JP4081646B2 - Biphenol production by oxidative coupling of alkylphenols - Google Patents

Biphenol production by oxidative coupling of alkylphenols Download PDF

Info

Publication number
JP4081646B2
JP4081646B2 JP2001319064A JP2001319064A JP4081646B2 JP 4081646 B2 JP4081646 B2 JP 4081646B2 JP 2001319064 A JP2001319064 A JP 2001319064A JP 2001319064 A JP2001319064 A JP 2001319064A JP 4081646 B2 JP4081646 B2 JP 4081646B2
Authority
JP
Japan
Prior art keywords
reaction
diphenoquinone
tmp
mol
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001319064A
Other languages
Japanese (ja)
Other versions
JP2003128610A (en
Inventor
賢治 石井
聖生 平松
真 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2001319064A priority Critical patent/JP4081646B2/en
Priority to TW91123834A priority patent/TW572882B/en
Priority to US10/270,678 priority patent/US6689920B2/en
Priority to KR1020020063127A priority patent/KR100914020B1/en
Publication of JP2003128610A publication Critical patent/JP2003128610A/en
Application granted granted Critical
Publication of JP4081646B2 publication Critical patent/JP4081646B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、HMBPの製造法に関するもので、電子材料の中間体、農薬中間体などに利用することができる有用なHMBPに関するものである。
【0002】
【従来の技術】
ビフェノール化合物を酸素含有ガスにより、酸化的にカップリングさせてビフェノール化合物を合成する方法として、アニオン界面活性剤を含有する水溶液で銅触媒存在下、塩基性物質としてアルカリ金属の水酸化物、炭酸塩及び重炭酸塩からなる群から選ばれたものを用いる方法(特開昭51-43748)がある。この方法を構造式(3)で示される2,6-ジメチルフェノールに用いた場合、比較的収率良く構造式(4)で示される3,3',5,5'-テトラメチル-[1,1'-ビフェニル]-4,4'-ジオール(以下TMBPと略す)が得られるが、水溶媒中に界面活性剤を含有する混合物を強力に攪拌(6000〜10000 rpm)するために激しく発泡するという欠点がある。また、この方法では特殊な装置を用いる必要がある。
【化3】

Figure 0004081646
【化4】
Figure 0004081646
【0003】
また、pH調整剤としてホウ素化合物を添加することにより高速回転を必要としないという方法(特開昭60-152433)が知られており、特に酸化されやすい2,6-位置換のフェノールの酸化カップリングに有効となる。
【0004】
【発明が解決しようとする課題】
本発明は、反応中のpHをコントロールすることにより収率良くかつジフェノキノンの生成を抑え、アルキルフェノールの酸化カップリングによるビフェノール(構造式(2)のHMBP)を合成することである。
【0005】
【課題を解決するための手段】
本発明者等は、アルキルフェノールの酸化カップリングによるビフェノールの製造法について鋭意研究を重ねた結果、構造式(1)で示されるTMPは高いアルカリのpH領域の水溶液中で、pHを特定領域に厳密に保持しながら酸化カップリングすることで、他の方法より効率よくかつジフェノキノンを生成せずに構造式(2)で示されるHMBPが製造できる事を発見し、本発明を完成するに至った。なお、ジフェノキノンは微量でも着色の原因になり、取り除くことが困難であり、ジフェノキノンが生成しないことは重要である。以下に、本発明を詳細に説明する。
【0006】
通常のこの酸化カップリング反応では、反応の進行に伴い、pHが小さくなる傾向がある。すなわち、効率良く合成を行うためには、常にpHをアルカリ範囲に保持する必要がある。また、安定的にビフェノールを得るためには、高いpHに制御する必要がある。しかし、構造式(3)で示される2,6-ジメチルフェノールを原料に用いた場合、ポリフェニレンエーテルの生成が促進されることや、生成物である2価のフェノールであるTMBP自身の酸化がされやすく、ジフェノキノン体の生成が促進されることが観察され、効率よく所望のビフェノールを得ることができない。
【0007】
しかし、構造式(1)で示される1価のフェノールを用いた場合、その構造にある3位のメチル基の影響によって、それ自身の酸化が抑制され、ジフェノキノン体の生成が抑制される。さらに、pHを8〜14の範囲で、より好ましくはpHを11.5〜13.5の範囲で反応中のpHを±0.5にコントロールすることにより、収率良く構造式(2)で示されるHMBPを合成することができることを発見した。
【0008】
本発明の1価のフェノールとは、構造式(5)で示した2,3,6-トリメチルフェノール(TMP)であり、フェノール性水酸基からかぞえて、3位にメチル基を有する事を必須とする。
【化5】
Figure 0004081646
【0009】
本発明により合成される2価のフェノールとは、下記の構造式(6)に示すように2,2',3,3',5,5'-ヘキサメチル[1,1'-ビフェニル]-4,4'-ジオール(HMBP)である。
【化6】
Figure 0004081646
【0010】
塩基に水酸化ナトリウム、炭酸水素ナトリウム、リン酸水素二ナトリウムあるいはリン酸二水素カリウムの中の一種あるいは二種以上を用いることが好ましい。上記の塩基を用いることにより水溶液をpH8〜14の範囲に調整することができる。pHを8〜14の範囲で、より好ましくはpHを11.5〜13.5の範囲で反応中のpHを±0.5にコントロールすることにより収率良くかつジフェノキノンを生成せずにHMBPを合成することができる。
【0011】
pHコントロール剤に水酸化アルカリを用いることができる。アルカリとしてナトリウム、カリウムのほかにバリウム、カルシウム等の水酸化物も同様に可能である。
【0012】
用いる塩基の原料フェノールに対するモル比率は3〜25 mol%が好ましい。
【0013】
界面活性剤には、例えば脂肪酸石けん、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、アルキル硫酸塩、アルキルエーテルリン酸塩などを用いることができる。
【0014】
酸素含有ガスを用いて酸化重合をする場合の触媒としては、酢酸第二銅、塩化第二銅、臭化第二銅、ヨウ化第二銅、炭酸銅、硝酸銅、硫酸銅等の金属塩等の一種または二種以上が用いられる。金属塩であれば、特にこれに限定されるものではない。
【0015】
反応器に圧力をかけることにより、冷却器を閉塞する等の不具合を防止することができる。反応器にかける圧力は0.3〜10.0kg/cm2Gが好ましく、更に圧力調整弁を付けることにより、反応中常に一定の圧力にすることがより好ましい。
【0016】
本発明の製造法における反応温度については、特には限定されないが、70〜98℃が好ましい。70℃より低い場合はTMPの融点以下となり反応効率が悪い。また、TMPの引火点が98.8℃であるのでこれ以下の反応温度が保安上好ましい。さらに好ましくは、75〜90℃が望ましい。
【0017】
用いる攪拌装置は通常の装置を使用することができ、300〜1200 rpmにて攪拌を行う。300 rpmより低速な場合は酸素の取り込みが不充分になり酸化速度が低下する。一方、1200 rpmより早いと工業的に大きな障害となる。
【0018】
次に、本発明の製造装置および製造方法について説明する。攪拌装置、酸素導入管(圧力調整弁付き)、温度計、pH制御装置(1Nの水酸化アルカリ水溶液を使用)、じゃま板のついたステンレス製反応器にTMP及びpH調整剤を仕込み、60℃になった時点で銅触媒を添加した後に、圧力調整弁及びpH制御装置を作動させ、さらに85℃に加熱して500rpmにて攪拌を行う。反応に用いる反応器を図1に示す。攪拌羽根は反応器の直径の1/3であり、邪魔板に関しては直径の1/10のものを4枚取り付けた。
【0019】
【実施例】
(実施例1)
40リッターのステンレス製反応器に2,3,6‐トリメチルフェノール(TMP)を4000g(29.4 mol)、水酸化ナトリウム(pH調整剤)21g、ラウリル硫酸ナトリウム(界面活性剤)18g、イオン交換水18000gを仕込み、60℃まで加熱し、60℃になった時点で酢酸銅(II)0.6g(0.003 mol)を仕込んだ。この時点でのpHは12.8であった。圧力制御を作動させ内圧0.5kg/cm2Gとし、500rpmにて攪拌を行った。反応温度を85℃に加熱し、図1に示したpH制御装置を用い、pHを13±0.5に制御した。酸素吸収がなくなった時点で加熱を止め、反応終了とした。この時点でのpHは13.1であった。その後、1Nの塩酸水溶液を加えpHを4にした後ろ過を行い、得られた固体をイオン交換水で洗浄した後、温水及びトルエン洗浄を行った。80℃にて減圧乾燥を行い、3529g(収率89%)の白色粉末を得た。なお、得られた粉末にジフェノキノンは確認されなかった(検出限界0.01%)。
【0020】
参考例
40リッターのステンレス製反応器に2,3,6‐トリメチルフェノール(TMP)を4000g(29.4 mol)、pH調整剤として0.1N水酸化ナトリウム1456mL、及びリン酸水素二ナトリウム125g、ラウリル硫酸ナトリウム(界面活性剤)18g、イオン交換水16500gを仕込み、60℃まで加熱し、60℃になった時点で酢酸銅(II)0.6g(0.003 mol)を仕込んだ。この時点でのpHは11.2であった。圧力制御を作動させ内圧0.5kg/cm2Gとし、500rpmにて攪拌を行った。反応温度を85℃に加熱し、図1に示したpH制御装置を用い、pHを11±0.5に制御した。酸素吸収がなくなった時点で加熱を止め、反応終了とした。この時点でのpHは10.8であった。その後、1Nの塩酸水溶液を加えpHを4にした後ろ過を行い、得られた固体をイオン交換水で洗浄した後、温水及びトルエン洗浄を行った。80℃にて減圧乾燥を行い、3172g(収率80%)の白色粉末を得た。なお、得られた粉末にジフェノキノンは確認されなかった(検出限界0.01%)。
【0021】
(比較例1)
40リッターのステンレス製反応器に2,3,6‐トリメチルフェノール(TMP)を4000g(29.4 mol)、水酸化ナトリウム(pH調整剤)21g、ラウリル硫酸ナトリウム(界面活性剤)18g、イオン交換水18000gを仕込み、60℃まで加熱し、60℃になった時点で酢酸銅(II)0.6g(0.003 mol)を仕込んだ。この時点でのpHは12.8であった。圧力制御を作動させ内圧0.5kg/cm2Gとし、500rpmにて攪拌を行った。反応温度を85℃に加熱し、酸素吸収がなくなった時点で加熱を止め、反応終了とした。この時点でのpHは9.4であった。その後、1Nの塩酸水溶液を加えpHを4にした後ろ過を行い、得られた固体をイオン交換水で洗浄した後、温水及びトルエン洗浄を行った。80℃にて減圧乾燥を行い、2736g(収率69%)の黄色粉末を得た。なお、得られた粉末にジフェノキノンが0.2%確認された。
【0022】
(比較例2)
40リッターのステンレス製反応器に2,3,6‐トリメチルフェノール(TMP)を4000g(29.4 mol)、pH調整剤としてリン酸二水素カリウム14g及びリン酸水素二ナトリウム189.6g、ラウリル硫酸ナトリウム(界面活性剤)18g、イオン交換水18000gを仕込み、60℃まで加熱し、60℃になった時点で酢酸銅(II)0.6g(0.003 mol)を仕込んだ。この時点でのpHは8.7であった。圧力制御を作動させ内圧0.5kg/cm2Gとし、500rpmにて攪拌を行った。反応温度を85℃に加熱し、図1に示したpH制御装置を用い、pHを反応終了時に12に制御した。酸素吸収がなくなった時点で加熱を止め、反応終了とした。この時点でのpHは12.1であった。その後、1Nの塩酸水溶液を加えpHを4にした後ろ過を行い、得られた固体をイオン交換水で洗浄した後、温水及びトルエン洗浄を行った。80℃にて減圧乾燥を行い、2855g(収率72%)の黄色粉末を得た。なお、得られた粉末にジフェノキノンが0.2%確認された。
【0023】
(比較例3)
40リッターのステンレス製反応器に2,3,6‐トリメチルフェノール(TMP)を4000g(29.4 mol)、水酸化ナトリウム(pH調整剤)2.3g、ラウリル硫酸ナトリウム(界面活性剤)18g、イオン交換水18000gを仕込み、60℃まで加熱し、60℃になった時点で酢酸銅(II)0.6g(0.003 mol)を仕込んだ。この時点でのpHは12.2であった。圧力制御を作動させ内圧0.5kg/cm2Gとし、500rpmにて攪拌を行った。反応温度を85℃に加熱し、図1に示したpH制御装置を用い、pHを反応終了時に9に制御した。酸素吸収がなくなった時点で加熱を止め、反応終了とした。この時点でのpHは9.0であった。その後、1Nの塩酸水溶液を加えpHを4にした後ろ過を行い、得られた固体をイオン交換水で洗浄した後、温水及びトルエン洗浄を行った。80℃にて減圧乾燥を行い、2895g(収率73%)の黄色粉末を得た。なお、得られた粉末にジフェノキノンが0.2%確認された。
【0024】
(比較例4)
40リッターのステンレス製反応器に2,3,6‐トリメチルフェノール(TMP)を4000g(29.4 mol)、水酸化ナトリウム(pH調整剤)680g、ラウリル硫酸ナトリウム(界面活性剤)18g、イオン交換水18000gを仕込み、60℃まで加熱し、60℃になった時点で酢酸銅(II)0.6g(0.003 mol)を仕込んだ。この時点でのpHは13.9であった。圧力制御を作動させ内圧0.5kg/cm2Gとし、500rpmにて攪拌を行った。反応温度を85℃に加熱し、酸素吸収がなくなった時点で加熱を止め、反応終了とした。この時点でのpHは12.1であった。その後、1Nの塩酸水溶液を加えpHを4にした後ろ過を行い、得られた固体をイオン交換水で洗浄した後、温水及びトルエン洗浄を行った。80℃にて減圧乾燥を行い、2300g(収率65%)の黄色粉末を得た。なお、得られた粉末にジフェノキノンが0.1%確認された。
【0025】
(比較例5)
40リッターのステンレス製反応器に2,3,6‐トリメチルフェノール(TMP)を4000g(29.4 mol)、pH調整剤としてリン酸二水素カリウム14g及びリン酸水素二ナトリウム189.6g、ラウリル硫酸ナトリウム(界面活性剤)18g、イオン交換水18000gを仕込み、60℃まで加熱し、60℃になった時点で酢酸銅(II)0.6g(0.003 mol)を仕込んだ。この時点でのpHは8.7であった。圧力制御を作動させ内圧0.5kg/cm2Gとし、500rpmにて攪拌を行った。反応温度を85℃に加熱し、図1に示したpH制御装置を用い、pHを9±0.5に制御した。酸素吸収がなくなった時点で加熱を止め、反応終了とした。この時点でのpHは9.0であった。その後、1Nの塩酸水溶液を加えpHを4にした後ろ過を行い、得られた固体をイオン交換水で洗浄した後、温水及びトルエン洗浄を行った。80℃にて減圧乾燥を行い、2974g(収率75%)の黄色粉末を得た。なお、得られた粉末にジフェノキノンが0.2%確認された。
【0026】
(比較例6)
40リッターのステンレス製反応器に2,3,6‐トリメチルフェノール(TMP)を4000g(29.4 mol)、pH調整剤としてホウ砂587g、ラウリル硫酸ナトリウム(界面活性剤)18g、イオン交換水16500gを仕込み、60℃まで加熱し、60℃になった時点で酢酸銅(II)0.6g(0.003 mol)を仕込んだ。この時点でのpHは9.5であった。圧力制御を作動させ内圧0.5kg/cm2Gとし、500rpmにて攪拌を行った。反応温度を85℃に加熱し、酸素吸収がなくなった時点で加熱を止め、反応終了とした。この時点でのpHは8.8であった。その後、1Nの塩酸水溶液を加えpHを4にした後ろ過を行い、得られた固体をイオン交換水で洗浄した後、温水及びトルエン洗浄を行った。80℃にて減圧乾燥を行い、2934g(収率74%)の黄色粉末を得た。なお、得られた粉末にジフェノキノンが0.2%確認された。
【0027】
(比較例7)
40リッターのステンレス製反応器に2,6‐キシレノール(2,6‐X)を3590g(29.4 mol)、pH調整剤としてリン酸二水素カリウム12g及びリン酸水素二ナトリウム189.6g、ラウリル硫酸ナトリウム(界面活性剤)18g、イオン交換水18000gを仕込み、60℃まで加熱し、60℃になった時点で酢酸銅(II)0.6g(0.003 mol)を仕込んだ。この時点でのpHは8.7であった。圧力制御を作動させ内圧0.5kg/cm2Gとし、500rpmにて攪拌を行った。反応温度を85℃に加熱し、図1に示したpH制御装置を用い、pHを9±0.5に制御した。酸素吸収がなくなった時点で加熱を止め、反応終了とした。この時点でのpHは9.2であった。その後、1Nの塩酸水溶液を加えpHを4にした後ろ過を行い、得られた固体をイオン交換水で洗浄した後、温水及びトルエン洗浄を行った。80℃にて減圧乾燥を行い、2631g(収率74%)の黄色粉末を得た。なお、得られた粉末にジフェノキノンが0.5%確認された。
【0028】
(比較例8)
40リッターのステンレス製反応器に2,6‐キシレノール(2,6‐X)を3590g(29.4 mol)、pH調整剤として水酸化ナトリウム(pH調整剤)21g、ラウリル硫酸ナトリウム(界面活性剤)18g、イオン交換水18000gを仕込み、60℃まで加熱し、60℃になった時点で酢酸銅(II)0.6g(0.003 mol)を仕込んだ。この時点でのpHは12.8であった。圧力制御を作動させ内圧0.5kg/cm2Gとし、500rpmにて攪拌を行った。反応温度を85℃に加熱し、図1に示したpH制御装置を用い、pHを13±0.5に制御した。酸素吸収がなくなった時点で加熱を止め、反応終了とした。この時点でのpHは13.2であった。その後、1Nの塩酸水溶液を加えpHを4にした後ろ過を行い、得られた固体をイオン交換水で洗浄した後、温水及びトルエン洗浄を行った。80℃にて減圧乾燥を行い、2702g(収率76%)の黄色粉末を得た。なお、得られた粉末にジフェノキノンが0.9%確認された。
【0029】
以上の結果を表1にまとめた。
【表1】
Figure 0004081646
【0030】
以上の結果をまとめると、以下のようになる。
(a)原料にTMPを用いると2,6‐キシレノールを用いた場合に比べて高収率で目的の化合物が得られ、さらに高いpH領域でpHを±0.5に制御した場合TMPを用いた場合は、ジフェノキノンの生成が認められなかったが、2,6‐キシレノールを用いた場合には確認された。(b)反応中のpHが±1より範囲が大きい場合、TMPを用いた場合においてもジフェノキノンの生成が見られ黄色粉末が得られた。(c)TMPを用いた場合において、TMPと図1に示した装置を用い、pHを13±0.5に制御した場合に最も良い結果が得られた。すなわち、高いpH領域である13±0.5にpHを制御することで収率良くかつジフェノキノンを生成せずに白色粉末の構造式(2)のHMBPが得られることを見出した。(d)TMPを用いた場合でもpHコントロールを行わない場合は収率が低下し、ジフェノキノンの生成が確認され黄色粉末が得られた。(e)特開昭60-152433の方法で行った場合は、本方法に比べて収率が低下し、ジフェノキノンが確認され黄色粉末が得られた。
【0031】
【発明の効果】
本発明によれば、pHを8〜14の範囲で、より好ましくはpHを11.5〜13.5の範囲で反応中のpHを±1にコントロールすることによりジフェノキノンを生成せずにHMBPを得ることができる。
【図面の簡単な説明】
【図1】反応装置の概略図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing HMBP, and relates to a useful HMBP that can be used as an intermediate for electronic materials, an intermediate for agricultural chemicals, and the like.
[0002]
[Prior art]
As a method for synthesizing a biphenol compound by oxidative coupling of a biphenol compound with an oxygen-containing gas, an alkali metal hydroxide or carbonate as a basic substance in an aqueous solution containing an anionic surfactant in the presence of a copper catalyst. And a method using one selected from the group consisting of bicarbonates (Japanese Patent Laid-Open No. 51-43748). When this method is used for 2,6-dimethylphenol represented by the structural formula (3), the 3,3 ′, 5,5′-tetramethyl- [1 represented by the structural formula (4) has a relatively high yield. , 1'-biphenyl] -4,4'-diol (hereinafter abbreviated as TMBP), but vigorously foamed to vigorously stir (600-10000 rpm) the mixture containing the surfactant in an aqueous solvent There is a drawback of doing. This method also requires the use of a special device.
[Chemical 3]
Figure 0004081646
[Formula 4]
Figure 0004081646
[0003]
Also known is a method that does not require high-speed rotation by adding a boron compound as a pH adjusting agent (Japanese Patent Laid-Open No. 60-152433). Effective for the ring.
[0004]
[Problems to be solved by the invention]
The present invention is to synthesize biphenol (HMBP of the structural formula (2)) by oxidative coupling of alkylphenol by controlling the pH during the reaction and suppressing the formation of diphenoquinone.
[0005]
[Means for Solving the Problems]
As a result of extensive research on the production of biphenol by oxidative coupling of alkylphenols, the present inventors have found that TMP represented by the structural formula (1) is strictly controlled in a specific pH range in a highly alkaline pH aqueous solution. It was discovered that the HMBP represented by the structural formula (2) can be produced more efficiently than other methods without producing diphenoquinone by oxidative coupling while being held at the same temperature, and the present invention has been completed. It should be noted that diphenoquinone causes coloring even in a trace amount and is difficult to remove, and it is important that diphenoquinone is not generated. The present invention is described in detail below.
[0006]
In this normal oxidative coupling reaction, the pH tends to decrease as the reaction proceeds. That is, in order to perform synthesis efficiently, it is necessary to always maintain the pH in the alkaline range. Moreover, in order to obtain biphenol stably, it is necessary to control to high pH. However, when 2,6-dimethylphenol represented by the structural formula (3) is used as a raw material, the production of polyphenylene ether is promoted, and the product divalent phenol TMBP itself is oxidized. It is easy to observe that the formation of diphenoquinone is promoted, and the desired biphenol cannot be obtained efficiently.
[0007]
However, when the monovalent phenol represented by the structural formula (1) is used, the oxidation of itself is suppressed by the influence of the methyl group at the 3-position in the structure, and the formation of the diphenoquinone body is suppressed. Furthermore, by controlling the pH during the reaction to ± 0.5 in the range of pH 8 to 14, more preferably in the range of 11.5 to 13.5, the HMBP represented by the structural formula (2) is synthesized with good yield. I found that I can do it.
[0008]
The monovalent phenol of the present invention is 2,3,6-trimethylphenol (TMP) represented by the structural formula (5), and it is essential to have a methyl group at the 3-position in place of the phenolic hydroxyl group. To do.
[Chemical formula 5]
Figure 0004081646
[0009]
The divalent phenol synthesized by the present invention is 2,2 ′, 3,3 ′, 5,5′-hexamethyl [1,1′-biphenyl] -4 as shown in the following structural formula (6). , 4'-diol (HMBP).
[Chemical 6]
Figure 0004081646
[0010]
It is preferable to use one or more of sodium hydroxide, sodium hydrogen carbonate, disodium hydrogen phosphate or potassium dihydrogen phosphate as the base. By using the above base, the aqueous solution can be adjusted to a pH range of 8-14. HMBP can be synthesized in good yield and without producing diphenoquinone by controlling the pH during reaction to ± 0.5 in the range of 8 to 14, more preferably in the range of 11.5 to 13.5.
[0011]
An alkali hydroxide can be used as the pH control agent. In addition to sodium and potassium as alkali, hydroxides such as barium and calcium are also possible.
[0012]
The molar ratio of the base used to the raw material phenol is preferably 3 to 25 mol%.
[0013]
As the surfactant, for example, fatty acid soap, alkyl sulfonate, alkyl benzene and alkyl naphthalene sulfonate, alkyl sulfate, alkyl ether phosphate and the like can be used.
[0014]
As a catalyst for oxidative polymerization using an oxygen-containing gas, metal salts such as cupric acetate, cupric chloride, cupric bromide, cupric iodide, copper carbonate, copper nitrate, copper sulfate, etc. One or more of these are used. The metal salt is not particularly limited as long as it is a metal salt.
[0015]
By applying pressure to the reactor, problems such as blocking the cooler can be prevented. The pressure applied to the reactor is preferably 0.3 to 10.0 kg / cm 2 G, and it is more preferable to keep a constant pressure during the reaction by attaching a pressure regulating valve.
[0016]
Although it does not specifically limit about the reaction temperature in the manufacturing method of this invention, 70-98 degreeC is preferable. If it is lower than 70 ° C, the reaction efficiency is poor because it is below the melting point of TMP. Further, since the flash point of TMP is 98.8 ° C., a reaction temperature below this is preferable for safety. More preferably, 75-90 degreeC is desirable.
[0017]
The stirring apparatus to be used can use a normal apparatus, and stirs at 300-1200 rpm. When the speed is lower than 300 rpm, oxygen uptake becomes insufficient and the oxidation rate decreases. On the other hand, if it is faster than 1200 rpm, it becomes a big industrial obstacle.
[0018]
Next, the manufacturing apparatus and manufacturing method of the present invention will be described. TMP and pH adjuster are charged into a stainless steel reactor equipped with a stirrer, oxygen introduction pipe (with pressure adjustment valve), thermometer, pH control device (using 1N aqueous alkali hydroxide solution), baffle plate, 60 ° C After the copper catalyst is added, the pressure control valve and the pH control device are operated, and further heated to 85 ° C. and stirred at 500 rpm. The reactor used for the reaction is shown in FIG. The stirring blade was 1/3 of the diameter of the reactor, and four baffles having 1/10 diameter were attached.
[0019]
【Example】
(Example 1)
In a 40-liter stainless steel reactor, 2,3,6-trimethylphenol (TMP) 4000 g (29.4 mol), sodium hydroxide (pH adjuster) 21 g, sodium lauryl sulfate (surfactant) 18 g, ion-exchanged water 18000 g Was heated to 60 ° C, and when the temperature reached 60 ° C, 0.6 g (0.003 mol) of copper (II) acetate was added. The pH at this point was 12.8. The pressure control was activated to set the internal pressure to 0.5 kg / cm 2 G, and stirring was performed at 500 rpm. The reaction temperature was heated to 85 ° C., and the pH was controlled to 13 ± 0.5 using the pH controller shown in FIG. When the oxygen absorption disappeared, the heating was stopped and the reaction was completed. The pH at this point was 13.1. Thereafter, 1N hydrochloric acid aqueous solution was added to adjust the pH to 4, followed by filtration. The obtained solid was washed with ion-exchanged water, and then washed with warm water and toluene. It dried under reduced pressure at 80 degreeC and obtained 3529g (yield 89%) of white powder. In addition, diphenoquinone was not confirmed in the obtained powder (detection limit 0.01%).
[0020]
( Reference example )
In a 40-liter stainless steel reactor, 4000 g (29.4 mol) of 2,3,6-trimethylphenol (TMP), 1456 mL of 0.1N sodium hydroxide as pH adjuster, 125 g of disodium hydrogen phosphate, sodium lauryl sulfate (interface) 18 g of activator) and 16500 g of ion-exchanged water were charged and heated to 60 ° C. When the temperature reached 60 ° C., 0.6 g (0.003 mol) of copper (II) acetate was charged. The pH at this point was 11.2. The pressure control was activated to set the internal pressure to 0.5 kg / cm 2 G, and stirring was performed at 500 rpm. The reaction temperature was heated to 85 ° C., and the pH was controlled to 11 ± 0.5 using the pH controller shown in FIG. When the oxygen absorption disappeared, the heating was stopped and the reaction was completed. The pH at this point was 10.8. Thereafter, 1N hydrochloric acid aqueous solution was added to adjust the pH to 4, followed by filtration. The obtained solid was washed with ion-exchanged water, and then washed with warm water and toluene. It dried under reduced pressure at 80 degreeC and obtained 3172 g (yield 80%) of white powder. In addition, diphenoquinone was not confirmed in the obtained powder (detection limit 0.01%).
[0021]
(Comparative Example 1)
In a 40-liter stainless steel reactor, 2,3,6-trimethylphenol (TMP) 4000 g (29.4 mol), sodium hydroxide (pH adjuster) 21 g, sodium lauryl sulfate (surfactant) 18 g, ion-exchanged water 18000 g Was heated to 60 ° C, and when the temperature reached 60 ° C, 0.6 g (0.003 mol) of copper (II) acetate was added. The pH at this point was 12.8. The pressure control was activated to set the internal pressure to 0.5 kg / cm 2 G, and stirring was performed at 500 rpm. The reaction temperature was heated to 85 ° C., and when the oxygen absorption disappeared, the heating was stopped and the reaction was completed. The pH at this point was 9.4. Thereafter, 1N hydrochloric acid aqueous solution was added to adjust the pH to 4, followed by filtration. The obtained solid was washed with ion-exchanged water, and then washed with warm water and toluene. Drying under reduced pressure at 80 ° C. gave 2736 g (yield 69%) of a yellow powder. In addition, 0.2% of diphenoquinone was confirmed in the obtained powder.
[0022]
(Comparative Example 2)
In a 40 liter stainless steel reactor, 4000 g (29.4 mol) of 2,3,6-trimethylphenol (TMP), 14 g of potassium dihydrogen phosphate and 189.6 g of disodium hydrogen phosphate as pH adjusters, sodium lauryl sulfate (interface) 18 g of activator) and 18000 g of ion-exchanged water were charged and heated to 60 ° C. When the temperature reached 60 ° C., 0.6 g (0.003 mol) of copper (II) acetate was charged. The pH at this point was 8.7. The pressure control was activated to set the internal pressure to 0.5 kg / cm 2 G, and stirring was performed at 500 rpm. The reaction temperature was heated to 85 ° C., and the pH was controlled to 12 at the end of the reaction using the pH controller shown in FIG. When the oxygen absorption disappeared, the heating was stopped and the reaction was completed. The pH at this point was 12.1. Thereafter, 1N hydrochloric acid aqueous solution was added to adjust the pH to 4, followed by filtration. The obtained solid was washed with ion-exchanged water, and then washed with warm water and toluene. Drying under reduced pressure at 80 ° C. gave 2855 g (yield 72%) of a yellow powder. In addition, 0.2% of diphenoquinone was confirmed in the obtained powder.
[0023]
(Comparative Example 3)
In a 40 liter stainless steel reactor, 4000 g (29.4 mol) of 2,3,6-trimethylphenol (TMP), 2.3 g of sodium hydroxide (pH adjuster), 18 g of sodium lauryl sulfate (surfactant), ion-exchanged water 18000 g was charged and heated to 60 ° C. When the temperature reached 60 ° C., 0.6 g (0.003 mol) of copper (II) acetate was charged. The pH at this point was 12.2. The pressure control was activated to set the internal pressure to 0.5 kg / cm 2 G, and stirring was performed at 500 rpm. The reaction temperature was heated to 85 ° C., and the pH was controlled to 9 at the end of the reaction using the pH controller shown in FIG. When the oxygen absorption disappeared, the heating was stopped and the reaction was completed. The pH at this point was 9.0. Thereafter, 1N hydrochloric acid aqueous solution was added to adjust the pH to 4, followed by filtration. The obtained solid was washed with ion-exchanged water, and then washed with warm water and toluene. Drying under reduced pressure at 80 ° C. yielded 2895 g (yield 73%) of a yellow powder. In addition, 0.2% of diphenoquinone was confirmed in the obtained powder.
[0024]
(Comparative Example 4)
In a 40 liter stainless steel reactor, 2,3,6-trimethylphenol (TMP) 4000 g (29.4 mol), sodium hydroxide (pH adjuster) 680 g, sodium lauryl sulfate (surfactant) 18 g, ion-exchanged water 18000 g Was heated to 60 ° C, and when the temperature reached 60 ° C, 0.6 g (0.003 mol) of copper (II) acetate was added. The pH at this point was 13.9. The pressure control was activated to set the internal pressure to 0.5 kg / cm 2 G, and stirring was performed at 500 rpm. The reaction temperature was heated to 85 ° C., and when the oxygen absorption disappeared, the heating was stopped and the reaction was completed. The pH at this point was 12.1. Thereafter, 1N hydrochloric acid aqueous solution was added to adjust the pH to 4, followed by filtration. The obtained solid was washed with ion-exchanged water, and then washed with warm water and toluene. It dried under reduced pressure at 80 degreeC and obtained 2300 g (yield 65%) of yellow powder. In addition, 0.1% of diphenoquinone was confirmed in the obtained powder.
[0025]
(Comparative Example 5)
In a 40 liter stainless steel reactor, 4000 g (29.4 mol) of 2,3,6-trimethylphenol (TMP), 14 g of potassium dihydrogen phosphate and 189.6 g of disodium hydrogen phosphate as pH adjusters, sodium lauryl sulfate (interface) 18 g of activator) and 18000 g of ion-exchanged water were charged and heated to 60 ° C. When the temperature reached 60 ° C., 0.6 g (0.003 mol) of copper (II) acetate was charged. The pH at this point was 8.7. The pressure control was activated to set the internal pressure to 0.5 kg / cm 2 G, and stirring was performed at 500 rpm. The reaction temperature was heated to 85 ° C., and the pH was controlled to 9 ± 0.5 using the pH controller shown in FIG. When the oxygen absorption disappeared, the heating was stopped and the reaction was completed. The pH at this point was 9.0. Thereafter, 1N hydrochloric acid aqueous solution was added to adjust the pH to 4, followed by filtration. The obtained solid was washed with ion-exchanged water, and then washed with warm water and toluene. Drying under reduced pressure at 80 ° C. gave 2974 g (yield 75%) of a yellow powder. In addition, 0.2% of diphenoquinone was confirmed in the obtained powder.
[0026]
(Comparative Example 6)
A 40-liter stainless steel reactor is charged with 4000 g (29.4 mol) of 2,3,6-trimethylphenol (TMP), 587 g of borax as a pH adjuster, 18 g of sodium lauryl sulfate (surfactant), and 16500 g of ion-exchanged water. The mixture was heated to 60 ° C., and when the temperature reached 60 ° C., 0.6 g (0.003 mol) of copper (II) acetate was charged. The pH at this point was 9.5. The pressure control was activated to set the internal pressure to 0.5 kg / cm 2 G, and stirring was performed at 500 rpm. The reaction temperature was heated to 85 ° C., and when the oxygen absorption disappeared, the heating was stopped and the reaction was completed. The pH at this point was 8.8. Thereafter, 1N hydrochloric acid aqueous solution was added to adjust the pH to 4, followed by filtration. The obtained solid was washed with ion-exchanged water, and then washed with warm water and toluene. Drying under reduced pressure at 80 ° C. yielded 2934 g (yield 74%) of a yellow powder. In addition, 0.2% of diphenoquinone was confirmed in the obtained powder.
[0027]
(Comparative Example 7)
In a 40 liter stainless steel reactor, 3,590 g (29.4 mol) of 2,6-xylenol (2,6-X), 12 g of potassium dihydrogen phosphate and 189.6 g of disodium hydrogen phosphate as pH adjusters, sodium lauryl sulfate ( (Surfactant) 18 g and ion-exchanged water 18000 g were charged and heated to 60 ° C. When the temperature reached 60 ° C., 0.6 g (0.003 mol) of copper (II) acetate was charged. The pH at this point was 8.7. The pressure control was activated to set the internal pressure to 0.5 kg / cm 2 G, and stirring was performed at 500 rpm. The reaction temperature was heated to 85 ° C., and the pH was controlled to 9 ± 0.5 using the pH controller shown in FIG. When the oxygen absorption disappeared, the heating was stopped and the reaction was completed. The pH at this point was 9.2. Thereafter, 1N hydrochloric acid aqueous solution was added to adjust the pH to 4, followed by filtration. The obtained solid was washed with ion-exchanged water, and then washed with warm water and toluene. Drying under reduced pressure at 80 ° C. gave 2631 g (yield 74%) of a yellow powder. In addition, 0.5% of diphenoquinone was confirmed in the obtained powder.
[0028]
(Comparative Example 8)
40-liter stainless steel reactor with 3,590 g (29.4 mol) of 2,6-xylenol (2,6-X), 21 g of sodium hydroxide (pH adjuster) as pH adjuster, 18 g of sodium lauryl sulfate (surfactant) Then, 18000 g of ion-exchanged water was charged and heated to 60 ° C. When the temperature reached 60 ° C., 0.6 g (0.003 mol) of copper (II) acetate was charged. The pH at this point was 12.8. The pressure control was activated to set the internal pressure to 0.5 kg / cm 2 G, and stirring was performed at 500 rpm. The reaction temperature was heated to 85 ° C., and the pH was controlled to 13 ± 0.5 using the pH controller shown in FIG. When the oxygen absorption disappeared, the heating was stopped and the reaction was completed. The pH at this point was 13.2. Thereafter, 1N hydrochloric acid aqueous solution was added to adjust the pH to 4, followed by filtration. The obtained solid was washed with ion-exchanged water, and then washed with warm water and toluene. It dried under reduced pressure at 80 degreeC and obtained 2702g (yield 76%) of yellow powder. In addition, 0.9% of diphenoquinone was confirmed in the obtained powder.
[0029]
The above results are summarized in Table 1.
[Table 1]
Figure 0004081646
[0030]
The above results are summarized as follows.
(a) When TMP is used as a raw material, the target compound is obtained in a higher yield than when 2,6-xylenol is used, and when TMP is used when the pH is controlled to ± 0.5 in a higher pH range No formation of diphenoquinone was observed, but it was confirmed when 2,6-xylenol was used. (B) When the pH during the reaction was larger than ± 1, the formation of diphenoquinone was observed even when TMP was used, and a yellow powder was obtained. (C) In the case of using TMP, the best results were obtained when the pH was controlled to 13 ± 0.5 using TMP and the apparatus shown in FIG. That is, it was found that by controlling the pH to 13 ± 0.5, which is a high pH region, HMBP of the structural formula (2) of white powder can be obtained with good yield and without producing diphenoquinone. (d) Even when TMP was used, when pH control was not performed, the yield decreased, and the formation of diphenoquinone was confirmed, and a yellow powder was obtained. (e) When the method described in JP-A-60-152433 was carried out, the yield was lowered as compared with this method, and diphenoquinone was confirmed, and a yellow powder was obtained.
[0031]
【The invention's effect】
According to the present invention, HMBP can be obtained without producing diphenoquinone by controlling the pH during the reaction to ± 1 in the range of pH 8 to 14, more preferably in the range of 11.5 to 13.5. .
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a reaction apparatus.

Claims (1)

界面活性剤を含有し、水酸化ナトリウムまたは水酸化カリウムによりアルカリ性にしたアルカリ性水溶液中、反応液の銅触媒存在下、pHを11.5 13.5の範囲で、反応中のpHを pH コントロール剤として水酸化アルカリを用いて±0.5にコントロールし、酸素含有ガスにより構造式(1)で示した2,3,6-トリメチルフェノール(以下TMP)を酸化的にカップリングすることを特徴とする、構造式(2)の2,2',3,3',5,5'-ヘキサメチル-[1,1'-ビフェニル]-4,4'-ジオール(以下HMBPと略す)の製造法。
Figure 0004081646
Figure 0004081646
Contain a surfactant, water an alkaline aqueous solution was made alkaline with sodium hydroxide or potassium hydroxide, copper catalyst the presence of the reaction solution, pH in the range of 11.5 to 13.5, and the pH during the reaction, as a pH controlling agent Controlled to ± 0.5 using an alkali oxide, and 2,3,6-trimethylphenol (TMP) shown in the structural formula (1) is oxidatively coupled with an oxygen-containing gas. (2) 2,2 ′, 3,3 ′, 5,5′-hexamethyl- [1,1′-biphenyl] -4,4′-diol (hereinafter abbreviated as HMBP)
Figure 0004081646
Figure 0004081646
JP2001319064A 2001-10-17 2001-10-17 Biphenol production by oxidative coupling of alkylphenols Expired - Lifetime JP4081646B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001319064A JP4081646B2 (en) 2001-10-17 2001-10-17 Biphenol production by oxidative coupling of alkylphenols
TW91123834A TW572882B (en) 2001-10-17 2002-10-16 Bifunctional biphenyl and process for producing bifunctional phenylene ether oligomer compound using the same
US10/270,678 US6689920B2 (en) 2001-10-17 2002-10-16 Bifunctional biphenyl and process for producing bifunctional phenylene ether oligomer compound using the same
KR1020020063127A KR100914020B1 (en) 2001-10-17 2002-10-16 Bifunctional biphenyl and process for producing bifunctional phenylene ether oligomer compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319064A JP4081646B2 (en) 2001-10-17 2001-10-17 Biphenol production by oxidative coupling of alkylphenols

Publications (2)

Publication Number Publication Date
JP2003128610A JP2003128610A (en) 2003-05-08
JP4081646B2 true JP4081646B2 (en) 2008-04-30

Family

ID=19136668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319064A Expired - Lifetime JP4081646B2 (en) 2001-10-17 2001-10-17 Biphenol production by oxidative coupling of alkylphenols

Country Status (1)

Country Link
JP (1) JP4081646B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057296A (en) * 2007-08-30 2009-03-19 Sumitomo Chemical Co Ltd Method for producing dimer of phenol
CN117430486B (en) * 2023-10-27 2024-04-09 安徽觅拓材料科技有限公司 Preparation method and application of TMBP

Also Published As

Publication number Publication date
JP2003128610A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP4081646B2 (en) Biphenol production by oxidative coupling of alkylphenols
JPS5853012B2 (en) polyphenylene oxide
US4093598A (en) Oxidative coupling of phenolic monomers in the presence of manganese complexes of manganese phenyl benzoin oxime catalysts
CN107442128A (en) A kind of Cu/Cu2O/CeO2It is prepared by one pot of hydro-thermal method of ternary nano compound
JPS62198641A (en) Production of carboxylic acid salt
JP2001139586A (en) Method for production of organic phosphorus compound and its metal salt
CN109879777B (en) 2-hydroxy arone oxime compound and preparation method and application thereof
US4427594A (en) Oxidative coupling of phenolic monomers with manganese complexes of phenyl benzoin oxime catalysts
JP2004525918A (en) Process for the production of mono- or biscarbonyl- or hydroxyl compounds
CN110218150A (en) Substituted benzoic acid type organic is continuously synthesizing to method
JPS6217587B2 (en)
US4225528A (en) Manganese complexes of phenyl benzoin in oxime catalysts
CN115193459B (en) Preparation method and application of heterogeneous palladium catalyst
CN115121262B (en) Method for preparing cinnamaldehyde by photocatalytic cinnamyl alcohol oxidation of water-skid-supported Au-Co alloy
JP2711517B2 (en) Method for producing 6-alkyl-2-naphthalenecarboxylic acid and 6-isopropyl-2-naphthalenecarboxylic acid
CN102718645B (en) Microwave synthesis method of cinnamic acid derivative
JPS62258346A (en) Production of n,n-dialkylaminophenol
JP2003267907A (en) Method for producing ketone
US2458295A (en) Production of vanillic acid
JPH0441474A (en) Production of phenolic compound
JP2004168688A (en) Method for producing ellagic acid
JPH0853384A (en) Production of p-alkoxybenzaldehyde
JPS5841835A (en) Preparation of 4-hydroxy-2,4,6-trimethyl-2,5-cyclo- hexadien-1-one
JPS6372638A (en) Production of 3,3',5,5'-tetraalkyl-4,4'-biphenols
CN115385832A (en) Preparation method of 2, 3-dimethyl 4-methylsulfonyl bromobenzene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

R151 Written notification of patent or utility model registration

Ref document number: 4081646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6