JP4079956B2 - Sludge dehydration drying equipment - Google Patents

Sludge dehydration drying equipment Download PDF

Info

Publication number
JP4079956B2
JP4079956B2 JP2005090124A JP2005090124A JP4079956B2 JP 4079956 B2 JP4079956 B2 JP 4079956B2 JP 2005090124 A JP2005090124 A JP 2005090124A JP 2005090124 A JP2005090124 A JP 2005090124A JP 4079956 B2 JP4079956 B2 JP 4079956B2
Authority
JP
Japan
Prior art keywords
sludge
drying
hot water
pressing
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005090124A
Other languages
Japanese (ja)
Other versions
JP2005238236A (en
Inventor
淳一 野村
昭一 郷田
睦雄 中島
晃延 須山
直人 木村
繁正 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2005090124A priority Critical patent/JP4079956B2/en
Publication of JP2005238236A publication Critical patent/JP2005238236A/en
Application granted granted Critical
Publication of JP4079956B2 publication Critical patent/JP4079956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は汚泥の脱水乾燥装置に係り、特に上下水道設備、農村集落排水設備、し尿処理設備、産業排水処理設備等から排出される汚泥を加温・加圧して脱水すると共に、減圧乾燥する汚泥の脱水乾燥装置に関する。   The present invention relates to a sludge dewatering and drying device, and in particular, sludge discharged from water and sewage equipment, rural village drainage equipment, human waste treatment equipment, industrial wastewater treatment equipment, etc. The present invention relates to a dehydration drying apparatus.

従来、汚泥を脱水乾燥するためには、脱水装置と乾燥装置とをそれぞれに設置する必要があり、イニシャルコストが大きく、維持管理に多大な労力がかかるのが実情であった。
また、加圧圧搾脱水機の圧搾媒体として温水を使用し、ろ布外部を減圧することにより、汚泥を加温および圧搾すると同時に減圧乾燥するものが知られている。しかしながら、この装置においては、圧搾膜の熱伝導率が低く、ろ板と圧搾膜の間の温水流量分布や圧搾膜とろ布の間の減圧度が場所により不均一なため、ケーキの乾燥時間が長く、乾燥むらが生じやすい等の問題点があった。
Conventionally, in order to dehydrate and dry sludge, it is necessary to install a dewatering device and a drying device in each of them, and the initial cost is high, and it is a fact that a great deal of labor is required for maintenance.
Moreover, what warms and presses sludge at the same time it dries under reduced pressure is known by using warm water as a pressing medium of a pressurization press dehydrator, and decompressing the filter cloth exterior. However, in this device, the thermal conductivity of the squeezed membrane is low, and the distribution of hot water flow between the filter plate and the squeezed membrane and the degree of vacuum between the squeezed membrane and the filter cloth are uneven depending on the location, so the drying time of the cake There are problems such as long and uneven drying.

本発明は上記問題点を解決し、汚泥の加温に十分な熱伝導率の圧搾膜を有し、ケーキの乾燥時間が短く乾燥むらが生じない汚泥の脱水乾燥装置を提供することを目的とする。   An object of the present invention is to provide a sludge dewatering and drying apparatus that solves the above problems, has a squeezed membrane having a thermal conductivity sufficient for heating sludge, and has a short drying time for cakes and does not cause drying unevenness. To do.

本発明の一態様は、ろ板の間に圧搾膜およびろ布からなるろ室を形成し、前記ろ室内の汚泥を圧搾および乾燥する汚泥の脱水乾燥装置において、前記ろ室内の汚泥を加温するための温水を発生させる温水発生装置を備え、前記圧搾膜として、ポリウレタン樹脂にカーボングラファイトを混練した圧搾膜が用いられていることを特徴とする。
このように、脱水乾燥対象の汚泥の加温に十分な熱伝導率を有する圧搾膜を用いることで、ケーキの乾燥時間が短く且つ乾燥ムラが生じない汚泥の脱水乾燥装置が得られる。
One aspect of the present invention is to form a filter chamber composed of a compression membrane and a filter cloth between filter plates, and to heat the sludge in the filter chamber in a sludge dewatering and drying apparatus that compresses and dries the sludge in the filter chamber. A hot water generator for generating hot water is provided, and as the pressing film, a pressing film in which carbon graphite is kneaded with polyurethane resin is used.
Thus, the sludge dehydrating and drying apparatus in which the drying time of the cake is short and the drying unevenness does not occur is obtained by using the squeezed membrane having sufficient thermal conductivity for heating the sludge to be dehydrated and dried.

本発明の好ましい態様は、前記圧搾膜として、ポリウレタン樹脂に5v/v%〜15v/v%のカーボングラファイトを混練した圧搾膜が用いられていることを特徴とする。
本発明の好ましい態様は、前記圧搾膜の熱伝導率は、0.35W・m−1・K−1以上で1.00W・m−1・K−1以下であることを特徴とする。
本発明の好ましい態様は、前記ろ布と前記圧搾膜との間隙を減圧する真空発生装置を備えたことを特徴とする。
本発明の好ましい態様は、前記真空発生装置の到達真空度は7kPa以下であることを特徴とする。
A preferred embodiment of the present invention is characterized in that a pressing membrane obtained by kneading 5 v / v% to 15 v / v% carbon graphite in a polyurethane resin is used as the pressing membrane.
In a preferred aspect of the present invention, the pressed film has a thermal conductivity of 0.35 W · m −1 · K −1 or more and 1.00 W · m −1 · K −1 or less.
A preferred embodiment of the present invention is characterized by comprising a vacuum generator for reducing the gap between the filter cloth and the compressed membrane.
In a preferred aspect of the present invention, the ultimate vacuum of the vacuum generator is 7 kPa or less.

なお、隣接する一対のろ板の間に一対の圧搾膜とろ布とを設け、締付装置で前記ろ板を締付けることで圧搾膜およびろ布からなるろ室を形成し、前記ろ室内の汚泥を両面から圧搾する汚泥の脱水乾燥装置において、前記ろ板と圧搾膜との間に温水の通路を形成すると共に、前記圧搾膜として熱伝導率が0.35W・m−1・K−1以上で1.00W・m−1・K−1以下の高い熱伝導率を有する膜を用いることが好ましい。 A pair of squeezing membranes and a filter cloth are provided between a pair of adjacent filter plates, and a filter chamber composed of the squeezed membrane and the filter cloth is formed by tightening the filter plate with a clamping device, and sludge in the filter chamber is disposed on both sides. In the dewatering and drying apparatus for sludge to be squeezed, a passage of hot water is formed between the filter plate and the squeezed membrane, and the thermal conductivity is 0.35 W · m −1 · K −1 or more as the squeezed membrane. It is preferable to use a film having a high thermal conductivity of 0.000 W · m −1 · K −1 or less.

また、前記ろ板と前記圧搾膜との間の温水の通路には、厚さ1mm以上の網目状物を配置し、温水をろ板と圧搾膜との間の温水通路の全面に均一に分散させるようにすることが好ましい。また、前記温水の通路には、温水発生装置で発生した温水を循環させ、その温水の循環経路のろ室の出口側に背圧弁およびバイパス弁を配置することが好ましい。   Further, a mesh-like material having a thickness of 1 mm or more is disposed in the hot water passage between the filter plate and the compressed membrane, and the hot water is uniformly distributed over the entire surface of the hot water passage between the filter plate and the compressed membrane. It is preferable to do so. Moreover, it is preferable to circulate the warm water generated by the warm water generator in the warm water passage, and to arrange a back pressure valve and a bypass valve on the outlet side of the filter chamber of the circulation path of the warm water.

これにより、ろ板と圧搾膜との間のろ室に面した温水の通路には、温水が均一に分散して存在する。そして、汚泥を加温圧搾するに際して、高い熱伝導率を有する圧搾膜により圧搾対象の汚泥に均一に良好な効率で熱を加えることができる。したがって、汚泥の加温圧搾乾燥が促進され、短時間で所要の含水率を有するケーキを作ることが可能となる。ここで、ろ板と圧搾膜との間の温水の通路に配置された1mm以上で5mm以下の網目状物により上記温水の通路に均一に温水を分散させることができる。また、温水の循環経路に背圧弁およびバイパス弁を配置することで、温水の圧力を調整し、これにより汚泥の加温圧搾及び加温乾燥条件をすみやかに調整することができる。   As a result, the hot water is uniformly dispersed in the passage of the hot water facing the filter chamber between the filter plate and the compressed membrane. Then, when the sludge is heated and compressed, heat can be uniformly applied to the sludge to be pressed with a good efficiency by the pressing film having high thermal conductivity. Accordingly, the hot pressing drying of the sludge is promoted, and it becomes possible to make a cake having a required moisture content in a short time. Here, the hot water can be uniformly dispersed in the hot water passage by a network of 1 mm or more and 5 mm or less arranged in the hot water passage between the filter plate and the compressed membrane. Moreover, the pressure of warm water can be adjusted by arrange | positioning a back pressure valve and a bypass valve in the circulation path of warm water, and, thereby, the warming pressure of sludge and warming drying conditions can be adjusted quickly.

また、前記圧搾膜には、前記ろ布との間に、溝深さまたは突起高さが3mm以上で10mm以下であるろ液排出用の溝または突起が設けられていることが好ましい。さらに、前記温水による圧搾と同時に真空発生装置が起動するようにし、圧搾膜とろ布との間隙を減圧雰囲気にすることにより、汚泥を加温圧搾脱水すると共に減圧乾燥することが好ましい。   Moreover, it is preferable that the groove | channel or processus | protrusion for filtrate discharge | emission whose groove depth or protrusion height is 3 mm or more and 10 mm or less is provided in the said pressing membrane between the said filter cloths. Furthermore, it is preferable that the vacuum generator is activated simultaneously with the squeezing with the hot water, and the sludge is heated, squeezed and dehydrated and dried under reduced pressure by setting the gap between the squeezing membrane and the filter cloth to a reduced pressure atmosphere.

本発明によれば、脱水乾燥対象の汚泥の加温に十分な熱伝導率を有する圧搾膜を用いることで、ケーキの乾燥時間が短く且つ乾燥ムラが生じない汚泥の脱水乾燥装置が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the dehydration drying apparatus of the sludge which has the short drying time of a cake and does not produce a drying nonuniformity is obtained by using the pressing film | membrane which has sufficient thermal conductivity for the heating of the sludge of dehydration drying object.

以下、本発明の実施形態について添付図面を参照しながら説明する。
図1は、本発明の汚泥の脱水乾燥装置を含む汚泥処理システムの概略を示す。脱水乾燥機11は、汚泥の脱水乾燥を行う装置である。その内部に、隣接する一対のろ板の間に一対の圧搾膜とろ布とを設け、締付装置でそのろ板を締付けることで圧搾膜及びろ布からなるろ室内の汚泥を両面から圧搾することで、汚泥の脱水乾燥を行う装置である。この脱水乾燥機11には、スラリー供給ポンプ12によりスラリー供給ライン13から供給弁15を介して脱水乾燥対象の汚泥(スラリー)が供給される。そして、汚泥は脱水乾燥機11により脱水圧搾乾燥されて所要の含水率のケーキとなり、脱水乾燥機より取り出される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 shows an outline of a sludge treatment system including a sludge dehydration drying apparatus of the present invention. The dehydration dryer 11 is a device that performs dehydration drying of sludge. By providing a pair of pressing membranes and a filter cloth between a pair of adjacent filter plates in the inside, and pressing the sludge in the filter chamber composed of the pressing membrane and the filter cloth from both sides by tightening the filter plate with a clamping device. This is a device for dewatering and drying sludge. Slurry (slurry) to be dehydrated and dried is supplied to the dehydrator 11 from the slurry supply line 13 through the supply valve 15 by the slurry supply pump 12. Then, the sludge is dehydrated and squeezed and dried by the dehydration dryer 11 to form a cake having a required moisture content, and is taken out from the dehydration dryer.

汚泥乾燥機11には温水が供給され、この温水により汚泥の脱水乾燥が促進される。温水ユニット31にて温水が作られ、温水循環ポンプ32により温水循環ライン35から脱水乾燥機11のヘッダ管17に導入される。脱水乾燥機11で汚泥の脱水乾燥に使用された温水はヘッダ管18から温水循環ライン35により温水ユニット31に戻される。このように、温水ユニット31と脱水乾燥機11との間で温水が循環するようになっていて、脱水乾燥機11の出口側に背圧弁33とバイパス弁34とが配置されている。従って、背圧弁33の調整およびバイパス弁34との切換により、循環する温水の流量及び脱水乾燥機内の温水の圧力をすみやかに調整することが可能である。   The sludge dryer 11 is supplied with warm water, and this warm water promotes dewatering and drying of the sludge. Hot water is made by the hot water unit 31 and introduced into the header pipe 17 of the dehydrating dryer 11 from the hot water circulation line 35 by the hot water circulation pump 32. The hot water used for dewatering and drying sludge in the dehydration dryer 11 is returned from the header pipe 18 to the hot water unit 31 through the hot water circulation line 35. As described above, the hot water circulates between the hot water unit 31 and the dehydration dryer 11, and the back pressure valve 33 and the bypass valve 34 are arranged on the outlet side of the dehydration dryer 11. Therefore, by adjusting the back pressure valve 33 and switching to the bypass valve 34, it is possible to quickly adjust the flow rate of the circulating hot water and the pressure of the hot water in the dehydrating dryer.

また、脱水乾燥機11における汚泥の脱水乾燥には真空吸引が用いられる。したがって、真空ポンプ37と凝縮槽38とを備え、ろ布と圧搾膜との間を減圧雰囲気とすることで、ろ布内部の汚泥の脱水乾燥を促進する。また、圧搾工程と同時に真空ポンプ37が起動するようにして、圧搾膜とろ布との間隙を減圧することによりろ布内の汚泥を加温圧搾脱水すると共に減圧乾燥する。   Further, vacuum suction is used for the dehydration drying of the sludge in the dehydration dryer 11. Therefore, the vacuum pump 37 and the condensing tank 38 are provided, and dehydration drying of the sludge inside the filter cloth is promoted by setting a reduced pressure atmosphere between the filter cloth and the compressed membrane. Moreover, the vacuum pump 37 is started simultaneously with the pressing step, and the gap between the pressing membrane and the filter cloth is depressurized so that the sludge in the filter cloth is heated, pressed and dehydrated and dried under reduced pressure.

センターブロー用空気は、センターブローライン21により脱水乾燥機11に供給され、センターブロー排泥ライン23から脱水されていない汚泥と共に排出される。センターブローライン21には空気弁22が、センターブロー排泥ライン23には排泥弁24がそれぞれ接続されている。   The center blow air is supplied to the dehydration dryer 11 through the center blow line 21 and is discharged from the center blow discharge mud line 23 together with the sludge that has not been dehydrated. An air valve 22 is connected to the center blow line 21, and a drainage valve 24 is connected to the center blow drainage line 23.

温水ユニット31は圧搾媒体及び加温媒体としての温水を供給するものであり、温水の水温を70℃〜95℃に保つ。この温水ユニット31としては、電力や石油等の燃料、または燃焼排ガス等を用いた温水ボイラ、水蒸気ドレン、燃料電池排水などの各種の熱源を用いることができる。温水循環ポンプ32は、脱水乾燥機11内の圧搾膜に0.5MPa以上の圧力を加えられるものであることが好ましい。脱水乾燥機11に接続されるろ液ラインと真空ラインは切替弁1・2により切り替えられ、真空ラインには上述したように凝縮槽38、真空ポンプ37が接続されている。凝縮槽38には冷却水が循環するようになっている。ここで真空ポンプ37の到達真空度は7kPa以下が好ましい。   The hot water unit 31 supplies hot water as a pressing medium and a warming medium, and keeps the temperature of the hot water at 70 ° C to 95 ° C. As the hot water unit 31, various heat sources such as a fuel such as electric power and oil, a hot water boiler using a combustion exhaust gas, a steam drain, a fuel cell waste water, or the like can be used. It is preferable that the hot water circulation pump 32 can apply a pressure of 0.5 MPa or more to the compressed film in the dehydration dryer 11. The filtrate line and the vacuum line connected to the dehydration dryer 11 are switched by the switching valves 1 and 2, and the condensation tank 38 and the vacuum pump 37 are connected to the vacuum line as described above. Cooling water circulates in the condensing tank 38. Here, the ultimate vacuum degree of the vacuum pump 37 is preferably 7 kPa or less.

図2は、汚泥の脱水乾燥機における要部の構成例を示す。図2(c)の全体構成例で示すように、隣接する一対のろ板54,54の間に、一対の圧搾膜52,52とろ布51,51とが配置されている。ろ布51,51の内部に脱水乾燥対象の汚泥が導入され、図示しない締付装置によりプレート56,57が両側から締付けられ、一対のろ板54,54が両側から締付けられ、ろ布51,51内にろ室が形成される。図2(a)(b)に示すように、ろ板54と圧搾膜52との間には、厚さ1mm以上の網目状物53が配置され、ろ板54と圧搾膜52との間に温水が均一に流れる通路53aが確保される。   FIG. 2 shows a configuration example of a main part of a sludge dewatering dryer. As shown in the overall configuration example in FIG. 2C, a pair of squeezing membranes 52 and 52 and a filter cloth 51 and 51 are disposed between a pair of adjacent filter plates 54 and 54. Sludge to be dehydrated and dried is introduced into the filter cloths 51, 51, the plates 56, 57 are tightened from both sides by a tightening device (not shown), and the pair of filter plates 54, 54 are tightened from both sides. A filter chamber is formed in 51. As shown in FIGS. 2 (a) and 2 (b), a mesh-like object 53 having a thickness of 1 mm or more is disposed between the filter plate 54 and the compressed membrane 52, and between the filter plate 54 and the compressed membrane 52. A passage 53a through which warm water flows uniformly is secured.

網目状物53は、耐熱性、耐腐食性の材質からなる線径0.5mm以上の網などを用いることができ、材質としてはポリエチレン、ポリプロピレン、テフロン(登録商標)、ステンレスなどが好適である。網目状物53の厚さは1mm以上が好ましく、5mm以上である場合には、ろ室容積が減少するという問題がある。   As the mesh-like material 53, a mesh made of a heat-resistant and corrosion-resistant material having a wire diameter of 0.5 mm or more can be used, and the material is preferably polyethylene, polypropylene, Teflon (registered trademark), stainless steel, or the like. . The thickness of the mesh 53 is preferably 1 mm or more, and if it is 5 mm or more, there is a problem that the volume of the filter chamber decreases.

ここで、圧搾膜52は、熱伝導率が0.35W・m−1・K−1以上の高い熱伝導率を有する膜が用いられている。このような圧搾膜としては、ポリウレタン樹脂に5v/v%〜15v/v%のカーボングラファイトを混練したものなどを用いることができる。これにより、温水通路に流れる温水の熱を速やかにろ室内の汚泥に供給することができると共にろ室内の汚泥への熱供給を均一に行うことができる。但し、1.00W・m−1・K−1以上は強度が低く、実用的ではない。なお、通常のポリプロピレン樹脂によるものの熱伝導率は0.1W・m−1・k−1程度であり、架橋ポリエチレン樹脂によるものは、0.38W・m−1・K−1程度である。 Here, the pressing film 52 is a film having a high thermal conductivity of 0.35 W · m −1 · K −1 or higher. As such a squeezed membrane, a polyurethane resin kneaded with 5 v / v% to 15 v / v% carbon graphite can be used. Thereby, the heat of the hot water flowing through the hot water passage can be quickly supplied to the sludge in the filter chamber and the heat supply to the sludge in the filter chamber can be performed uniformly. However, 1.00 W · m −1 · K −1 or more has low strength and is not practical. Note that the thermal conductivity of a normal polypropylene resin is about 0.1 W · m −1 · k −1 , and that of a crosslinked polyethylene resin is about 0.38 W · m −1 · K −1 .

また、圧搾膜52のろ布51側には、ろ液排出用の溝または突起52aが設けられ、この溝の深さまたは突起の高さは3mm以上10mm以下が好ましく、幅2〜6mmの円柱状または角形であり、角形の場合、長さが長くなった場合、凹部が溝となる。ここで、溝の深さまたは突起の高さが10mm以上だと熱伝導量が低下し、熱伝導率の低い樹脂を用いた場合と同じ効果になってしまう。
これにより、圧搾膜52とろ布51との間隙の真空吸引路52bを均一に確保することが可能になる。なお、ろ板、網目状物、ろ布の材質は、70℃〜95℃の温室に耐えられる材料であれば、一般に使用されている材料を用いることができる。
Moreover, a groove or protrusion 52a for discharging filtrate is provided on the filter cloth 51 side of the compressed membrane 52, and the depth of the groove or the height of the protrusion is preferably 3 mm or more and 10 mm or less, and a circle having a width of 2 to 6 mm. It is columnar or square, and in the case of a square, when the length becomes long, the concave portion becomes a groove. Here, if the depth of the groove or the height of the protrusion is 10 mm or more, the amount of heat conduction is reduced, and the same effect as when a resin having low heat conductivity is used is obtained.
Thereby, the vacuum suction path 52b in the gap between the compressed film 52 and the filter cloth 51 can be ensured uniformly. In addition, the material of a filter plate, a mesh-like material, and a filter cloth can be used as long as it is a material that can withstand a greenhouse at 70 ° C. to 95 ° C.

次に、この汚泥の脱水乾燥装置による脱水乾燥工程の概要について説明する。基本的な汚泥の脱水乾燥工程は、図3に示すように、ろ過工程、圧搾工程、センターブロー、乾燥工程からなる。   Next, the outline of the dehydration drying process by this sludge dehydration drying apparatus will be described. As shown in FIG. 3, the basic sludge dehydration drying process includes a filtration process, a pressing process, a center blow, and a drying process.

ろ過工程は、無加温ろ過及び加温ろ過から構成され、圧搾工程は加温圧搾及び加温圧搾と減圧乾燥とから構成され、乾燥工程は加温乾燥と減圧乾燥とから構成される。脱水乾燥対象の汚泥の性状に応じた構成要素を選択することにより、最適な脱水乾燥を実行することができる。   A filtration process is comprised from a non-warm filtration and a warm filtration, a pressing process is comprised from warm pressing, warm pressing, and reduced pressure drying, and a drying process is comprised from warm drying and reduced pressure drying. Optimal dehydration and drying can be performed by selecting components according to the properties of the sludge to be dehydrated and dried.

無加温ろ過は、給泥系統のみを稼働させるろ過工程であり、導入された汚泥がろ布54により自然にろ過される工程である。加温ろ過は給泥系統及び温水系統を稼働するろ過工程であり、この場合には温水が温水循環ラインにより圧搾膜52とろ板54との間の温水通路に供給される。この脱水乾燥機11においては、ろ板54と圧搾膜52との間に設置された網目状物53により、温水が均一に流れる通路53aが確保される。そして、圧搾膜52が熱伝導率が高い材料により構成されていて、温水通路が網目状物53により確保されているので、これにより効率的に且つむらがなく、温水の熱がろ布51,51内の乾燥対象の汚泥に伝達される。   Unheated filtration is a filtration process in which only the mud supply system is operated, and the introduced sludge is naturally filtered by the filter cloth 54. Warm filtration is a filtration process that operates a mud supply system and a hot water system. In this case, hot water is supplied to a hot water passage between the squeezed membrane 52 and the filter plate 54 by a hot water circulation line. In the dehydration dryer 11, a passage 53 a through which warm water flows uniformly is secured by the mesh-like material 53 installed between the filter plate 54 and the compressed membrane 52. And since the pressing film 52 is comprised with the material with high heat conductivity, and the warm water channel | path is ensured by the mesh-like object 53, this is efficient and non-uniform | heterogenous, and the heat of warm water is the filter cloth 51, It is transmitted to the sludge to be dried in 51.

加温圧搾は、温水系統を動作させつつ、汚泥を加温しつつ圧搾する圧搾工程である。また、減圧乾燥は真空系統を動作させつつ減圧雰囲気下で圧搾を行う圧搾工程である。これらの圧搾工程では、温水は背圧弁33を通り温水循環ライン35を循環し、背圧弁33によりろ室近傍における温水圧力を低圧から所定の圧力に次第に上昇させることが好ましい。これにより、良好な加温圧搾ができる。   Warm pressing is a pressing process in which the sludge is heated while operating the hot water system. Moreover, reduced pressure drying is a pressing process which performs pressing in a reduced pressure atmosphere while operating a vacuum system. In these squeezing steps, it is preferable that the hot water circulates through the hot water circulation line 35 through the back pressure valve 33, and the hot water pressure in the vicinity of the filter chamber is gradually increased from a low pressure to a predetermined pressure by the back pressure valve 33. Thereby, favorable warming pressing can be performed.

乾燥工程は、温水による加温と真空装置の動作による減圧乾燥を行う工程であり、温水系統と真空系統とを共に動作させる。この時、温水はバイパス弁34を通して循環させることが好ましい。   The drying step is a step of performing warming with warm water and drying under reduced pressure by operation of a vacuum device, and operates both the warm water system and the vacuum system. At this time, the hot water is preferably circulated through the bypass valve 34.

上述したように本発明の汚泥の脱水乾燥装置は、圧搾膜に熱伝導率が高い材料を用い、温水の通路に網目状物を配置し温水がろ室近傍の通路内を均一に流れるようになっている。そして、温水の循環経路に背圧弁を備え、圧搾膜の裏側に流れる温水の圧力の調整が可能である。これにより、温水の有する熱を効率的に且つ均一にむらなく脱水乾燥対象の汚泥(ケーキ)に伝達することができる。   As described above, the sludge dewatering and drying apparatus of the present invention uses a material having high thermal conductivity for the squeezed membrane, and a mesh-like material is disposed in the hot water passage so that the hot water flows uniformly in the passage near the filter chamber. It has become. And the back pressure valve is provided in the circulation path of warm water, and the pressure of warm water flowing to the back side of the squeezing membrane can be adjusted. Thereby, the heat which warm water has can be efficiently and uniformly transmitted to the sludge (cake) to be dehydrated and dried.

表1は、本発明の汚泥の脱水乾燥装置の効果を説明するためのもので、従来の脱水乾燥工程と本発明の脱水乾燥工程とを比較した実験結果である。   Table 1 is for explaining the effects of the sludge dewatering and drying apparatus of the present invention, and shows the experimental results comparing the conventional dewatering and drying process and the dewatering and drying process of the present invention.

Figure 0004079956
ろ過工程は無加温ろ過を採用し、圧搾工程は加温圧搾と減圧乾燥とを採用し、乾燥工程は加温しつつ減圧する乾燥工程に統一している。原料の汚泥濃度は20g/Lと、同条件の汚泥を使用している。ここで、圧搾膜の熱伝導率は、従来例1においては0.23W・m−1・K−1であるのに対して、本発明の例1及び例2では圧搾膜の熱伝導率が0.68W・m−1・K−1と高いものを用いている。また、圧搾工程における圧搾圧力は、従来例1及び本発明の例1では、0.5MPaを採用し、本発明の例2では1.5MPaを採用している。
Figure 0004079956
The filtration process employs unheated filtration, the compression process employs warm pressing and drying under reduced pressure, and the drying process is unified with a drying process in which pressure is reduced while heating. The raw material sludge concentration is 20 g / L, and sludge of the same condition is used. Here, the thermal conductivity of the squeezed membrane is 0.23 W · m −1 · K −1 in Conventional Example 1, whereas in Examples 1 and 2 of the present invention, the thermal conductivity of the squeezed membrane is A high one of 0.68 W · m −1 · K −1 is used. Moreover, 0.5 MPa is employ | adopted in Example 2 of this invention, and 0.5 MPa is employ | adopted for the compression pressure in a pressing process in the prior art example 1 and the example 1 of this invention.

そして、最終的なケーキ含水率をいずれも35%として実験した結果、従来例1では乾燥時間が2.17h(時間)であり、ろ過速度が0.25kg・m−2・h−1となるのに対して、本発明の例1では乾燥時間が0.83h(時間)と大幅に短縮され、ろ過速度が0.39kg・m−2・h−1となった。また、本発明の例2では、上述したように圧搾圧力を1.5MPaとした結果、乾燥時間が0.50h(時間)と更に短縮され、ろ過速度が0.45kg・m−2・h−1となった。 And as a result of experimenting by setting the final cake moisture content to 35%, the drying time in Conventional Example 1 is 2.17 h (hours), and the filtration rate is 0.25 kg · m −2 · h −1. On the other hand, in Example 1 of the present invention, the drying time was significantly shortened to 0.83 h (hours), and the filtration rate became 0.39 kg · m −2 · h −1 . In Example 2 of the present invention, as described above, the pressing pressure was 1.5 MPa, and as a result, the drying time was further reduced to 0.50 h (hours), and the filtration rate was 0.45 kg · m −2 · h −. It became 1 .

上記実験結果から、圧搾膜熱伝導率が乾燥時間の長短に大きく影響していることが分かる。図4は、この脱水乾燥装置に熱伝導率の異なる圧搾膜を取り付け、本発明の例2と同様な条件で実験した結果である。横軸には圧搾膜の熱伝導率を示し、縦軸にはケーキ含水率が35%になるろ過速度を示している。この実験結果から、熱伝導率が0.35W・m−1・K−1以上で、大きなろ過速度が得られることが示されている。 From the above experimental results, it can be seen that the compressed film thermal conductivity greatly affects the length of the drying time. FIG. 4 shows the results of experiments performed under the same conditions as in Example 2 of the present invention by attaching compressed membranes having different thermal conductivities to this dehydrating and drying apparatus. The horizontal axis indicates the thermal conductivity of the pressed membrane, and the vertical axis indicates the filtration rate at which the cake moisture content is 35%. From this experimental result, it is shown that a high filtration rate can be obtained when the thermal conductivity is 0.35 W · m −1 · K −1 or more.

表2は、従来の加圧圧搾脱水工程(従来例2)と、本発明の脱水乾燥工程(例3)とを比較した実験結果である。

Figure 0004079956
Table 2 shows the experimental results comparing the conventional pressure squeezing dehydration process (conventional example 2) and the dehydration drying process of the present invention (example 3).
Figure 0004079956

従来例2では、ろ過工程、圧搾工程共に無加温の状態で行い、本発明の例3では、ろ過工程を加温ろ過、圧搾工程を加温圧搾で実施した。原料としては、濃度20g/Lの同条件の汚泥を使用している。また、従来例2では、ろ過及び圧搾時の温度を20℃として、圧搾時間0.80h(時間)でケーキ含水率60%となり、ろ過速度0.46kg・m−2・h−1となった。これに対して、本発明の例3では、ろ過及び圧搾時の温度を80℃とした結果、圧搾時間0.50h(時間)でケーキ含水率60%が得られ、ろ過速度0.53kg・m−2・h−1となった。この表2に示す実験結果においても、本発明の脱水乾燥装置による工程においては、圧搾時間が大幅に低減し、全体としての全工程時間が低減し、これにより全体としてのろ過速度が向上していることが分かる。 In Conventional Example 2, both the filtration step and the pressing step were performed in an unheated state, and in Example 3 of the present invention, the filtration step was heated and the pressing step was performed by heating and pressing. As a raw material, the sludge of the same conditions with a density | concentration of 20 g / L is used. Moreover, in the prior art example 2, the temperature at the time of filtration and pressing was set to 20 ° C., and the moisture content of the cake was 60% at a pressing time of 0.80 h (hours), and the filtration rate was 0.46 kg · m −2 · h −1 . . On the other hand, in Example 3 of the present invention, as a result of setting the temperature during filtration and pressing to 80 ° C., a cake moisture content of 60% was obtained at a pressing time of 0.50 h (hours), and the filtration rate was 0.53 kg · m. -2 · h- 1 . Also in the experimental results shown in Table 2, in the process using the dehydrating and drying apparatus of the present invention, the pressing time is greatly reduced, and the overall process time is reduced, thereby improving the filtration rate as a whole. I understand that.

また、従来例1と従来例2の脱水乾燥処理後のケーキを観察すると、ろ室周辺部と中心部とでは乾燥度合いに差が見られた。これに対し、本発明の例1〜例3では、得られたケーキの乾燥度合いに差が見られなかった。この効果の差は、ろ板と圧搾膜との間の温水通路に網目状物を配置して、これにより温水通路の均一性を確保すると共に、ろ布と圧搾膜との間に溝または突起を設け、これにより真空通路を確保して減圧処理の均一性を確保したことに基因していると考えられる。   Moreover, when the cake after the dehydration drying process of the prior art example 1 and the prior art example 2 was observed, the difference was seen in the drying degree in the filter chamber periphery part and center part. On the other hand, in Examples 1 to 3 of the present invention, no difference was found in the degree of drying of the obtained cake. The difference in this effect is that a mesh-like material is arranged in the hot water passage between the filter plate and the squeezing membrane, thereby ensuring the uniformity of the hot water passage, and a groove or protrusion between the filter cloth and the squeezing membrane. This is considered to be due to the fact that the vacuum passage was secured thereby ensuring the uniformity of the decompression process.

尚、上記実施例は、本発明の好ましい実施例の一形態を述べたに過ぎず、本発明の趣旨を逸脱することなく、種々の実施例をとることが可能なことは勿論である。   In addition, the said Example only described one form of the preferable Example of this invention, Of course, a various Example can be taken, without deviating from the meaning of this invention.

本発明の実施形態の汚泥の脱水乾燥装置を示すブロック図である。It is a block diagram which shows the dehydration drying apparatus of the sludge of embodiment of this invention. 図1に示す脱水乾燥装置の要部を示す図であり、図2(a)は断面図、図2(b)は平面図、図2(c)は全体構成を示す断面図である。It is a figure which shows the principal part of the dehydration drying apparatus shown in FIG. 1, (a) is sectional drawing, FIG.2 (b) is a top view, FIG.2 (c) is sectional drawing which shows the whole structure. 汚泥の脱水乾燥処理を示すフロー図である。It is a flowchart which shows the dehydration drying process of sludge. 圧搾膜の熱伝導率とろ過速度との関係を示す実験結果のグラフである。It is a graph of the experimental result which shows the relationship between the heat conductivity of a pressing film, and the filtration rate.

符号の説明Explanation of symbols

11 脱水乾燥機
12 汚泥供給ポンプ
13 汚泥供給ライン
21 センターブローライン
23 センターブロー排泥ライン
31 温水ユニット
32 温水循環ポンプ
33 背圧弁
35 温水循環ライン
37 真空ポンプ
38 凝縮槽
51 ろ布
52 圧搾膜
52a 突起または溝
52b 真空吸引路
53 網目状物
53a 温水通路
54 ろ板
DESCRIPTION OF SYMBOLS 11 Dehydration dryer 12 Sludge supply pump 13 Sludge supply line 21 Center blow line 23 Center blow drainage line 31 Hot water unit 32 Hot water circulation pump 33 Back pressure valve 35 Hot water circulation line 37 Vacuum pump 38 Condensation tank 51 Filter cloth
52 Pressure Membrane 52a Projection or Groove 52b Vacuum Suction Channel 53 Network Item 53a Hot Water Channel 54 Filter Plate

Claims (5)

ろ板の間に圧搾膜およびろ布からなるろ室を形成し、前記ろ室内の汚泥を圧搾および乾燥する汚泥の脱水乾燥装置において、
前記ろ室内の汚泥を加温するための温水を発生させる温水発生装置を備え、
前記圧搾膜として、ポリウレタン樹脂にカーボングラファイトを混練した圧搾膜が用いられていることを特徴とする汚泥の脱水乾燥装置。
In a sludge dehydrating and drying apparatus for forming a filter chamber composed of a compression membrane and a filter cloth between filter plates, and pressing and drying the sludge in the filter chamber,
A hot water generator for generating hot water for heating the sludge in the filter chamber;
An apparatus for dewatering and drying sludge, wherein a compressed film obtained by kneading carbon graphite with polyurethane resin is used as the compressed film.
前記圧搾膜として、ポリウレタン樹脂に5v/v%〜15v/v%のカーボングラファイトを混練した圧搾膜が用いられていることを特徴とする請求項1に記載の汚泥の脱水乾燥装置。   2. The sludge dewatering and drying apparatus according to claim 1, wherein a pressing film in which 5 v / v% to 15 v / v% carbon graphite is kneaded with polyurethane resin is used as the pressing film. 前記圧搾膜の熱伝導率は、0.35W・m−1・K−1以上で1.00W・m−1・K−1以下であることを特徴とする請求項1または2に記載の汚泥の脱水乾燥装置。 The sludge according to claim 1 or 2, wherein a thermal conductivity of the pressed membrane is 0.35 W · m -1 · K -1 or more and 1.00 W · m -1 · K -1 or less. Dehydration drying equipment. 前記ろ布と前記圧搾膜との間隙を減圧する真空発生装置を備えたことを特徴とする請求項1乃至3のいずれか一項に記載の汚泥の脱水乾燥装置。   The sludge dewatering and drying apparatus according to any one of claims 1 to 3, further comprising a vacuum generator that depressurizes a gap between the filter cloth and the compressed membrane. 前記真空発生装置の到達真空度は7kPa以下であることを特徴とする請求項4に記載の汚泥の脱水乾燥装置。


5. The sludge dewatering and drying apparatus according to claim 4, wherein the ultimate vacuum of the vacuum generator is 7 kPa or less.


JP2005090124A 2005-03-25 2005-03-25 Sludge dehydration drying equipment Expired - Fee Related JP4079956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005090124A JP4079956B2 (en) 2005-03-25 2005-03-25 Sludge dehydration drying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005090124A JP4079956B2 (en) 2005-03-25 2005-03-25 Sludge dehydration drying equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002235977A Division JP3672544B2 (en) 2002-08-13 2002-08-13 Sludge dehydration drying equipment

Publications (2)

Publication Number Publication Date
JP2005238236A JP2005238236A (en) 2005-09-08
JP4079956B2 true JP4079956B2 (en) 2008-04-23

Family

ID=35020522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005090124A Expired - Fee Related JP4079956B2 (en) 2005-03-25 2005-03-25 Sludge dehydration drying equipment

Country Status (1)

Country Link
JP (1) JP4079956B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954675A (en) * 2010-05-26 2011-01-26 山东舜亦新能源有限公司 Method for recovering mortar in wire cutting process
CN112696918B (en) * 2021-01-18 2023-06-09 威海银洁绣品集团有限公司 Drying prevents fold equipment with preheating in weaving
CN116282808B (en) * 2023-05-24 2023-10-20 江苏亿洲再生资源科技有限公司 Sludge uniform drying treatment equipment

Also Published As

Publication number Publication date
JP2005238236A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4079956B2 (en) Sludge dehydration drying equipment
JP4118280B2 (en) Sludge dehydration drying apparatus and method
JP3672544B2 (en) Sludge dehydration drying equipment
JP3815944B2 (en) Sludge dehydration drying method
US10343917B2 (en) Method and facility for drying by means of hydrothermal carbonization and filtering
JP4097030B2 (en) Dehydration drying apparatus and method
JP4127221B2 (en) Heated filter press
JP4179928B2 (en) Dehydration drying apparatus and method
CN112479549B (en) Filter-pressing drying equipment for heating sludge by penetrating hot gas
KR102517572B1 (en) Pressure variable type Filterpress Sludge Vacuum Heating Dehydrate Drying System
JP4751739B2 (en) Dehydration drying apparatus and dehydration drying method
CN105967485B (en) Sewage sludge aoxidizes electro-osmosis mechanism filter-pressing and cooperates with dewatering
JP2001232109A5 (en)
TWM562296U (en) Press-filtering drying equipment with hot water and steam heat energy recycling function
JP3773164B2 (en) Filter press device, filter plate for filter press device, and sludge dewatering method
JP3766220B2 (en) Filter press apparatus and sludge dewatering method
KR102245839B1 (en) Tube Type Thermal Filter Plate, Thermal Filter Press Dewatering Device with Tube type Thermal Filter Plate and Dewatering Method thereof
JP2005270828A (en) Method for dewatering slurry and filter press
JP4274929B2 (en) Method and apparatus for dehydrating and drying slurry
KR100368682B1 (en) Dehydration and drying system
JP4878079B2 (en) Water treatment sludge treatment method and treatment apparatus
CN112479536B (en) Filter-pressing drying equipment utilizing functions of heat pump and vapor compressor
CN220098840U (en) Sludge heating and squeezing assembly and filter pressing equipment
JP2002037685A (en) Method and apparatus for sludge treatment
JP4117706B2 (en) Dehydration dryer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees