いられるノズル構造。
A feed pipe (12) made of stainless steel, which is attached through a reaction furnace (11) for producing rod-shaped polycrystalline silicon and introduced into the reaction furnace, is installed in the reaction furnace. A nozzle (16) made of graphite that is screwed onto the end so as to cover the end,
The nozzle (16) includes an annular part (17) in which an internal thread (17a) is formed on the inner peripheral surface, and a through hole (integrated with the annular part (17) and communicated with the supply pipe (12) ( 18a) is used in an apparatus for manufacturing a polycrystalline silicon rod having a cover part (18) formed concentrically with the annular part (17) and in contact with the edge of the supply pipe (12) in a screwed state In the nozzle structure,
An annular bulging portion (19) that faces the end edge (12a) of the supply pipe (12) to the cover portion (18) and has a tip abutting on the end edge (12a) in the threaded state is provided in the through hole ( A nozzle structure used for an apparatus for manufacturing a polycrystalline silicon rod, characterized by being formed so as to surround 18a).
JP26770998A 1998-09-22 1998-09-22 Nozzle structure used in polycrystalline silicon rod manufacturing equipment Expired - Lifetime JP4081879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26770998A JP4081879B2 (en) 1998-09-22 1998-09-22 Nozzle structure used in polycrystalline silicon rod manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26770998A JP4081879B2 (en) 1998-09-22 1998-09-22 Nozzle structure used in polycrystalline silicon rod manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2000095513A JP2000095513A (en) 2000-04-04
JP4081879B2 true JP4081879B2 (en) 2008-04-30

Family

ID=17448468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26770998A Expired - Lifetime JP4081879B2 (en) 1998-09-22 1998-09-22 Nozzle structure used in polycrystalline silicon rod manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4081879B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104401998B (en) * 2014-11-25 2016-04-13 中国恩菲工程技术有限公司 Nozzle

Also Published As

Publication number Publication date
JP2000095513A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP3592660B2 (en) Polycrystalline silicon manufacturing equipment
JP3122643B2 (en) Method for producing high-purity silicon particles
US7105053B2 (en) Energy efficient method for growing polycrystalline silicon
KR101577452B1 (en) Polycrystalline silicon reactor
KR850001943B1 (en) Combination gas curtains for continuous chemical vapor deposition production of silicon bodies
US3200009A (en) Method of producing hyperpure silicon
US6623801B2 (en) Method of producing high-purity polycrystalline silicon
WO1997044277A1 (en) Polycrystalline silicon rod and process for preparing the same
CN102084038A (en) Direct silicon or reactive metal casting
KR850001944B1 (en) Process for increasing silicon thermal decomposition rates from silicon halide-hydrogen reaction gases
CN102586856A (en) Crucible capable of improving utilization rate of silicon ingot and using frequency of seed crystal and preparation method of crucible
KR850001942B1 (en) Gas curtain continuous chemical vapor deposition production of semiconductor bodies
KR101279414B1 (en) Apparatus for manufacturing polycrystalline silicon and method for manufacturing polycrystalline
US3286685A (en) Process and apparatus for pyrolytic production of pure semiconductor material, preferably silicon
CN113755944A (en) Single crystal furnace thermal field structure, single crystal furnace and crystal bar
JP4081879B2 (en) Nozzle structure used in polycrystalline silicon rod manufacturing equipment
US6676916B2 (en) Method for inducing controlled cleavage of polycrystalline silicon rod
JP2003306321A (en) Polycrystalline silicon and its manufacturing method
JP3737863B2 (en) Method for producing granular polysilicon
KR101111681B1 (en) Apparatus to produce hyper-pure single crystal silicon ingot
JPH07118089A (en) Recharging device and recharging method for polycrystal
KR100470858B1 (en) Polycrystalline Silicon Rod and Process for Preparing the Same
JPS6144792A (en) Apparatus for pulling up silicon single crystal
KR20130016740A (en) Manufacturing method of polycrystalline silicon rod
JPH0142920B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

EXPY Cancellation because of completion of term