JP4081550B2 - Fluidic thrust deflection nozzle with two-stage expansion nozzle - Google Patents

Fluidic thrust deflection nozzle with two-stage expansion nozzle Download PDF

Info

Publication number
JP4081550B2
JP4081550B2 JP2005146851A JP2005146851A JP4081550B2 JP 4081550 B2 JP4081550 B2 JP 4081550B2 JP 2005146851 A JP2005146851 A JP 2005146851A JP 2005146851 A JP2005146851 A JP 2005146851A JP 4081550 B2 JP4081550 B2 JP 4081550B2
Authority
JP
Japan
Prior art keywords
nozzle
secondary flow
deflection
thrust
fluidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005146851A
Other languages
Japanese (ja)
Other versions
JP2006322395A (en
Inventor
義貴 熊谷
Original Assignee
防衛省技術研究本部長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 防衛省技術研究本部長 filed Critical 防衛省技術研究本部長
Priority to JP2005146851A priority Critical patent/JP4081550B2/en
Publication of JP2006322395A publication Critical patent/JP2006322395A/en
Application granted granted Critical
Publication of JP4081550B2 publication Critical patent/JP4081550B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コンバージェント・ダイバージェントノズルを有するジェットエンジン及びロケットエンジン等に関し、低流量の2次流での推力偏向と、無偏向時の推力損失の低減が実現できる2段階拡大ノズルを有するフルイディック推力偏向ノズルに関する。   The present invention relates to a jet engine, a rocket engine, and the like having a convergent and divergent nozzle, and more specifically to a fluid having a two-stage expansion nozzle capable of realizing thrust deflection in a secondary flow with a low flow rate and reduction in thrust loss when no deflection occurs. The present invention relates to a dick thrust deflection nozzle.

一般にコンバージェント・ダイバージェントノズルを有するジェットエンジンの排気ノズルは、図5に示すように燃焼室1を通過するガスをコンバージェント部2及びのダイバージェント部4を通して膨張、高速化させノズル排気部から噴出させ、その反作用により推力を発生させるものである。排気速度が音速を超える条件下ではスロート部3を通過するガス速度は音速であり、ダイバージェント部4で音速を超える速度に増速され排気される。   In general, an exhaust nozzle of a jet engine having a convergent / divergent nozzle expands and accelerates the gas passing through the combustion chamber 1 through the convergent part 2 and the divergent part 4 as shown in FIG. It is ejected and thrust is generated by its reaction. Under the condition that the exhaust speed exceeds the sonic speed, the gas speed passing through the throat portion 3 is the sonic speed, and the divergence portion 4 increases the speed to exceed the sonic speed and exhausts.

推力の偏向は、この排気流の噴出角度を変えることにより行われる。   The thrust is deflected by changing the ejection angle of the exhaust flow.

現在、航空機で実現されている推力偏向は、可動式ノズルやフラップ等によって機械的に主流方向を変えることにより達成されている。   At present, thrust deflection realized in aircraft is achieved by mechanically changing the main flow direction using a movable nozzle, a flap, or the like.

しかしながら、この方式は機械的可動機構の付加を必要とするため、可動部の複雑性と重量の増加が航空機の性能低下に繋がっている。   However, since this method requires the addition of a mechanical movable mechanism, the complexity and weight of the movable part increase the performance of the aircraft.

フルイディック推力偏向方式(下記非特許文献参照)は、固定ノズルで推力の偏向が実現できるため、複雑な機械的機構を必要としない。そのため機械的推力偏向機構に比べ信頼性の向上、重量・コストの低減が図れることから次世代の推力偏向機構として期待されている。
Karen A.Deere 著、「Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center」、AIAA Paper 2003-3800
The fluidic thrust deflection method (see the following non-patent document) can realize thrust deflection with a fixed nozzle, and therefore does not require a complicated mechanical mechanism. Therefore, it is expected to be a next-generation thrust deflection mechanism because it can improve reliability and reduce weight and cost compared to a mechanical thrust deflection mechanism.
Karen A. Deere, "Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center", AIAA Paper 2003-3800

従来、フルイディック推力偏向ノズルの手段として次のものが挙げられている。
(1)対向流を流す方式
この方式は、図6に示すように、ノズル外部に壁を設け、その外部壁10とノズルよりの排気流の間を上流側に吸引することにより2次流5aを発生させ主流を偏向する方式であるが、有効な吸引の方法が無く、外部壁と機体との統合に問題があるなど不利な点が多く、実用化には至っていない。
Conventionally, the following are mentioned as means of fluidic thrust deflection nozzles.
(1) Method of Flowing Counterflow As shown in FIG. 6, this method provides a secondary flow 5a by providing a wall outside the nozzle and sucking the space between the outer wall 10 and the exhaust flow from the nozzle upstream. However, there is no effective suction method, and there are many disadvantages such as problems with the integration of the external wall and the aircraft, and it has not been put into practical use.

(2)スロート位置を変える方式
この方式は、図7に示すように、スロート部3に2次流5aを噴出させることで空力的にスロート位置を変更し、それにより生じたノズル表面への非対称な圧力負荷により主流を偏向させる方式であるが、大きな偏向角の達成が困難であるという問題がある。
(2) Method of changing the throat position As shown in FIG. 7, this method aerodynamically changes the throat position by ejecting the secondary flow 5a to the throat section 3, and the resulting asymmetry on the nozzle surface However, there is a problem that it is difficult to achieve a large deflection angle.

(3)衝撃波を利用した方式
この方式は、図8に示すように、ダイバージェント部4から2次流5aを噴出させることで斜め衝撃波を発生させ、その衝撃波8を通過する主流を偏向させる方式であるが、偏向させるためにダイバージェントの広がり角を大きくとらなければならないため、無偏向時は推力損失の大きい過膨張流となってしまう問題点がある。
(3) Method Using Shock Wave This method generates a diagonal shock wave by jetting the secondary flow 5a from the divergent section 4 and deflects the main flow passing through the shock wave 8 as shown in FIG. However, since the divergence angle of the divergent must be increased in order to deflect, there is a problem that an overexpanded flow with a large thrust loss occurs when there is no deflection.

以上のように従来提案されているフルイディック推力偏向方式はいずれにも問題点があるものである。本発明は従来のフルイディック推力偏向方式の上記問題点を解決するためになされたもので、簡単な構造で低流量の2次流での推力偏向の実現と無偏向時の推力損失を低減できるフルイディック推力偏向ノズルを有するジェットエンジンを提供することを目的とする。   As described above, all the fluidic thrust deflection systems proposed in the past have problems. The present invention was made to solve the above-mentioned problems of the conventional fluidic thrust deflection system, and can achieve thrust deflection in a secondary flow with a low flow rate and a reduction in thrust loss during no deflection with a simple structure. An object is to provide a jet engine having a fluidic thrust deflecting nozzle.

上記問題を解決するため、本発明はコンバージェント・ダイバージェントノズルを有するジェットエンジン及びロケットエンジンにおいて、エンジンノズル出口部に2次流噴出孔を配置し、更にその外部に目標偏向角と同じ角度の2段階拡大部を設けるものである。   In order to solve the above problems, the present invention provides a jet engine and a rocket engine having a convergent and divergent nozzle, wherein a secondary flow injection hole is disposed at the engine nozzle outlet, and further, the same angle as the target deflection angle is provided outside thereof. A two-stage enlarged portion is provided.

このように、エンジンノズル出口部に2段階拡大部を設けることにより、2次流噴き出しにより偏向した排気流を更にコアンダ効果により偏向させることができる。
また、無偏向時は全周に設けた2次流噴出孔を大気開放にすることで、エジェクタ効果によって引き込まれた周囲空気により過膨張流の推力損失を低減することができる。
As described above, by providing the two-stage enlarged portion at the engine nozzle outlet, the exhaust flow deflected by the secondary flow ejection can be further deflected by the Coanda effect.
Further, when no deflection is applied, the secondary flow ejection holes provided on the entire circumference are opened to the atmosphere, so that the thrust loss of the overexpanded flow can be reduced by the ambient air drawn in by the ejector effect.

次に実施例について説明する。図1は本発明に係る2段階拡大ノズルを有するフルイディック推力偏向ノズルの一実施例を示す概略構成図である。図1において1は燃焼室、2はコンバージェント部、3はスロート部、4はダイバージェント部でありこれらの構成は従来のものと同様である。6は発明に係る2段階拡大部で、2次流噴出孔5よりノズル内部に供給される図2の2次流5aによって偏向された排気流を更に偏向するためのもので目標偏向角と同じ広がり角となっている。2次流噴出孔5には、ノズル本体内において分岐状に形成される2次流供給孔11を介して、排気2次流が供給される。2次流噴出孔5は、ノズル内外壁の略全周に開口するように略等間隔で密に多数設けられる。図2のように推力偏向には偏向を行う方向と逆側の噴出孔5から2次流5aを噴出し、その他の噴出孔5からは供給を行わない。   Next, examples will be described. FIG. 1 is a schematic configuration diagram showing an embodiment of a fluidic thrust deflection nozzle having a two-stage enlarged nozzle according to the present invention. In FIG. 1, 1 is a combustion chamber, 2 is a convergent part, 3 is a throat part, 4 is a divergent part, and these structures are the same as those of the prior art. 6 is a two-stage enlarged portion according to the invention for further deflecting the exhaust flow deflected by the secondary flow 5a of FIG. 2 supplied into the nozzle from the secondary flow ejection hole 5, and is the same as the target deflection angle. It has a spread angle. An exhaust secondary flow is supplied to the secondary flow ejection holes 5 via secondary flow supply holes 11 formed in a branched shape in the nozzle body. A large number of secondary flow ejection holes 5 are densely provided at substantially equal intervals so as to open to substantially the entire circumference of the inner and outer walls of the nozzle. As shown in FIG. 2, for thrust deflection, the secondary flow 5 a is ejected from the ejection hole 5 opposite to the direction in which the deflection is performed, and supply is not performed from the other ejection holes 5.

本発明の方式では偏向開始点までは通常のノズル効率を考慮した広がり角であるダイバージェント部4で膨張させ、その後の2段階拡大部6での過膨張流(図3)は三方弁7によって2次流供給側を閉じ、全周に設けた2次流噴出孔5を大気開放にすることで引き込まれた周囲空気9により推力損失を低減することができる(図4)。そのため、更に目標偏向角を大きくとる目的で2段階拡大部の広がり角を大きく設計しても、無偏向時の推力損失の増加を防ぐことができる。   In the system of the present invention, the divergent section 4 having a divergence angle in consideration of the normal nozzle efficiency is expanded up to the deflection start point, and then the overexpanded flow (FIG. 3) in the two-stage expansion section 6 is caused by the three-way valve 7. Thrust loss can be reduced by the ambient air 9 drawn by closing the secondary flow supply side and opening the secondary flow ejection holes 5 provided on the entire circumference to the atmosphere (FIG. 4). Therefore, even if the divergence angle of the two-stage enlarged portion is designed to be larger for the purpose of further increasing the target deflection angle, it is possible to prevent an increase in thrust loss during no deflection.

以上実施例に基づいて説明したように、本発明によれば、通常のノズル効率を考慮して設計したダイバージェント部に推力偏向のための2段階拡大部を設けたので、無偏向時は全周に設けている2次流噴出孔を大気開放することで推力損失を低減でき、推力偏向時はコアンダ効果により更に偏向できるため、低流量の2次流で推力の偏向が行える。上記説明では三方弁によって2次流供給側と大気開放側の開閉操作をしているが、2次流供給側、大気開放側双方に弁を設ける方法でも差し支えない。   As described above based on the embodiments, according to the present invention, since the divergent portion designed in consideration of the normal nozzle efficiency is provided with the two-stage expansion portion for thrust deflection, all of the non-deflection times are provided. Thrust loss can be reduced by opening the secondary flow ejection holes provided in the periphery to the atmosphere, and thrust can be further deflected by the Coanda effect at the time of thrust deflection. Therefore, thrust can be deflected by a secondary flow with a low flow rate. In the above description, the secondary flow supply side and the atmosphere release side are opened and closed by the three-way valve, but a method of providing valves on both the secondary flow supply side and the atmosphere release side may be used.

本発明に係る2段階拡大ノズルを有するフルイディック推力偏向ノズルの構成例を示す断面図である。It is sectional drawing which shows the structural example of the fluidic thrust deflection | deviation nozzle which has a 2 step | paragraph expansion nozzle which concerns on this invention. 同推力偏向時における態様を示す図である。It is a figure which shows the aspect at the time of the same thrust deflection | deviation. 同無偏向時における態様を示す図である。It is a figure which shows the aspect at the time of the same non-deflection. 同2次流噴出孔大気開放方式による無偏向時における態様を示す図である。It is a figure which shows the aspect at the time of the non-deflection by the secondary flow ejection hole air | atmosphere release system. 従来のジェットエンジンの構成例を示す断面図である。It is sectional drawing which shows the structural example of the conventional jet engine. 従来のフルイディック推力偏向ノズルの構成例を示す断面図である。It is sectional drawing which shows the structural example of the conventional fluidic thrust deflection nozzle. 従来の他のフルイディック推力偏向ノズルの構成例を示す断面図である。It is sectional drawing which shows the structural example of the other conventional fluidic thrust deflection | deviation nozzle. 従来のさらに他のフルイディック推力偏向ノズルの構成例を示す断面図である。It is sectional drawing which shows the structural example of the other conventional fluidic thrust deflection | deviation nozzle.

符号の説明Explanation of symbols

1 燃焼室
2 コンバージェント部
3 スロート部
4 ダイバージェント部
5 2次流噴出孔
5a 2次流
6 2段階拡大部
7 三方弁
8 衝撃波
9 周囲空気
10 外部壁
11 2次流供給孔
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Convergent part 3 Throat part 4 Divergent part 5 Secondary flow ejection hole 5a Secondary flow 6 Two step expansion part 7 Three-way valve 8 Shock wave 9 Ambient air 10 External wall 11 Secondary flow supply hole

Claims (3)

コンバージェント・ダイバージェントノズルを有するジェットエンジン及びロケットエンジンにおいて、ダイバージェント出口部の略全周に2次流噴出孔を設け、偏向する方向と逆側の2次流噴出孔から2次流を噴き出し、推力を偏向させるとともに排気部に目標偏向角と同じ角度の2段階拡大部を設けることで、コアンダ効果により低流量の2次流での推力の偏向が行えることを特徴とする2段階拡大ノズルを有するフルイディック推力偏向ノズル。 In jet engines and rocket engines with convergent and divergent nozzles, a secondary flow injection hole is provided on the entire circumference of the divergent outlet, and the secondary flow is discharged from the secondary flow injection hole on the opposite side to the direction of deflection. A two-stage expansion nozzle that deflects thrust in a secondary flow with a low flow rate by the Coanda effect by deflecting thrust and providing a two-stage expansion section at the same angle as the target deflection angle in the exhaust section Having fluidic thrust deflection nozzle. 前記2次流噴出孔は、前記ダイバージェント出口部の内壁及び外壁に開口し、2次流噴出孔に供給される2次流を、開閉弁の操作により、遮断もしくは前記内壁側の任意の開口から噴出自在とした請求項1記載の2段階拡大ノズルを有するフルイディック推力偏向ノズル。 The secondary flow ejection hole opens on the inner wall and the outer wall of the divergent outlet, and shuts off the secondary flow supplied to the secondary flow ejection hole by operating an on-off valve or an arbitrary opening on the inner wall side. A fluidic thrust deflection nozzle having a two-stage enlarged nozzle according to claim 1, wherein the nozzle is freely ejected from the nozzle. 前記2段階拡大部は、無偏向時は、前記2次流噴出孔への2次流の供給を遮断するとともに、全周に設けた前記2次流噴出孔を大気開放にすることで、過膨張流による推力損失を低減できる請求項1又は2記載の2段階拡大ノズルを有するフルイディック推力偏向ノズル。 The two-stage enlarged portion shuts off the supply of the secondary flow to the secondary flow ejection holes when there is no deflection, and opens the secondary flow ejection holes provided on the entire circumference to the atmosphere. 3. A fluidic thrust deflection nozzle having a two-stage expansion nozzle according to claim 1, wherein thrust loss due to the expansion flow can be reduced.
JP2005146851A 2005-05-19 2005-05-19 Fluidic thrust deflection nozzle with two-stage expansion nozzle Active JP4081550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146851A JP4081550B2 (en) 2005-05-19 2005-05-19 Fluidic thrust deflection nozzle with two-stage expansion nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005146851A JP4081550B2 (en) 2005-05-19 2005-05-19 Fluidic thrust deflection nozzle with two-stage expansion nozzle

Publications (2)

Publication Number Publication Date
JP2006322395A JP2006322395A (en) 2006-11-30
JP4081550B2 true JP4081550B2 (en) 2008-04-30

Family

ID=37542262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146851A Active JP4081550B2 (en) 2005-05-19 2005-05-19 Fluidic thrust deflection nozzle with two-stage expansion nozzle

Country Status (1)

Country Link
JP (1) JP4081550B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739164B2 (en) 2013-05-15 2017-08-22 Ihi Corporation Variable nozzle for aeronautic gas turbine engine
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US10875658B2 (en) 2015-09-02 2020-12-29 Jetoptera, Inc. Ejector and airfoil configurations
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US11148801B2 (en) 2017-06-27 2021-10-19 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930936B2 (en) * 2006-12-04 2012-05-16 紀代子 稲森 Flying object
US20080315042A1 (en) * 2007-06-20 2008-12-25 General Electric Company Thrust generator for a propulsion system
EP2315928B1 (en) 2008-07-04 2011-11-16 BAE Systems PLC Thrust vectoring apparatus for a jet engine, corresponding jet engine, thrust vectoring method and upgrading method for a jet engine
JP5512612B2 (en) * 2011-08-05 2014-06-04 紀代子 稲森 Flying object
CN106762218A (en) * 2017-01-05 2017-05-31 南京工业职业技术学院 A kind of method and jet pipe for improving pulse detonation engine thrust coefficient
CN107084070B (en) * 2017-06-01 2018-12-07 南京航空航天大学 A kind of wedge shape controls cellular type fluid thrust vector spray
CN108412635B (en) * 2018-02-07 2020-06-12 大连交通大学 Binary direct-injection oblique shock wave thrust vectoring nozzle
FR3080407B1 (en) 2018-04-18 2020-04-24 Centre National De La Recherche Scientifique CONTROL OF TRANSITION OF SPEED AND VECTORIZATION OF PUSH IN A MULTI-GALBE NOZZLE BY SECONDARY INJECTION
CN113638820B (en) * 2021-10-13 2022-02-01 中国航发四川燃气涡轮研究院 Vector implementation method for binary vectoring nozzle with expansion section adjusting plate not passing through neutral line
CN117227987B (en) * 2023-11-14 2024-03-12 中国空气动力研究与发展中心计算空气动力研究所 Unilateral expansion tail spray groove integrally designed with control surface

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739164B2 (en) 2013-05-15 2017-08-22 Ihi Corporation Variable nozzle for aeronautic gas turbine engine
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US10875658B2 (en) 2015-09-02 2020-12-29 Jetoptera, Inc. Ejector and airfoil configurations
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US11148801B2 (en) 2017-06-27 2021-10-19 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles

Also Published As

Publication number Publication date
JP2006322395A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP4081550B2 (en) Fluidic thrust deflection nozzle with two-stage expansion nozzle
US20200284219A1 (en) Generation of a Pulsed Jet by Jet Vectoring Through a Nozzle with Multiple Outlets
US8371104B2 (en) System and apparatus for vectoring nozzle exhaust plume from a nozzle
JP4672747B2 (en) Rocket nozzle and rocket engine combustion gas flow control method
US5706650A (en) Vectoring nozzle using injected high pressure air
EP2604837B1 (en) System for directing air flow to a plurality of plena
US6679048B1 (en) Apparatus and method for controlling primary fluid flow using secondary fluid flow injection
US9249758B2 (en) Propulsion assembly and method
JP2005282572A (en) Axial direction divergence section slot nozzle, ejector nozzle bridge member, method for adjusting exhaust plume and method for increasing propulsion force
US4026472A (en) Convergent-divergent plug nozzle
US8468796B2 (en) By-pass turbojet including a thrust reverser
US3346193A (en) Supersonic ejector type exhaust nozzle
US6983602B2 (en) Ejector cooled nozzle
JP5446783B2 (en) Engine exhaust nozzle and aircraft engine
US3390837A (en) Convergent-divergent plug nozzle having a plurality of freely-floating tandem flaps
JP6539653B2 (en) Combustion gas jet nozzle for rocket engine equipped with sealing device between fixed part and movable part of nozzle
US3027714A (en) Combined thrust reversing and noise suppressing device for turbo-jet engines
JP4885301B2 (en) Rocket nozzle and rocket engine combustion gas flow control method
US10378477B2 (en) Nozzle for jet engines
JP5446749B2 (en) Engine exhaust nozzle and aircraft engine
US6883304B2 (en) Pulsejet ejector thrust augmentor
JP4420147B2 (en) Plug nozzle jet engine
US9995181B2 (en) Exhaust impingement cooling
US4049198A (en) Duct pressure actuated nozzle
CN113153580B (en) Combined spray pipe of solid rocket engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350