JP4081149B2 - Wet solar cells using phthalocyanine compounds - Google Patents

Wet solar cells using phthalocyanine compounds Download PDF

Info

Publication number
JP4081149B2
JP4081149B2 JP02181496A JP2181496A JP4081149B2 JP 4081149 B2 JP4081149 B2 JP 4081149B2 JP 02181496 A JP02181496 A JP 02181496A JP 2181496 A JP2181496 A JP 2181496A JP 4081149 B2 JP4081149 B2 JP 4081149B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
tetra
compound
solar cell
carboxymethoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02181496A
Other languages
Japanese (ja)
Other versions
JPH09199744A (en
Inventor
祥三 柳田
雄二 和田
敬 村越
洋二郎 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Chemicals Inc
Original Assignee
Yamamoto Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Chemicals Inc filed Critical Yamamoto Chemicals Inc
Priority to JP02181496A priority Critical patent/JP4081149B2/en
Publication of JPH09199744A publication Critical patent/JPH09199744A/en
Application granted granted Critical
Publication of JP4081149B2 publication Critical patent/JP4081149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフタロシアニン化合物を用いる湿式太陽電池に関する。さらに詳しくは有機溶剤に対する溶解性があり、二酸化チタン表面と強固な吸着結合状態を形成するフタロシアニン化合物を光増感色素として用いる湿式太陽電池に関する。
【0002】
【従来の技術】
化石燃料に代るエネルギー源として太陽光を利用する太陽電池が注目され、種々研究が行われてきた。現在実用化されている太陽電池の主流は多結晶又はアモルファスシリコンをセルとするものであるが、経済コストや製造プロセスにおけるエネルギーコストが高く、又ガリウムやヒ素などの毒性の高い材料を使用することには問題がないとも言えない。
【0003】
新しいタイプの太陽電池として特表平5−504023号公報、特表平7−500630号公報、国際公開94/05025号公報等に金属錯体の光誘起電子移動を応用した湿式太陽電池が開示されている。
【0004】
この湿式太陽電池は、電解液を介して隔てられた少なくとも一方が実質的に透明である2つの電極を有し、この透明な電極は光増感色素が吸着された多孔質の二酸化チタン層を有している。
【0005】
この湿式太陽電池の原理は、半導体としての二酸化チタンに、これよりも高い位置に電子の最低空軌道を有する光増感色素を吸着させ、更に電子供与体から光増感色素の最高被占軌道への速い電子移動を構成することによって、励起電子の速やかな電子移動によりアノード電流が流れることを応用したものである。
【0006】
この湿式太陽電池は、低コスト、高効率、構造が単純で製造が容易である等の長所を有する。
【0007】
前記特表平5−502043号公報及び特表平7−500630号公報、国際公開94/05025号報においては、電子供与体としてヨウ素を、電子受容体(半導体)として二酸化チタンを使用し、光増感色素としてはポリピリジル化合物のルテニウム錯体を使用しており、国際公開94/05025号報においては光増感色素としてカルボキシル基を有するフタロシアニン化合物、ナフタロシアニン化合物等も使用されている。
【0008】
しかしながら、このポリピリジル化合物のルテニウム錯体は耐光堅牢度が十分でない、製法が複雑である、ルテニウムが高価である等の問題がある。またカルボキシル基を有するフタロシアニン化合物はこのような欠点はないが、有機溶剤に対する溶解性が極端に低いため、二酸化チタン層に対する吸着効率が低い。湿式太陽電池においては、光増感色素を溶解した溶液に二酸化チタン薄膜を浸漬して吸着処理するため、光増感色素の有機溶剤に対する溶解度が二酸化チタンへの吸着量、ひいては発電効率に影響する。
【0009】
光増感色素に要求される特性としては下記が挙げられる。
1)最低空軌道の準位(励起状態の酸化還元電位)が半導体のConduction-bandの下端より高いこと。
2)最高被占軌道の準位(酸化還元電位)が半導体のValence-bandの上端より高いこと。
3)二酸化チタンの表面に対する吸着性が高いこと。
4)有機溶剤に対する溶解性が高いこと。
5)耐久性に優れること。
6)経済性に優れること。
【0010】
これらの諸点を満足する光増感色素は未だ見い出さていない。
【0011】
なお、特表平2−502099(国際公開番号W088/6175)号公報には、一般式としては本発明のフタロシアニン化合物を含有する広範囲のフタロシアニン化合物とこれを使用する液晶光学ディスプレイが開示されているが、本発明のフタロシアニン化合物の具体的開示及び説明はない。
【0012】
【発明が解決しようとする課題】
本発明の課題は、光増感色素として前記した諸特性に優れる新規なフタロシアニン化合物を使用した湿式太陽電池を提供することである。
【0013】
【課題を解決するための手段】
本発明者らは、鋭意検討した結果、特定の置換基を有するフタロシアニン化合物が、太陽光を効率的に吸収し、有機溶媒に対する溶解性が良好で、二酸化チタンに対する吸着性に優れていることを見い出した。即ち、本発明は一般式(I)で表わされるフタロシアニン化合物を光増感色素として用いる湿式太陽電池に関する。
【0014】
【化2】

Figure 0004081149
(式中、Xは酸素原子又は硫黄原子を示し、Mは2個の水素原子、金属又は金属誘導体を示す。nは1〜3の整数を示す。)
【0015】
【発明の実施の形態】
前記一般式(I)において、Mは2個の水素原子、金属又は金属誘導体であり、金属であるものとしては、Cu、Zn、Fe、Co、Ni、Ru、Pb、Rh、Pd、Pt、Mn、Snが好ましく、金属誘導体であるものとしては、AlCl、InCl、FeCl、MnOH、SiCl2、SnCl2、GeCl2、Si(OH)2、Sn(OH)2、Ge(OH)2、VO、TiOが好ましい。特にMとしては、Zn、Mg、Cu、Al、Fe、2個の水素原子が好ましい。
【0016】
Xは酸素原子或いは硫黄原子であり、nは1〜3の整数である。
【0017】
本発明のフタロシアニン化合物の好ましい具体例を以下に示す。
(1)テトラ(カルボキシメトキシ)−Zn−フタロシアニン
(2)テトラ(カルボキシメトキシ)−Mg−フタロシアニン
(3)テトラ(カルボキシメトキシ)−Cu−フタロシアニン
(4)テトラ(カルボキシメトキシ)−AlCl−フタロシアニン
(5)テトラ(カルボキシメトキシ)−FeCl−フタロシアニン
(6)テトラ(カルボキシメトキシ)−H2−フタロシアニン
(7)テトラ(カルボキシメトキシ)−Co−フタロシアニン
(8)テトラ(カルボキシメトキシ)−Ni−フタロシアニン
(9)テトラ(カルボキシメトキシ)−Ru−フタロシアニン
(10)テトラ(カルボキシメトキシ)−Pb−フタロシアニン
【0018】
(11)テトラ(カルボキシメトキシ)−Rh−フタロシアニン
(12)テトラ(カルボキシメトキシ)−Pd−フタロシアニン
(13)テトラ(カルボキシメトキシ)−Pt−フタロシアニン
(14)テトラ(カルボキシメトキシ)−MnOH−フタロシアニン
(15)テトラ(カルボキシメトキシ)−Sn−フタロシアニン
(16)テトラ(カルボキシメトキシ)−InCl−フタロシアニン
(17)テトラ(カルボキシメトキシ)−SiCl2−フタロシアニン
(18)テトラ(カルボキシメトキシ)−SnCl2−フタロシアニン
(19)テトラ(カルボキシメトキシ)−GeCl2−フタロシアニン
(20)テトラ(カルボキシメトキシ)−Si(OH)2−フタロシアニン
(21)テトラ(カルボキシメトキシ)−Sn(OH)2−フタロシアニン
(22)テトラ(カルボキシメトキシ)−Ge(OH)2−フタロシアニン
(23)テトラ(カルボキシメトキシ)−VO−フタロシアニン
(24)テトラ(カルボキシメトキシ)−TiO−フタロシアニン
(25)テトラ(カルボキシメチルチオ)−Zn−フタロシアニン
(26)テトラ(カルボキシメチルチオ)−Mg−フタロシアニン
(27)テトラ(カルボキシメチルチオ)−Cu−フタロシアニン
(28)テトラ(カルボキシメチルチオ)−AlCl−フタロシアニン
(29)テトラ(カルボキシメチルチオ)−FeCl−フタロシアニン
(30)テトラ(カルボキシメチルチオ)−H2−フタロシアニン
【0019】
(31)テトラ(カルボキシメチルチオ)−Co−フタロシアニン
(32)テトラ(カルボキシメチルチオ)−Ni−フタロシアニン
(33)テトラ(カルボキシメチルチオ)−Ru−フタロシアニン
(34)テトラ(カルボキシメチルチオ)−Pb−フタロシアニン
(35)テトラ(カルボキシメチルチオ)−Rh−フタロシアニン
(36)テトラ(カルボキシメチルチオ)−Pd−フタロシアニン
(37)テトラ(カルボキシメチルチオ)−Pt−フタロシアニン
(38)テトラ(カルボキシメチルチオ)−MnOH−フタロシアニン
(39)テトラ(カルボキシメチルチオ)−Sn−フタロシアニン
(40)テトラ(カルボキシメチルチオ)−InCl−フタロシアニン
(41)テトラ(カルボキシメチルチオ)−SiCl2−フタロシアニン
(42)テトラ(カルボキシメチルチオ)−SnCl2−フタロシアニン
(43)テトラ(カルボキシメチルチオ)−GeCl2−フタロシアニン
(44)テトラ(カルボキシメチルチオ)−Si(OH)2−フタロシアニン
(45)テトラ(カルボキシメチルチオ)−Sn(OH)2−フタロシアニン
(46)テトラ(カルボキシメチルチオ)−Ge(OH)2−フタロシアニン
(47)テトラ(カルボキシメチルチオ)−VO−フタロシアニン
(48)テトラ(カルボキシメチルチオ)−TiO−フタロシアニン
(49)テトラ(2−カルボキシエトキシ)−Zn−フタロシアニン
(50)テトラ(2−カルボキシエトキシ)−Mg−フタロシアニン
【0020】
(51)テトラ(2−カルボキシエトキシ)−Cu−フタロシアニン
(52)テトラ(2−カルボキシエトキシ)−AlCl−フタロシアニン
(53)テトラ(2−カルボキシエトキシ)−FeCl−フタロシアニン
(54)テトラ(2−カルボキシエトキシ)−H2−フタロシアニン
(55)テトラ(3−カルボキシプロポキシ)−Zn−フタロシアニン
(56)テトラ(3−カルボキシプロポキシ)−Mg−フタロシアニン
(57)テトラ(3−カルボキシプロポキシ)−Cu−フタロシアニン
(58)テトラ(3−カルボキシプロポキシ)−AlCl−フタロシアニン
(59)テトラ(3−カルボキシプロポキシ)−FeCl−フタロシアニン
(60)テトラ(3−カルボキシプロポキシ)−H2−フタロシアニン
(61)テトラ(2−カルボキシエチルチオ)−Zn−フタロシアニン
(62)テトラ(2−カルボキシエチルチオ)−Mg−フタロシアニン
(63)テトラ(2−カルボキシエチルチオ)−Cu−フタロシアニン
(64)テトラ(2−カルボキシエチルチオ)−AlCl−フタロシアニン
(65)テトラ(2−カルボキシエチルチオ)−FeCl−フタロシアニン
(66)テトラ(2−カルボキシエチルチオ)−H2−フタロシアニン
(67)テトラ(3−カルボキシプロピルチオ)−Zn−フタロシアニン
(68)テトラ(3−カルボキシプロピルチオ)−Mg−フタロシアニン
(69)テトラ(3−カルボキシプロピルチオ)−Cu−フタロシアニン
(70)テトラ(3−カルボキシプロピルチオ)−AlCl−フタロシアニン
(71)テトラ(3−カルボキシプロピルチオ)−FeCl−フタロシアニン
(72)テトラ(3−カルボキシプロピルチオ)−H2−フタロシアニン
上記化合物(1)〜(72)を代表例とする本発明の一般式(I)で表わされるフタロシアニン化合物は、例えば下記の方法に従って製造される。
【0021】
一般式(II)で表わされるフタロニトリル化合物と一般式(III)で表わされる金属誘導体とを反応させて一般式(IV)で表わされるフタロシアニン化合物を製造し、更にこれを溶媒中、アルカリで加水分解することにより、前記一般式(I)で表わされるフタロシアニン化合物とする。
【0022】
【化3】
Figure 0004081149
(式中、X及びnは一般式(I)と同じものを示し、Rは炭素数1〜4のアルキル基を示す。)
M'-(Y)d (III)
(式中、M’は1価〜4価の金属原子を表わし、Yはハロゲン原子、酢酸陰イオン、アセチルアセテート、酸素などの1価又は2価の配位子を示し、dは1〜4の整数を示す。)
【0023】
【化4】
Figure 0004081149
【0024】
(式中、X、M及びnは一般式(I)の式のX、M及びnと同一であり、Rは一般式(II)の式のRと同一である。)
式(III)で表わされる金属誘導体としては、Al、Si、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Ge、Ru、Rh、Pd、In、Sn、Pt、Pbのハロゲン化物、酢酸塩、アセチルアセトネート、酸化物、硫酸塩、硝酸塩、錯体等が挙げられる。具体例としては塩化銅、臭化銅、ヨウ化銅、塩化ニッケル、臭化ニッケル、酢酸ニッケル、塩化コバルト、臭化コバルト、酢酸コバルト、塩化鉄、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、酢酸亜鉛、塩化バナジウム、オキシ三塩化バナジウム、塩化パラジウム、酢酸パラジウム、塩化アルミニウム、塩化マンガン、酢酸マンガン、アセチルアセトンマンガン、塩化鉛、酢酸鉛、塩化インジウム、塩化チタン、塩化スズ等が挙げられる。
【0025】
反応は通常、溶媒の存在下に行われる。溶媒としては、沸点80℃以上、好ましくは100℃以上の有機溶媒が用いられる。例えばn−ペンタノール、n−ヘキサノール、シクロヘキサノール、2−メチル−1−ペンタノール、1−ヘプタノール、1−オクタノール、2−エチルヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、エトキシエタノール、プロポキシエタノール、ブトキシエタノール、ジメチルアミノエタノール、ジエチルアミノエタノール、トリクロロベンゼン、クロロナフタレン、スルフォラン、ニトロベンゼン、キノリン、尿素等がある。溶媒の使用量はフタロニトリル化合物の1重量部に対して1〜100重量部、好ましくは5〜50重量部である。
【0026】
反応において触媒として水素化ナトリウム、1,4−ジアザビシクロ[2,2,2]オクタン、1,5−ジアザビシクロ[4,3,0]−5−ノネン、1,8−ジアザビシクロ[5,4,0]−7−ウンデセン(DBU)、モリブデン酸アンモニウム等を添加しても良い。添加量はフタロニトリル化合物1モルに対して、0.1〜10モル、好ましくは0.5〜5モルである。
【0027】
反応温度は80〜300℃、好ましくは100〜250℃である。80℃以下では反応速度が極端に遅い。300℃以上ではフタロシアニン化合物の分解が起こる可能性がる。
【0028】
反応時間は1〜40時間、好ましくは2〜20時間である。1時間以下では未反応原料が多く存在し、40時間以上ではフタロシアニンの分解が起こる可能性がある。
【0029】
反応後、反応液より溶媒を濃縮するか、又は反応液をフタロシアニン化合物に対する貧溶媒(メタノール等)に排出し、析出物を濾取することによって式(IV)で表わされるフタロシアニン化合物が得られる。また必要に応じて得られたフタロシアニン化合物を更に再結晶或いはカラムクロマトグラフィー処理により精製することができる。
【0030】
金属誘導体とフタロニトリル化合物の使用量は、モル比で1:3〜1:6が好ましい。
【0031】
無金属フタロシアニン化合物は金属誘導体としてナトリウムアルコラート或いはリチウムアルコラートを用いて製造したNa2フタロシアニン化合物或いはLi2フタロシアニン化合物を酸で処理、脱金属することにより得ることができる。
【0032】
式(IV)で表わされるフタロシアニン化合物を加水分解して式(I)で表わされるフタロシアニン化合物を製造する際の溶媒としては水或いはメタノール、エタノール、n−プロパノール、イソプロパノール、2−エチルヘキサノール等のアルコールが用いられる。
【0033】
アルカリとしては水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等が使用できるが、水酸化ナトリウムが特に好ましい。
【0034】
加水分解時の反応温度は50℃〜溶媒の沸点温度であり、80〜120℃が特に好ましい。
【0035】
加水分解終了後、目的物の水溶液に或いはアルコール溶媒の場合はこれを水に排出したものに酸を加えて目的物を析出させる。酸としては塩酸、硫酸、酢酸等を使用するが、塩酸が特に好ましい。
【0036】
一般式(II)のフタロニトリル化合物は、例えば下記の方法に従って製造できる。
【0037】
ニトロフタロニトリルとグリコール酸アルキルエステル類或いはチオグリコール酸アルキルエステル類とを、反応溶媒として非プロトン性極性溶媒、例えばジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAC)、ジメチルスルホキシド(DMSO)等を用い、触媒として例えば1,8−ジアザビシクロ[5,4,0]−7−ウンデセン(DBU)等の存在下、50〜120℃にて反応させる。反応物を水に排出、トルエン等の有機溶剤で抽出し、必要に応じて再結晶等により精製することによって目的物が得られる。
【0038】
本発明のフタロシアニン化合物を光増感色素として含有する湿式太陽電池について下記に説明する。
【0039】
本発明の湿式太陽電池は、電解液を介して少なくとも一方が実質的に透明である2つの電極を有し、この透明電極が光増感色素として本発明のフタロシアニン化合物が吸着された二酸化チタン層を有していることが特徴である。
【0040】
本発明の湿式太陽電池の構造の一例として、実施例において作製した湿式太陽電池の略図を図1に示す。
【0041】
図1において、1は導電性ガラスからなる透明電極、2は光増感色素として本発明のフタロシアニン化合物を担持した二酸化チタン層、3は電解液、4は対極である。
【0042】
導電性ガラスとしては例えば、フッ素をドープしたSnO2等を導電層として有するTCOガラス(旭硝子社製)、或いは酸化スズをドープした酸化インジウムを導電層として有するITOガラス(Balzers社製)等を使用できる。また透明な電極として、ガラスの代りにポリマーを使用することもできる。
【0043】
二酸化チタン層の二酸化チタンは多孔質であることが望ましく、その粗さ度は好ましくは10〜5000であり、より好ましくは50〜1000である。なお、粗さ度は真の表面積に対する見かけの表面積の比で定義される。
【0044】
二酸化チタン層を導電性ガラスの表面に形成する方法としてはゾルゲル法、コロイド法等がある。
【0045】
二酸化チタン層の厚さは好ましくは5〜50μm、より好ましくは10〜30μmである。
【0046】
二酸化チタン層に光増感色素としてのフタロシアニン化合物を担持(吸着)させるには、例えば、フタロシアニン化合物をDMF、アルコール類等の有機溶剤に溶解させて、これに二酸化チタン層を一定時間浸漬した後乾燥する方法が用いられる。
【0047】
電解液としては、ヨウ素/ヨウ素溶液、臭素/臭素溶液、ハイドロキノン溶液、遷移金属錯体溶液等のレドックス系が好ましい。電解液に使用される溶媒としては、水、アルコール、3−メチル−(2−オキサゾリジノン)、1,3−ジメチル−2−イミダゾリジノン、プロピレンカーボネート、エチレンカーボネート、THF、ジメチルスルホオキシド、ジクロロエタン等や、これらの相溶性混合物がある。
【0048】
対極としては白金等が用いられる。
【0049】
【実施例】
以下に実施例を示すが、本発明はこの実施例に限定されるものではない。
【0050】
製造例1]テトラ(カルボキシメトキシ)−Zn−フタロシアニンの合成
4−(エトキシカルボニルメトキシ)フタロニトリル11.5g、塩化亜鉛(II)2.1g、DBU7.6g、n−ペンチルアルコール100mLを混合した後、120〜130℃にて8時間撹拌した。冷却後、反応混合物をメタノール1000mLに排出し、析出物を濾取、乾燥し、テトラ(エトキシカルボニルメトキシ)−Zn−フタロシアニン11.2gを濃緑色粉末物として得た。
【0051】
この生成物9.7gを2%水酸化ナトリウム水溶液500mL中で6時間還流撹拌した。冷却後、10%塩酸で酸析し、析取物を濾取、水洗、乾燥して濃緑色粉末6.2gを得た。
【0052】
下記分析結果より目的物であることを確認した。なお、元素分析値中、Znの値は原子吸光法による。
【0053】
Figure 0004081149
このようにして得られた目的物はメタノール溶液において674nmに極大吸収を有し、分子吸光係数は3.82×104 L/mol.cmであった。
【0054】
製造例2] テトラ(カルボキシメチルチオ)−Zn−フタロシアニンの合成
4−(エトキシカルボニルメチルチオ)フタロニトリル12.3g、塩化亜鉛(II)2.1g、DBU7.6g、n−ペンチルアルコール100mLを混合した後、120〜130℃にて8時間撹拌した。冷却後、反応混合物をメタノール1000mLに排出し、析出物を濾取、乾燥し、テトラ(エトキシカルボニルメチルチオ)−Zn−フタロシアニン10.0gを濃緑色粉末物として得た。
【0055】
この生成物8.4gを2%水酸化ナトリウム500mL中で6時間還流撹拌した。冷却後、10%塩酸で酸析し、析取物を濾取、水洗、乾燥して濃録色粉末3.0gを得た。
【0056】
下記分析結果より目的物であることを確認した。
Figure 0004081149
このようにして得られた目的物はメタノール溶液において685nmに極大吸収を有し、分子吸光係数は2.40×104 L/mol.cmであった。
【0057】
[実施例] 湿式太陽電池の作製
1)二酸化チタン層の作製
硫酸チタン(IV)の加水分解により調整した二酸化チタン超微粒子5g(平均粒経12nm、アナターゼ)に硝酸(pH=0.5〜1)20mLを加え、十分に撹拌した後、ポリエチレングリコール(MW=20000)3.2gを加え撹拌して二酸化チタンの分散液を作製した。この分散液をエタノールで十分洗浄した導電性ガラス(フッ素をドープしたSnOを導電層として有するもの)上に塗布し、自然乾燥後、空気中、450℃で30分間焼結した後、アルゴン雰囲気下、室温まで放冷した。
【0058】
2)光増感色素の二酸化チタンへの吸着
1)で作製した二酸化チタン薄膜を空気中、450℃で30分間再加熱した後、この二酸化チタン薄膜を、製造例1で合成したテトラ(カルボキシメトキシ)−Zn−フタロシアニンを3×10−4M(mol/L)の濃度に溶解したDMF溶液中に5時間浸漬した。次いで脱水処理したDMF、エタノールで洗浄し、真空乾燥して色素担持二酸化チタン薄膜を調整した。
【0059】
3)湿式太陽電池の作製
2)で作製した色素担持二酸化チタン薄膜を有するガラス電極を使用して図1のような湿式太陽電池を作製した。対極には白金電極を用い、電解液には0.5Mヨウ化テトラプロピルアンモニウム及び0.04Mヨウ素を電解質として含む炭酸エチレン/アセトニトリル混合溶液(80/20vol%)を用いた。
【0060】
[実施例] 湿式太陽電池の作製
実施例における光増感色素であるテトラ(カルボキシメトキシ)−Zn−フタロシアニンの代りに製造例2で合成したテトラ(カルボキシメチルチオ)−Zn−フタロシアニンを用いた以外は実施例と同様の操作を行って、湿式太陽電池を作製した。
【0061】
[比較例1] 湿式太陽電池の作製
実施例における光増感色素であるテトラ(カルボキシメトキシ)−Zn−フタロシアニンの代りにテトラ(2−ジエチルアミノエトキシ)−Zn−フタロシアニン(化合物1)を用いた以外は実施例と同様の操作を行って、湿式太陽電池を作製した。
【0062】
[比較例2] 湿式太陽電池の作製
実施例における光増感色素であるテトラ(カルボキシメトキシ)−Zn−フタロシアニンの代りにテトラ(tert−ブチル)−Zn−フタロシアニン(化合物2)を用いた以外は実施例と同様の操作を行って、湿式太陽電池を作製した。
【0063】
[比較例3] 湿式太陽電池の作製
実施例における光増感色素であるテトラ(カルボキシメトキシ)−Zn−フタロシアニンの代りにテトラカルボキシ−Zn−フタロシアニン(化合物3、国際公開94/05025号公報に開示の化合物)を用いた以外は実施例と同様の操作を行って、湿式太陽電池を作製した。
【0064】
評価1 溶解性試験
製造例1で合成したテトラ(カルボキシメトキシ)−Zn−フタロシアニン、製造例2で合成したテトラ(カルボキシメチルチオ)−Zn−フタロシアニン、化合物1、化合物2及び化合物3についてそれぞれメタノール、DMF及びDMSOに対する溶解性を確認した。結果を下記表1に示す。
【0065】
【表1】
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
メタノール DMF DMSO
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
製造例1の化合物 △ ○ ○
製造例2の化合物 ○ ○ ○
化合物1(比較物質) ○ ○ ○
化合物2(比較物質) ○ ○ ○
化合物3(比較物質) × △ △
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
但し○は易溶、△は難溶、×は不溶を示す。
【0066】
評価2 フタロシアニン化合物の酸化還元電位及び0−0バンドエネルギーの測定
酸化還元電位の測定
DMFに本発明のフタロシアニン化合物1mMと、支持電解質テトラ−n−ブチルアンモニウムヘキサフルオロホスファート0.1Mを溶解してCV測定を行った。酸化還元電位を決定した結果を表2に示す。電極として作用電極にグラッシーカーボン、対電極にプラチナ電極、参照電極に硝酸銀電極を用いた。
【0067】
0−0バンドエネルギーの測定
本発明のフタロシアニン化合物をメタノールに溶解して蛍光測定を行い、得られた励起スペクトルと蛍光スペルトルの交点0−0バンドから、0−0バンドエネルギーを算出した。
これらの結果を表2に示す。
【0068】
【表2】
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
0-0バンド 0-0バンドエネルギー 酸化還元電位
(nm) (eV) (Vvs.NHE)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
製造例1の化合物 693 1.79 1.10
製造例2の化合物 688 1.80 1.02
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
これら本発明のフタロシアニン化合物は電子のドナーとなるヨウ素よりも正電位側にあり、励起準位はアクセプターとなる二酸化チタンの伝導帯よりも負電位側にあることがあることが確認できた。即ち半導体よりも高い位置に色素の最低空軌道が存在し色素の励起準位から伝導帯への電子注入が可能であり、電子供与体から色素の最高被占軌道への電子移動が生じえる性能が確認できた。
【0069】
評価3 二酸化チタン超微粒子膜に対する色素吸着量の測定
実施例1、2及び比較例1、2、3で作製した二酸化チタン薄膜のUV〜可視吸収スペクトルを測定し、エタノール中の各フタロシアニン化合物の極大吸収波長における吸光係数を用いて色素の吸着密度を算出した。結果を表3に示す。
【0070】
【表3】
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
担持フタロシアニン化合物 色素吸着量(×10−9 mol.cm−2
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
製造例1の化合物 23
製造例2の化合物 47
化合物1(比較物質) 6
化合物2(比較物質) 3
化合物3(比較物質) 1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
以上の結果より、本発明のフタロシアニン化合物は他の置換基を有するフタロシアニン化合物に比べ二酸化チタンに効果的に吸着されていることが確認できた。
【0071】
評価4 湿式太陽電池の光電変換効率の測定
実施例1、2及び比較例1、2、3で作製した湿式太陽電池について下記のごとく光電変換効率を測定した。光源に500WのXeランプを用い、紫外線カットフィルターを通した光(400nm以上の光を照射、照射光強度は22mW/cm)をモノクロメーターにより分光照射して、それぞれの波長光における短絡電流を測定した。また、それぞれの波長における光強度を測定し、次式により変換効率を算出した。
【0072】
IPCE=1.24×102×Isc/P×λ
ここでIPCEは入射光に対する変換効率(%)、Iscは短絡電流(mA/cm2)、Pは照射光強度(μW/cm2)、λは単色光の波長(nm)を示す。
次いで次式より、吸収極大波長付近での吸収光に対する光電変換効率LHE(%)を算出した。
【0073】
LHE=ICPE/(1−T/100)
ここでT(%)はQ−bandにおける太陽電池モジュールの透過率を示す。
結果を表4に示す。
【0074】
【表4】
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
LHE(%:Q−band)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
実施例の太陽電池 6.37
実施例の太陽電池 9.92
比較例1の太陽電池 2.35
比較例2の太陽電池 1.41
比較例3の太陽電池 0.5
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
以上の結果より本発明のフタロシアニンを光増感色素として用いた湿式太陽電池は高い光電変換効率を示すことが判った。
【0075】
【発明の効果】
本発明の新規なフタロシアニン化合物は有機溶剤への溶解性に優れ、半導体に用いられる二酸化チタン表面と強固な結合状態を形成し、半導体よりも高い位置に色素の最低空軌道が存在し色素の励起準位から伝導帯への電子注入が可能であり、電子供与体から色素の最高被占軌道への電子移動が生じえる性能に優れるとともに耐久性に優れるので、これを光増感剤として使用する湿式太陽電池に好適に用いることができる。
【図面の簡単な説明】
【図1】本発明の湿式太陽電池の一具体例の概略図である。
【符号の説明】
1 透明電極
2 二酸化チタン層
3 電解液
4 対極[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a phthalocyanine compoundThingsThe present invention relates to a wet solar cell to be used. More specifically, it is soluble in organic solvents and forms a strong adsorption bond with the titanium dioxide surface.ThingsThe present invention relates to a wet solar cell used as a photosensitizing dye.
[0002]
[Prior art]
Solar cells that use sunlight as an energy source to replace fossil fuels have attracted attention and various studies have been conducted. The mainstream of solar cells that are currently in practical use is cells that use polycrystalline or amorphous silicon, but use high-toxic materials such as gallium and arsenic that have high economic costs and energy costs in the manufacturing process. It can not be said that there is no problem.
[0003]
As a new type of solar cell, a wet solar cell using photo-induced electron transfer of a metal complex is disclosed in JP-T-5-504023, JP-A-7-500630, WO94 / 05025, and the like. Yes.
[0004]
This wet solar cell has two electrodes separated by an electrolyte solution, at least one of which is substantially transparent. This transparent electrode has a porous titanium dioxide layer on which a photosensitizing dye is adsorbed. Have.
[0005]
The principle of this wet solar cell is that titanium dioxide as a semiconductor adsorbs a photosensitizing dye having the lowest empty orbit of electrons at a position higher than this, and further, the highest occupied orbit of the photosensitizing dye from the electron donor. This is an application of the fact that the anode current flows due to the rapid electron transfer of the excited electrons by configuring the fast electron transfer to the.
[0006]
This wet solar cell has advantages such as low cost, high efficiency, simple structure, and easy manufacture.
[0007]
In the above Japanese National Publication No. 5-502043, Japanese National Publication No. 7-500630, and International Publication No. 94/05025, iodine is used as an electron donor and titanium dioxide is used as an electron acceptor (semiconductor). As the sensitizing dye, a ruthenium complex of a polypyridyl compound is used. In International Publication No. 94/05025, a phthalocyanine compound having a carboxyl group, a naphthalocyanine compound and the like are also used as a photosensitizing dye.
[0008]
However, the ruthenium complex of this polypyridyl compound has problems such as insufficient light fastness, complicated production methods, and expensive ruthenium. Moreover, although the phthalocyanine compound which has a carboxyl group does not have such a fault, since the solubility with respect to an organic solvent is extremely low, the adsorption efficiency with respect to a titanium dioxide layer is low. In wet solar cells, a titanium dioxide thin film is immersed in a solution in which a photosensitizing dye is dissolved and adsorbed. Therefore, the solubility of the photosensitizing dye in an organic solvent affects the amount of titanium dioxide adsorbed and, in turn, the power generation efficiency. .
[0009]
The characteristics required for the photosensitizing dye include the following.
1) The level of the lowest unoccupied orbit (the redox potential in the excited state) is higher than the lower end of the semiconductor conduction-band.
2) The level of the highest occupied orbit (redox potential) is higher than the upper end of the semiconductor Valence-band.
3) Adsorbability on the surface of titanium dioxide is high.
4) High solubility in organic solvents.
5) Excellent durability.
6) Excellent economy.
[0010]
A photosensitizing dye satisfying these points has not yet been found.
[0011]
In addition, Japanese National Publication No. 2-502099 (International Publication No. W088 / 6175) discloses a wide range of phthalocyanine compounds containing the phthalocyanine compound of the present invention as a general formula and a liquid crystal optical display using the same. However, there is no specific disclosure or explanation of the phthalocyanine compound of the present invention.
[0012]
[Problems to be solved by the invention]
  An object of the present invention is to provide a novel phthalocyanine compound having excellent properties as described above as a photosensitizing dye.ThingsIt is to provide a wet solar cell used.
[0013]
[Means for Solving the Problems]
  As a result of intensive studies, the present inventors have found that a phthalocyanine compound having a specific substituent efficiently absorbs sunlight, has good solubility in organic solvents, and has excellent adsorptivity to titanium dioxide. I found it. That is, the present invention relates to a phthalocyanine compound represented by the general formula (I).ThingsThe present invention relates to a wet solar cell used as a photosensitizing dye.
[0014]
[Chemical formula 2]
Figure 0004081149
(In the formula, X represents an oxygen atom or a sulfur atom, M represents two hydrogen atoms, a metal or a metal derivative. N represents an integer of 1 to 3)
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the general formula (I), M is two hydrogen atoms, a metal or a metal derivative, and examples of the metal include Cu, Zn, Fe, Co, Ni, Ru, Pb, Rh, Pd, Pt, Mn and Sn are preferable, and examples of the metal derivative include AlCl, InCl, FeCl, MnOH, SiCl.2, SnCl2, GeCl2, Si (OH)2, Sn (OH)2, Ge (OH)2, VO, and TiO are preferable. In particular, M is preferably Zn, Mg, Cu, Al, Fe, or two hydrogen atoms.
[0016]
X is an oxygen atom or a sulfur atom, and n is an integer of 1 to 3.
[0017]
Preferred specific examples of the phthalocyanine compound of the present invention are shown below.
(1) Tetra (carboxymethoxy) -Zn-phthalocyanine
(2) Tetra (carboxymethoxy) -Mg-phthalocyanine
(3) Tetra (carboxymethoxy) -Cu-phthalocyanine
(4) Tetra (carboxymethoxy) -AlCl-phthalocyanine
(5) Tetra (carboxymethoxy) -FeCl-phthalocyanine
(6) Tetra (carboxymethoxy) -H2-Phthalocyanine
(7) Tetra (carboxymethoxy) -Co-phthalocyanine
(8) Tetra (carboxymethoxy) -Ni-phthalocyanine
(9) Tetra (carboxymethoxy) -Ru-phthalocyanine
(10) Tetra (carboxymethoxy) -Pb-phthalocyanine
[0018]
(11) Tetra (carboxymethoxy) -Rh-phthalocyanine
(12) Tetra (carboxymethoxy) -Pd-phthalocyanine
(13) Tetra (carboxymethoxy) -Pt-phthalocyanine
(14) Tetra (carboxymethoxy) -MnOH-phthalocyanine
(15) Tetra (carboxymethoxy) -Sn-phthalocyanine
(16) Tetra (carboxymethoxy) -InCl-phthalocyanine
(17) Tetra (carboxymethoxy) -SiCl2-Phthalocyanine
(18) Tetra (carboxymethoxy) -SnCl2-Phthalocyanine
(19) Tetra (carboxymethoxy) -GeCl2-Phthalocyanine
(20) Tetra (carboxymethoxy) -Si (OH)2-Phthalocyanine
(21) Tetra (carboxymethoxy) -Sn (OH)2-Phthalocyanine
(22) Tetra (carboxymethoxy) -Ge (OH)2-Phthalocyanine
(23) Tetra (carboxymethoxy) -VO-phthalocyanine
(24) Tetra (carboxymethoxy) -TiO-phthalocyanine
(25) Tetra (carboxymethylthio) -Zn-phthalocyanine
(26) Tetra (carboxymethylthio) -Mg-phthalocyanine
(27) Tetra (carboxymethylthio) -Cu-phthalocyanine
(28) Tetra (carboxymethylthio) -AlCl-phthalocyanine
(29) Tetra (carboxymethylthio) -FeCl-phthalocyanine
(30) Tetra (carboxymethylthio) -H2-Phthalocyanine
[0019]
(31) Tetra (carboxymethylthio) -Co-phthalocyanine
(32) Tetra (carboxymethylthio) -Ni-phthalocyanine
(33) Tetra (carboxymethylthio) -Ru-phthalocyanine
(34) Tetra (carboxymethylthio) -Pb-phthalocyanine
(35) Tetra (carboxymethylthio) -Rh-phthalocyanine
(36) Tetra (carboxymethylthio) -Pd-phthalocyanine
(37) Tetra (carboxymethylthio) -Pt-phthalocyanine
(38) Tetra (carboxymethylthio) -MnOH-phthalocyanine
(39) Tetra (carboxymethylthio) -Sn-phthalocyanine
(40) Tetra (carboxymethylthio) -InCl-phthalocyanine
(41) Tetra (carboxymethylthio) -SiCl2-Phthalocyanine
(42) Tetra (carboxymethylthio) -SnCl2-Phthalocyanine
(43) Tetra (carboxymethylthio) -GeCl2-Phthalocyanine
(44) Tetra (carboxymethylthio) -Si (OH)2-Phthalocyanine
(45) Tetra (carboxymethylthio) -Sn (OH)2-Phthalocyanine
(46) Tetra (carboxymethylthio) -Ge (OH)2-Phthalocyanine
(47) Tetra (carboxymethylthio) -VO-phthalocyanine
(48) Tetra (carboxymethylthio) -TiO-phthalocyanine
(49) Tetra (2-carboxyethoxy) -Zn-phthalocyanine
(50) Tetra (2-carboxyethoxy) -Mg-phthalocyanine
[0020]
(51) Tetra (2-carboxyethoxy) -Cu-phthalocyanine
(52) Tetra (2-carboxyethoxy) -AlCl-phthalocyanine
(53) Tetra (2-carboxyethoxy) -FeCl-phthalocyanine
(54) Tetra (2-carboxyethoxy) -H2-Phthalocyanine
(55) Tetra (3-carboxypropoxy) -Zn-phthalocyanine
(56) Tetra (3-carboxypropoxy) -Mg-phthalocyanine
(57) Tetra (3-carboxypropoxy) -Cu-phthalocyanine
(58) Tetra (3-carboxypropoxy) -AlCl-phthalocyanine
(59) Tetra (3-carboxypropoxy) -FeCl-phthalocyanine
(60) Tetra (3-carboxypropoxy) -H2-Phthalocyanine
(61) Tetra (2-carboxyethylthio) -Zn-phthalocyanine
(62) Tetra (2-carboxyethylthio) -Mg-phthalocyanine
(63) Tetra (2-carboxyethylthio) -Cu-phthalocyanine
(64) Tetra (2-carboxyethylthio) -AlCl-phthalocyanine
(65) Tetra (2-carboxyethylthio) -FeCl-phthalocyanine
(66) Tetra (2-carboxyethylthio) -H2-Phthalocyanine
(67) Tetra (3-carboxypropylthio) -Zn-phthalocyanine
(68) Tetra (3-carboxypropylthio) -Mg-phthalocyanine
(69) Tetra (3-carboxypropylthio) -Cu-phthalocyanine
(70) Tetra (3-carboxypropylthio) -AlCl-phthalocyanine
(71) Tetra (3-carboxypropylthio) -FeCl-phthalocyanine
(72) Tetra (3-carboxypropylthio) -H2-Phthalocyanine
The phthalocyanine compound represented by the general formula (I) of the present invention using the above compounds (1) to (72) as representative examples is produced, for example, according to the following method.
[0021]
A phthalocyanine compound represented by general formula (IV) is produced by reacting a phthalonitrile compound represented by general formula (II) with a metal derivative represented by general formula (III). By decomposing, a phthalocyanine compound represented by the general formula (I) is obtained.
[0022]
[Chemical Formula 3]
Figure 0004081149
(In the formula, X and n are the same as those in formula (I), and R represents an alkyl group having 1 to 4 carbon atoms.)
M '-(Y)d                      (III)
(In the formula, M ′ represents a monovalent to tetravalent metal atom, Y represents a monovalent or divalent ligand such as a halogen atom, acetate anion, acetylacetate, or oxygen, and d represents 1-4. Indicates an integer.)
[0023]
[Formula 4]
Figure 0004081149
[0024]
(In the formula, X, M and n are the same as X, M and n in the formula of the general formula (I), and R is the same as R in the formula of the general formula (II).)
Examples of the metal derivative represented by the formula (III) include halides of Al, Si, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ge, Ru, Rh, Pd, In, Sn, Pt, and Pb. , Acetate, acetylacetonate, oxide, sulfate, nitrate, complex and the like. Specific examples include copper chloride, copper bromide, copper iodide, nickel chloride, nickel bromide, nickel acetate, cobalt chloride, cobalt bromide, cobalt acetate, iron chloride, zinc chloride, zinc bromide, zinc iodide, acetic acid. Examples include zinc, vanadium chloride, vanadium oxytrichloride, palladium chloride, palladium acetate, aluminum chloride, manganese chloride, manganese acetate, acetylacetone manganese, lead chloride, lead acetate, indium chloride, titanium chloride, tin chloride and the like.
[0025]
The reaction is usually performed in the presence of a solvent. As the solvent, an organic solvent having a boiling point of 80 ° C. or higher, preferably 100 ° C. or higher is used. For example, n-pentanol, n-hexanol, cyclohexanol, 2-methyl-1-pentanol, 1-heptanol, 1-octanol, 2-ethylhexanol, benzyl alcohol, ethylene glycol, propylene glycol, ethoxyethanol, propoxyethanol, Examples include butoxyethanol, dimethylaminoethanol, diethylaminoethanol, trichlorobenzene, chloronaphthalene, sulfolane, nitrobenzene, quinoline, and urea. The usage-amount of a solvent is 1-100 weight part with respect to 1 weight part of a phthalonitrile compound, Preferably it is 5-50 weight part.
[0026]
Sodium hydride, 1,4-diazabicyclo [2,2,2] octane, 1,5-diazabicyclo [4,3,0] -5-nonene, 1,8-diazabicyclo [5,4,0 as catalysts in the reaction ] -7-undecene (DBU), ammonium molybdate or the like may be added. The addition amount is 0.1 to 10 mol, preferably 0.5 to 5 mol, relative to 1 mol of the phthalonitrile compound.
[0027]
The reaction temperature is 80 to 300 ° C, preferably 100 to 250 ° C. Below 80 ° C, the reaction rate is extremely slow. Above 300 ° C, the phthalocyanine compound may be decomposed.
[0028]
The reaction time is 1 to 40 hours, preferably 2 to 20 hours. If it is 1 hour or less, there are many unreacted raw materials, and if it is 40 hours or more, phthalocyanine may be decomposed.
[0029]
After the reaction, the phthalocyanine compound represented by the formula (IV) is obtained by concentrating the solvent from the reaction solution or discharging the reaction solution into a poor solvent (such as methanol) for the phthalocyanine compound and collecting the precipitate by filtration. Moreover, the phthalocyanine compound obtained as needed can be further purified by recrystallization or column chromatography.
[0030]
As for the usage-amount of a metal derivative and a phthalonitrile compound, 1: 3 to 1: 6 are preferable by molar ratio.
[0031]
Metal-free phthalocyanine compounds are prepared by using sodium alcoholate or lithium alcoholate as metal derivatives.2Phthalocyanine compound or Li2It can be obtained by treating a phthalocyanine compound with an acid and demetalizing it.
[0032]
As a solvent for hydrolyzing the phthalocyanine compound represented by the formula (IV) to produce the phthalocyanine compound represented by the formula (I), water or alcohol such as methanol, ethanol, n-propanol, isopropanol, 2-ethylhexanol Is used.
[0033]
As the alkali, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate and the like can be used, and sodium hydroxide is particularly preferable.
[0034]
The reaction temperature at the time of hydrolysis is from 50 ° C to the boiling point of the solvent, with 80 to 120 ° C being particularly preferred.
[0035]
After completion of the hydrolysis, an acid is added to the aqueous solution of the target product or, in the case of an alcohol solvent, discharged into water to precipitate the target product. As the acid, hydrochloric acid, sulfuric acid, acetic acid and the like are used, and hydrochloric acid is particularly preferable.
[0036]
The phthalonitrile compound of the general formula (II) can be produced, for example, according to the following method.
[0037]
Nitrophthalonitrile and glycolic acid alkyl esters or thioglycolic acid alkyl esters are used as reaction solvents using aprotic polar solvents such as dimethylformamide (DMF), dimethylacetamide (DMAC), dimethylsulfoxide (DMSO), etc. The reaction is carried out at 50 to 120 ° C. in the presence of, for example, 1,8-diazabicyclo [5,4,0] -7-undecene (DBU) as a catalyst. The target product is obtained by discharging the reaction product into water, extracting it with an organic solvent such as toluene, and purifying the product by recrystallization as required.
[0038]
The wet solar cell containing the phthalocyanine compound of the present invention as a photosensitizing dye will be described below.
[0039]
The wet solar cell of the present invention has two electrodes, at least one of which is substantially transparent via an electrolytic solution, and the transparent electrode is a titanium dioxide layer on which the phthalocyanine compound of the present invention is adsorbed as a photosensitizing dye. It is characteristic that it has.
[0040]
As an example of the structure of the wet solar cell of the present invention, a schematic diagram of the wet solar cell produced in the example is shown in FIG.
[0041]
In FIG. 1, 1 is a transparent electrode made of conductive glass, 2 is a titanium dioxide layer carrying the phthalocyanine compound of the present invention as a photosensitizing dye, 3 is an electrolytic solution, and 4 is a counter electrode.
[0042]
Examples of the conductive glass include SnO doped with fluorine.2TCO glass (made by Asahi Glass Co., Ltd.) having a conductive layer or the like, or ITO glass (made by Balzers) having indium oxide doped with tin oxide as a conductive layer can be used. A polymer can also be used as a transparent electrode instead of glass.
[0043]
The titanium dioxide of the titanium dioxide layer is desirably porous, and the roughness is preferably 10 to 5000, more preferably 50 to 1000. The roughness is defined by the ratio of the apparent surface area to the true surface area.
[0044]
Examples of the method for forming the titanium dioxide layer on the surface of the conductive glass include a sol-gel method and a colloid method.
[0045]
The thickness of the titanium dioxide layer is preferably 5 to 50 μm, more preferably 10 to 30 μm.
[0046]
In order to support (adsorb) the phthalocyanine compound as a photosensitizing dye on the titanium dioxide layer, for example, the phthalocyanine compound is dissolved in an organic solvent such as DMF or alcohol, and the titanium dioxide layer is immersed in this for a predetermined time. A drying method is used.
[0047]
The electrolyte solution is preferably a redox system such as an iodine / iodine solution, a bromine / bromine solution, a hydroquinone solution, or a transition metal complex solution. Solvents used in the electrolyte include water, alcohol, 3-methyl- (2-oxazolidinone), 1,3-dimethyl-2-imidazolidinone, propylene carbonate, ethylene carbonate, THF, dimethyl sulfoxide, dichloroethane, etc. Or a compatible mixture of these.
[0048]
Platinum or the like is used as the counter electrode.
[0049]
【Example】
Examples are shown below, but the present invention is not limited to these examples.
[0050]
  [ManufacturingExample 1] Synthesis of tetra (carboxymethoxy) -Zn-phthalocyanine
  4- (Ethoxycarbonylmethoxy) phthalonitrile (11.5 g), zinc (II) chloride (2.1 g), DBU (7.6 g) and n-pentyl alcohol (100 mL) were mixed, and the mixture was stirred at 120 to 130 ° C. for 8 hours. After cooling, the reaction mixture was discharged into 1000 mL of methanol, and the precipitate was collected by filtration and dried to obtain 11.2 g of tetra (ethoxycarbonylmethoxy) -Zn-phthalocyanine as a dark green powder.
[0051]
9.7 g of this product was stirred under reflux in 500 mL of 2% aqueous sodium hydroxide solution for 6 hours. After cooling, acid precipitation was performed with 10% hydrochloric acid, and the precipitate was collected by filtration, washed with water and dried to obtain 6.2 g of a dark green powder.
[0052]
From the following analysis results, it was confirmed to be the target product. In the elemental analysis values, the value of Zn is determined by the atomic absorption method.
[0053]
Figure 0004081149
The target product thus obtained has a maximum absorption at 674 nm in a methanol solution and has a molecular extinction coefficient of 3.82 × 10 6.Four  L / mol. cm.
[0054]
  [ManufacturingExample 2] Synthesis of tetra (carboxymethylthio) -Zn-phthalocyanine
  After mixing 12.3 g of 4- (ethoxycarbonylmethylthio) phthalonitrile, 2.1 g of zinc (II) chloride, 7.6 g of DBU, and 100 mL of n-pentyl alcohol, the mixture was stirred at 120 to 130 ° C. for 8 hours. After cooling, the reaction mixture was discharged into 1000 mL of methanol, and the precipitate was collected by filtration and dried to obtain 10.0 g of tetra (ethoxycarbonylmethylthio) -Zn-phthalocyanine as a dark green powder.
[0055]
8.4 g of this product was stirred at reflux in 500 mL of 2% sodium hydroxide for 6 hours. After cooling, acid precipitation was performed with 10% hydrochloric acid, and the precipitate was collected by filtration, washed with water and dried to obtain 3.0 g of a dark color powder.
[0056]
From the following analysis results, it was confirmed to be the target product.
Figure 0004081149
The target product thus obtained has a maximum absorption at 685 nm in a methanol solution, and the molecular extinction coefficient is 2.40 × 10.Four  L / mol. cm.
[0057]
  [Example1] Fabrication of wet solar cells
  1) Preparation of titanium dioxide layer
  After adding 20 mL of nitric acid (pH = 0.5-1) to 5 g of titanium dioxide ultrafine particles (average particle size 12 nm, anatase) prepared by hydrolysis of titanium (IV) sulfate, and sufficiently stirring, polyethylene glycol (MW = 20000) 3.2 g was added and stirred to prepare a dispersion of titanium dioxide. This dispersion was thoroughly washed with ethanol to be conductive glass (fluorine-doped SnO2After being naturally dried, sintered in air at 450 ° C. for 30 minutes, and then allowed to cool to room temperature under an argon atmosphere.
[0058]
  2) Adsorption of photosensitizing dye onto titanium dioxide
  After reheating the titanium dioxide thin film produced in 1) at 450 ° C. for 30 minutes in the air,ManufacturingTetra (carboxymethoxy) -Zn-phthalocyanine synthesized in Example 1 was 3 × 10-4It was immersed for 5 hours in a DMF solution dissolved in a concentration of M (mol / L). Subsequently, it was washed with dehydrated DMF and ethanol, and vacuum-dried to prepare a dye-supported titanium dioxide thin film.
[0059]
3) Fabrication of wet solar cells
A wet solar cell as shown in FIG. 1 was prepared using the glass electrode having the dye-supported titanium dioxide thin film prepared in 2). A platinum electrode was used as the counter electrode, and an ethylene carbonate / acetonitrile mixed solution (80/20 vol%) containing 0.5M tetrapropylammonium iodide and 0.04M iodine as the electrolyte was used as the electrolyte.
[0060]
  [Example2] Fabrication of wet solar cells
  Example1Instead of tetra (carboxymethoxy) -Zn-phthalocyanine, a photosensitizing dye inManufacturingExample except that tetra (carboxymethylthio) -Zn-phthalocyanine synthesized in Example 2 was used1A wet solar cell was produced by performing the same operation as in Example 1.
[0061]
  [Comparative Example 1] Fabrication of wet solar cell
  Example1Example 1 except that tetra (2-diethylaminoethoxy) -Zn-phthalocyanine (Compound 1) was used instead of tetra (carboxymethoxy) -Zn-phthalocyanine which is a photosensitizing dye in1A wet solar cell was produced by performing the same operation as in Example 1.
[0062]
  [Comparative Example 2] Fabrication of wet solar cell
  Example1Example 4 except that tetra (tert-butyl) -Zn-phthalocyanine (Compound 2) was used instead of tetra (carboxymethoxy) -Zn-phthalocyanine which is a photosensitizing dye in1A wet solar cell was produced by performing the same operation as in Example 1.
[0063]
  [Comparative Example 3] Fabrication of wet solar cell
  Example1Example 4 except that tetracarboxy-Zn-phthalocyanine (compound 3, compound disclosed in International Publication No. 94/05025) was used instead of tetra (carboxymethoxy) -Zn-phthalocyanine which is a photosensitizing dye in1A wet solar cell was produced by performing the same operation as in Example 1.
[0064]
  Evaluation 1  Solubility test
  ManufacturingTetra (carboxymethoxy) -Zn-phthalocyanine synthesized in Example 1;ManufacturingThe tetra (carboxymethylthio) -Zn-phthalocyanine synthesized in Example 2, Compound 1, Compound 2, and Compound 3 were confirmed to be soluble in methanol, DMF, and DMSO, respectively. The results are shown in Table 1 below.
[0065]
[Table 1]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
                              Methanol DMF DMSO
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
        ManufacturingCompound of Example 1 △ ○ ○
        ManufacturingCompound of Example 2 ○ ○ ○
        Compound 1 (Comparative substance) ○ ○ ○
        Compound 2 (Comparative substance) ○ ○ ○
        Compound 3 (Comparative substance) × △ △
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
However, (circle) shows easy solubility, (triangle | delta) is hardly soluble, and x shows insoluble.
[0066]
Evaluation 2  Measurement of redox potential and 0-0 band energy of phthalocyanine compounds
Measurement of redox potential
CV measurement was performed by dissolving 1 mM of the phthalocyanine compound of the present invention and 0.1 M of the supporting electrolyte tetra-n-butylammonium hexafluorophosphate in DMF. The results of determining the redox potential are shown in Table 2. As electrodes, glassy carbon was used as the working electrode, platinum electrode was used as the counter electrode, and silver nitrate electrode was used as the reference electrode.
[0067]
Measurement of 0-0 band energy
The phthalocyanine compound of the present invention was dissolved in methanol to measure fluorescence, and 0-0 band energy was calculated from the intersection 0-0 band of the obtained excitation spectrum and fluorescence spectrum.
These results are shown in Table 2.
[0068]
[Table 2]
  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
                      0-0 band 0-0 band energy Redox potential
                        (Nm) (eV) (Vvs.NHE)
  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    ManufacturingCompound of Example 1 693 1.79 1.10
    ManufacturingCompound of Example 2 688 1.80 1.02
  ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
  It has been confirmed that these phthalocyanine compounds of the present invention are on the positive potential side with respect to iodine serving as an electron donor, and the excitation level is on the negative potential side with respect to the conduction band of titanium dioxide serving as an acceptor. In other words, the lowest unoccupied orbital of the dye exists at a position higher than that of the semiconductor, and electrons can be injected from the excitation level of the dye to the conduction band, and electron transfer from the electron donor to the highest occupied orbital of the dye can occur. Was confirmed.
[0069]
  Evaluation 3  Measurement of dye adsorption on titanium dioxide ultrafine particle film
  Example1, 2And the UV-visible absorption spectrum of the titanium dioxide thin film produced in Comparative Examples 1, 2, and 3 was measured, and the adsorption density of the dye was calculated using the extinction coefficient at the maximum absorption wavelength of each phthalocyanine compound in ethanol. The results are shown in Table 3.
[0070]
[Table 3]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
  Supported phthalocyanine compound Dye adsorption amount (× 10-9 mol. cm-2)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
      ManufacturingCompound of Example 1 23
      ManufacturingCompound of Example 2 47
      Compound 1 (Comparative substance) 6
      Compound 2 (Comparative substance) 3
      Compound 3 (Comparative substance) 1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
  From the above results, it was confirmed that the phthalocyanine compound of the present invention was more effectively adsorbed on titanium dioxide than phthalocyanine compounds having other substituents.
[0071]
  Evaluation 4  Measurement of photoelectric conversion efficiency of wet solar cells
  Example1, 2And the photoelectric conversion efficiency was measured as follows about the wet solar cell produced by Comparative Examples 1, 2, and 3. FIG. Using a 500 W Xe lamp as the light source, light passing through an ultraviolet cut filter (irradiates light of 400 nm or more, irradiation light intensity is 22 mW / cm2) Was spectrally irradiated with a monochromator, and the short-circuit current at each wavelength was measured. Moreover, the light intensity in each wavelength was measured, and the conversion efficiency was calculated by the following formula.
[0072]
IPCE = 1.24 × 102× Isc / P × λ
Where IPCE is the conversion efficiency (%) for incident light, Isc is the short circuit current (mA / cm)2), P is irradiation light intensity (μW / cm2), Λ represents the wavelength (nm) of monochromatic light.
Next, the photoelectric conversion efficiency LHE (%) for the absorbed light near the absorption maximum wavelength was calculated from the following equation.
[0073]
LHE = ICPE / (1-T / 100)
Here, T (%) indicates the transmittance of the solar cell module in Q-band.
The results are shown in Table 4.
[0074]
[Table 4]
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
                                  LHE (%: Q-band)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
        Example1Solar cell 6.37
        Example2Solar cell 9.92
        Solar cell of Comparative Example 1. 2.35
        Solar cell of Comparative Example 2 1.41
        Solar cell of Comparative Example 3 0.5
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
  From the above results, it was found that the wet solar cell using the phthalocyanine of the present invention as a photosensitizing dye exhibits high photoelectric conversion efficiency.
[0075]
【The invention's effect】
The novel phthalocyanine compound of the present invention has excellent solubility in organic solvents, forms a strong bond with the surface of titanium dioxide used in semiconductors, and has the lowest free orbital of the dye at a position higher than the semiconductor, thus exciting the dye. Electrons can be injected from the level to the conduction band, and the electron transfer from the electron donor to the highest occupied orbital of the dye is excellent and the durability is excellent. Use this as a photosensitizer. It can be suitably used for wet solar cells.
[Brief description of the drawings]
FIG. 1 is a schematic view of a specific example of a wet solar cell according to the present invention.
[Explanation of symbols]
1 Transparent electrode
2 Titanium dioxide layer
3 Electrolytic solution
4 Counter electrode

Claims (2)

光増感色素として一般式(I)で表わされるフタロシアニン化合物を含有することを特徴とする湿式太陽電池。
Figure 0004081149
(式中、Xは酸素原子又は硫黄原子を示し、Mは2個の水素原子、金属又は金属誘導体を示す。nは1〜3の整数を示す。)
A wet solar cell comprising a phthalocyanine compound represented by formula (I) as a photosensitizing dye.
Figure 0004081149
(In the formula, X represents an oxygen atom or a sulfur atom, M represents two hydrogen atoms, a metal or a metal derivative. N represents an integer of 1 to 3)
MがZn、Mg、Cu、AlCl、FeCl又は2個の水素原子である請求項1の湿式太陽電池。  The wet solar cell according to claim 1, wherein M is Zn, Mg, Cu, AlCl, FeCl, or two hydrogen atoms.
JP02181496A 1996-01-12 1996-01-12 Wet solar cells using phthalocyanine compounds Expired - Fee Related JP4081149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02181496A JP4081149B2 (en) 1996-01-12 1996-01-12 Wet solar cells using phthalocyanine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02181496A JP4081149B2 (en) 1996-01-12 1996-01-12 Wet solar cells using phthalocyanine compounds

Publications (2)

Publication Number Publication Date
JPH09199744A JPH09199744A (en) 1997-07-31
JP4081149B2 true JP4081149B2 (en) 2008-04-23

Family

ID=12065539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02181496A Expired - Fee Related JP4081149B2 (en) 1996-01-12 1996-01-12 Wet solar cells using phthalocyanine compounds

Country Status (1)

Country Link
JP (1) JP4081149B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9575213B2 (en) 2011-10-14 2017-02-21 Jsr Corporation Optical filter, and solid-state image pickup device and camera module using the optical filter
US9606275B2 (en) 2013-10-17 2017-03-28 Jsr Corporation Optical filter, solid-state image pickup device and camera module
US9746595B2 (en) 2012-06-25 2017-08-29 Jsr Corporation Solid-state image capture element optical filter and application thereof
US9966402B2 (en) 2014-12-04 2018-05-08 Jsr Corporation Solid-state imaging device
US10473836B2 (en) 2015-07-28 2019-11-12 Jsr Corporation Optical filter and ambient light sensor including optical filter
US11163098B2 (en) 2016-06-08 2021-11-02 Jsr Corporation Optical filter and optical sensor device

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090242027A1 (en) 2006-07-05 2009-10-01 Teruhisa Inoue Dye-Sensitized Solar Cell
JP5360534B2 (en) * 2008-08-01 2013-12-04 独立行政法人物質・材料研究機構 Photosensitive element
JP5722579B2 (en) * 2010-09-14 2015-05-20 山本化成株式会社 Ditetraazaporphyrin-based compound and dye-sensitized solar cell using the compound
US9252363B2 (en) * 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
JPWO2014126072A1 (en) 2013-02-15 2017-02-02 コニカミノルタ株式会社 Photoelectric conversion element and solar cell including the same
JP6337561B2 (en) 2014-03-27 2018-06-06 株式会社リコー Perovskite solar cell
JP6249093B2 (en) 2014-04-16 2017-12-20 株式会社リコー Photoelectric conversion element
CN108496258B (en) 2016-01-25 2022-04-26 株式会社理光 Photoelectric conversion element
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
KR102163405B1 (en) 2016-12-07 2020-10-08 가부시키가이샤 리코 Photoelectric conversion element
KR20200131293A (en) 2018-03-19 2020-11-23 가부시키가이샤 리코 Photoelectric conversion device, process cartridge and image forming apparatus
EP4000098A1 (en) 2019-07-16 2022-05-25 Ricoh Company, Ltd. Solar cell module, electronic device, and power supply module
US20220342327A1 (en) 2019-09-26 2022-10-27 Ricoh Company, Ltd. Electronic device and method for producing the same, image forming method, and image forming apparatus
US20210167287A1 (en) 2019-11-28 2021-06-03 Tamotsu Horiuchi Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
JP7508782B2 (en) 2020-01-20 2024-07-02 株式会社リコー Electronic device and its manufacturing method, image forming method, and image forming apparatus
US11502264B2 (en) 2020-02-27 2022-11-15 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
JP7413833B2 (en) 2020-02-27 2024-01-16 株式会社リコー Photoelectric conversion element and photoelectric conversion module
JP2022144443A (en) 2021-03-19 2022-10-03 株式会社リコー Photoelectric conversion element, electronic device, and power supply module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4092704A1 (en) 2021-05-20 2022-11-23 Ricoh Company, Ltd. Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device
JP2023019661A (en) 2021-07-29 2023-02-09 株式会社リコー Photoelectric conversion element, photoelectric conversion module, and electronic apparatus
WO2023008085A1 (en) 2021-07-29 2023-02-02 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
EP4161234A1 (en) 2021-09-30 2023-04-05 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, and electronic device
CN116096111A (en) 2021-10-29 2023-05-09 株式会社理光 Photoelectric conversion element and photoelectric conversion element module
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
JP2023137773A (en) 2022-03-18 2023-09-29 株式会社リコー Photoelectric conversion elements, photoelectric conversion modules, electronic equipment, and solar cell modules

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9575213B2 (en) 2011-10-14 2017-02-21 Jsr Corporation Optical filter, and solid-state image pickup device and camera module using the optical filter
US9791596B2 (en) 2011-10-14 2017-10-17 Jsr Corporation Optical filter, and solid-state image pickup device and camera module using the optical filter
US9791606B2 (en) 2011-10-14 2017-10-17 Jsr Corporation Optical filter, and solid-state image pickup device and camera module using the optical filter
US9746595B2 (en) 2012-06-25 2017-08-29 Jsr Corporation Solid-state image capture element optical filter and application thereof
US9606275B2 (en) 2013-10-17 2017-03-28 Jsr Corporation Optical filter, solid-state image pickup device and camera module
US9966402B2 (en) 2014-12-04 2018-05-08 Jsr Corporation Solid-state imaging device
US10473836B2 (en) 2015-07-28 2019-11-12 Jsr Corporation Optical filter and ambient light sensor including optical filter
US11226442B2 (en) 2015-07-28 2022-01-18 Jsr Corporation Optical filter and ambient light sensor including optical filter
US11163098B2 (en) 2016-06-08 2021-11-02 Jsr Corporation Optical filter and optical sensor device

Also Published As

Publication number Publication date
JPH09199744A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
JP4081149B2 (en) Wet solar cells using phthalocyanine compounds
JP5003871B2 (en) Binuclear metal complex, metal complex dye, photoelectric conversion element, and photochemical battery
EP0887817B1 (en) Photoelectric material using organic photosensitising dyes and manufacturing method thereof
Ghann et al. Synthesis and characterization of free and copper (II) complex of N, N′-bis (salicylidene) ethylenediamine for application in dye sensitized solar cells
Ilgün et al. Novel Co and Zn-Phthalocyanine dyes with octa-carboxylic acid substituents for DSSCs
Cogal et al. Asymmetric phthalocyanine derivatives containing 4-carboxyphenyl substituents for dye-sensitized solar cells
JP3945038B2 (en) Dye-sensitized solar cell
JP2011505651A (en) Production of high-quality sensitizing dyes for dye-sensitized solar cells
US20110277832A1 (en) Method for production of titanium dioxide composite and photoelectric conversion device incorporated with the same
US20050224112A1 (en) Coloring matter sensitization type photoelectric conversion device
JP4623768B2 (en) Photoelectric conversion material, method for producing the same, and photoelectric conversion device
JP5620496B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP3435459B2 (en) Dye-sensitized solar cells
Madigasekara et al. Photoanode modification of dye-sensitized solar cells with Ag/AgBr/TiO2 nanocomposite for enhanced cell efficiency
Al-horaibi et al. Novel Squaraine dyes for high-performance in dye-sensitized solar cells: Photophysical properties and adsorption behavior on TiO2 with different anchoring groups
Saleem et al. Synthesis of photoactive Polyoxometalate-porphyrin hybrids to trigger the photocurrent by designing the ultra-thin films
Permana Promising dye sensitizer on solar cell from complexes of metal and rhodamine B
Arslan et al. Sulfur-bridged oxotitanium phthalocyanine-and porphyrin-based cocktail dyes as sensitizers for improved dye sensitized solar cell efficiency
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
JP5168761B2 (en) Semiconductor for photoelectric conversion material, photoelectric conversion element, solar cell, and method for manufacturing semiconductor for photoelectric conversion material
JP4379865B2 (en) Photoelectrode, method for producing the same, and solar cell using the same
JP5298654B2 (en) Photoelectrode, method for producing dye-sensitized solar cell including the same, and dye-sensitized solar cell
JP2000036331A (en) Metal oxide, semiconductor, electrode for photoelectric conversion material, and solar battery
JP2003123863A (en) Material used for photoelectric conversion element, photoelectric conversion element, and phthalocyanine compound
CN110867324B (en) Ionic compound for full-liquid solar cell, preparation method of ionic compound and full-liquid solar cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees