JP4078857B2 - Legs of legged mobile robot and legged mobile robot - Google Patents

Legs of legged mobile robot and legged mobile robot Download PDF

Info

Publication number
JP4078857B2
JP4078857B2 JP2002073198A JP2002073198A JP4078857B2 JP 4078857 B2 JP4078857 B2 JP 4078857B2 JP 2002073198 A JP2002073198 A JP 2002073198A JP 2002073198 A JP2002073198 A JP 2002073198A JP 4078857 B2 JP4078857 B2 JP 4078857B2
Authority
JP
Japan
Prior art keywords
sole
sensor
instep
sole member
mobile robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002073198A
Other languages
Japanese (ja)
Other versions
JP2003266362A (en
Inventor
剛史 小池
健 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002073198A priority Critical patent/JP4078857B2/en
Publication of JP2003266362A publication Critical patent/JP2003266362A/en
Application granted granted Critical
Publication of JP4078857B2 publication Critical patent/JP4078857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Toys (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の可動脚を備えた脚式移動ロボットに関し、特に、該可動脚の先端部に設けられ、歩行動作に伴い床面に当接される足の構造に関する。
【0002】
【従来の技術】
近年、人や猿などの2足直立歩行を行う動物を模した脚式移動ロボットに関する研究開発が進展し、実用化への期待も高まってきている。2足直立による脚式移動ロボットは、クローラ式や4足又は6足式のロボットなどに比べて不安定であり、姿勢制御や歩行制御が複雑になるが、作業経路上に凹凸のある歩行面(不整地や障害物など)、あるいは階段やはしごなど不連続な歩行面に対応することができるなど、柔軟な移動作業を実現できるという点で優れている。
【0003】
人間の作業空間や居住空間のほとんどは、2足による直立歩行という人間が持つ身体メカニズムや行動様式に合わせて形成されている。言い換えれば、人間の住空間は、車輪その他の駆動装置を移動手段とした現状の機械システムが移動するにはあまりに多くの障壁が存在する。機械システム、すなわちロボットが様々な人的作業を支援又は代行し、さらに人間の住空間に深く浸透していくためには、ロボットの移動可能範囲が人間のそれとほぼ同じであることが好ましい。これが、脚式移動ロボットの実用化が大いに期待されている所以である。人間型の形態を有していることは、ロボットが人間の住環境との親和性を高める上で必須であると言える。
【0004】
2足歩行による脚式移動を行うタイプのロボットについての姿勢制御や安定歩行に関する技術は既に数多く提案されている。その中の多くは、ZMP(Zero Moment Point)を歩行の安定度判別の規範として用いている。ZMPによる安定度判別規範は、歩行系から路面には重力と慣性力並びにこれらのモーメントが作用し、これらと路面から歩行系への反作用としての床反力及び床反力モーメントとがバランスするというダランベールの原理に基づく。力学的推論の帰結として、足裏の接地点と路面の形成する支持多角形の辺上あるいはその内側にピッチ及びロール軸モーメントが零となる点が存在し、この点をZMPと言う。
【0005】
ZMP規範に基づく2足歩行制御には、足底着地点を予め決定でき、路面形状に応じた足先の運動学的拘束条件を考慮し易いなどの利点がある。また、ZMPを安定度判別規範とすることは、力ではなく軌道を運動制御上の目標値として扱うことを意味するので、技術的に実現性が高まる。なお、ZMPの概念並びにZMPを歩行ロボットの安定度判別規範に適用する点については、Miomir Vukobratovic著”LEGGED LOCOMOTION ROBOTS”(加藤一郎外著『歩行ロボットと人工の足』(日刊工業新聞社))に記載されている。
【0006】
ZMPを安定判別規範としてロボットの運動制御を行う場合、実際のZMPを測定することは非常に有効である。このため、ロボットの可動脚の先端部に設けられる足部には、力センサなどのZMP検出用の複数のセンサが配設されている。これらのセンサの検出値は、A/D変換されてロボット本体に設けられる主制御部に取り込まれ、主制御部によって、これらの検出値に基づいて実際のZMPが算出され、ロボットの歩行動作を含む各部の制御に供される。
【0007】
ZMP検出用センサの設置位置としては、例えば、足部が足甲部材と該足甲部材に遊動可能に取り付けられる足底部材からなる二重構造を採用した場合には、該足甲部材と該足底部材との間に予圧された状態で介装されるのが一般的である。
【0008】
【発明が解決しようとする課題】
しかしながら、従来の足部の構造によると、足甲部材と足底部材の間に予圧した状態でZMP検出用センサが設けられているため、各センサのキャリブレーション(ゼロ点調整)は、各センサへ作用する予圧を各センサの検出範囲内の適宜な値となるように与えた状態で実施する必要があり、その作業が容易ではないという問題があった。
【0009】
また、足底部材を交換する場合には、その都度、上記の作業を行う必要があり、交換に伴う作業が煩雑であり、その工数が多いという問題があった。
【0010】
本発明はこのような点に鑑みてなされたものであり、その目的とするところは、力センサのキャリブレーションのための予圧調整作業を不要とし、該センサの検出値の高精度化を図るとともに、足底部材の交換に伴う作業負担を軽減することである。
【0011】
【課題を解決するための手段】
上記目的を達成するための本発明の第1の観点に係る脚式移動ロボットの足は、可動脚を備えた脚式移動ロボットの足において、前記可動脚の先端部に取り付けられる足甲部材と、前記足甲部材に着脱自在に取り付けられる足底部材と、前記足甲部材及び前記足底部材の一方に設けられた4つの力センサと、前記足甲部材及び前記足底部材の他方に前記4つの力センサのそれぞれに対応して設けられたセンサ押圧部材と、前記足底部材が路面に接地していないときには、前記センサ押圧部材が前記力センサから離間し、該足底部材が接地したときには、該センサ押圧部材が該力センサに圧接するように該足甲部材と該足底部材とが互いに離反するように付勢する、該足甲部材と該足底部材の間に介装された4つの付勢部材と、前記足甲部材及び前記足底部材の一方に設けられると共に前記複数の力センサからの信号が伝送される電気回路基板とを備え、前記4つの力センサは、前記足甲部材或いは前記足底部材の4隅に配置し、前記4つの付勢部材は、周方向に隣り合う力センサの間の位置それぞれ配置したことを特徴とする。
【0012】
上記目的を達成するための本発明の第2の観点に係る脚式移動ロボットは、上述した本発明の第1の観点に係る足を備えて構成される。
【0013】
本発明によると、足底部材が路面に接地していない場合には、力センサからセンサ押圧部材を離間させた状態、即ち、予圧しない状態とし、足底部材が路面に接地した場合に力センサにセンサ押圧部材を圧接させるようにしたので、従来のように力センサを予圧していたことにより生じていた各力センサの予圧調整に伴う作業の必要がなくなる。
【0014】
また、各力センサのキャリブレーションは、力センサからセンサ押圧部材を離間させた状態、即ち、遊脚時に実施することができるので、比較的に短い間隔でキャリブレーションを実施することができ、センサの検出値の信頼性を向上することができる。さらに、各力センサのZ軸方向(足裏面に対して直交する方向)の相対位置関係さえ正確に設定しておけば、足底部材の交換時には、足底部材と当該力センサの相対位置関係を従来ほど厳密に調整する必要がなく、足底部材の交換を容易に実施することができるようになる。加えて、足底部材からの衝撃が直ちに力センサに伝達されることがないので、耐衝撃性も向上することができる。
【0015】
本発明において、特に限定されないが、前記足甲部材に前記力センサを、前記足底部材に前記センサ押圧部材を設けることが望ましい。当該センサを足底部材に設けた場合には、足底部材の交換時に信号線等の配線接続作業が必要となるが、当該センサを足甲部材側に設けることにより、そのような配線接続作業が不要となり、交換に伴う作業を容易化できるからである。また、足底部材を足甲部材に対して相対移動できるように構成した場合には、当該配線の破損や当該配線による足底部材の移動の障害となることも無くすことができるからである。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照して説明する。
【0017】
図1及び図2は、本発明の実施に供される「人間型」の脚式移動ロボット100が直立している様子を前方(図1)及び後方(図2)の各々から眺望した様子を示している。図示の通り、脚式移動ロボット100は、脚式移動を行う可動脚としての左右2足の下肢110と、体幹部120と、左右の上肢130と、頭部140とで構成される。
【0018】
左右各々の下肢110は、大腿部111と、膝関節112と、頸部113と、足首114と、足部150とで構成され、股関節115によって体幹部120の略最下端にて連結されている。また、左右各々の上肢130は、上腕131と、肘関節132と、前腕133とで構成され、肩関節134によって体幹部120の上方の左右各側縁にて連結されている。また、頭部140は、首関節141によって体幹部120の略最上端中央に連結されている。
【0019】
なお、以下では、説明の便宜上、足部150の説明において、足部150の裏面の路面(床面)に当接する部分を含んで構成される面をX−Y平面とし、該X−Y平面内において、ロボットの前後方向をX軸とし、ロボットの左右方向をY軸とし、これらに直交する方向をZ軸として説明する。
【0020】
各関節には、アクチュエータが配設されている。該アクチュエータの駆動によってロボットの動作は実現される。装置の外観上で余分な膨らみを排してヒトの自然形状に近似させることや、2足歩行という不安定構造体に対して姿勢制御を行うなどの種々の要請から、関節アクチュエータは小型且つ軽量であることが好ましい。このため、本実施の形態では、ギア直結型で且つサーボ制御系をワンチップ化してモータ・ユニットに内臓したタイプの小型ACサーボ・アクチュエータを搭載することとした。なお、脚式ロボットに適用可能な小型ACサーボ・アクチュエータに関しては、例えば本出願人に既に譲渡されている特願平11−3386号明細書に開示されている。
【0021】
体幹部120の内部には、図1及び図2上では見えていない主制御ユニットや電源回路その他の周辺機器類が搭載されている。
【0022】
図3は、脚式移動ロボット100の制御システムの構成の概略を示している。主制御ユニット(制御手段)300は、CPU(Central Processing Unit)301と、RAM(Random Access Memory)302と、動作パターンなどが格納されているROM(Read Only Memory)303と、脚式移動ロボット100に搭載される各種センサ306の出力としてのアナログ信号をデジタル信号に変換するA/D変換器305を備えて構成され、これらはバス304を介して相互に接続されている。
【0023】
CPU301は、ROM303に蓄えられている情報や各種センサ306の出力に基づいて、脚式移動ロボット100の動作を生成し、各関節に配置されたACサーボ・アクチュエータ307への指令値を決定する。
【0024】
また、これらのACサーボ・アクチュエータ307は、バス304を介して主制御ユニット300に接続され、CPU301で計算された各関節に対する指令値を受け取ることが可能となっている。ACサーボ・アクチュエータ307は、この指令値に従って作動され、脚式移動ロボット100の歩行動作を含む各種の動作が実現される。
【0025】
次に、足部150の構造について説明する。図4は本発明の実施の形態の足部の構造を示す断面図、図5は足甲部材の底面図である。足部150は、左右各々の下肢110の足首114にそれぞれ連結される足甲部材1010及び路面に直接接地される足底部材1020を備えて構成され、足底部材1020を足甲部材1010に遊動可能に取り付けた二重構造となっている。
【0026】
足甲部材1010はその下面が開口された略矩形箱状の部材であり、略矩形板状の天板部1011及びその周囲に沿って一体的に立設された側板部1012を有している。天板部1011の上面には足首114に連結するための連結部1013が一体的に設けられている。天板部1011には、足底部材1020を取り付けるためのネジ穴(本例では4つ)1014が形成されている。各側板部1012の外面の境界部分はR面(円弧面)又は滑らかな曲面となっている。
【0027】
足甲部材1010の足首114への取り付けは、足甲部材1010を該足首114にネジ、その他の固定手段を用いて固定し、あるいは図示は省略するが、連結機構を介して着脱自在となるように取り付けるようにしてもよい。足甲部材1010の天板部1011の下面の略中央には電気回路基板1100が複数の支持部材1110を介して取り付けられている。
【0028】
足甲部材1010の天板部1011の下面にはその四隅近傍にそれぞれ凸状のセンサ用台座部1015が一体的に形成されており、該センサ用台座部1015の先端部には、ZMPを算出するためのZ軸方向の圧力を検出する複数の力センサ(例えば、ロードセル)1016が配設されている。これらの力センサ1016は、それぞれ金属ダイヤフラムと4つの歪ゲージからなり、4つの歪ゲージでブリッジ回路を形成し、該歪ゲージを金属ダイヤフラムに貼着して構成される。但し、力センサ1016はこのような構成のものに限定されず、他の構成のものを採用してもよい。力センサ1016として、本実施の形態では、予圧無しでも、所望の精度で圧力を検出できるタイプのものを採用している。
【0029】
電気回路基板1100上には、力センサ1016への給電及び力センサ1016からの信号を伝送するためのケーブル(ここでは、フレキシブルケーブル)1130が接続されている。力センサ1016と電気回路基板1100とをフレキシブルケーブル1130で接続するのは、力センサ1016にケーブル・テンションによる不要力が作用することを防止するためである。また、電気回路基板1100上には、演算処理手段(CPU、ROM、RAM等)1120、X軸方向及びY軸方向の加速度を検出するための加速度センサ1140等も搭載されている。この加速度センサ1140の出力は、路面の重力方向に対する傾きの検出、路面の凹凸などによる躓きの検出に利用される。
【0030】
足底部材1020は、略矩形板状の部材からなる足底本体1021の下面に、同じく略矩形板状の部材からなる接地部材1022が貼着ないしネジ等を用いて一体的に取り付けられた二重構造となっている。
【0031】
足底本体1021の外形は、足甲部材1010の側板部1012の開口側の外形状と略同一の形状となっている。足底本体1021の上面には、足甲部材1010に取り付けるため、天板部1011に形成されたネジ穴1014のそれぞれに対応して上側に凸状の固定用突起部1024が形成されている。固定用突起部1024の下側は、その先端部にネジ山を有する段付きボルト1150を下側から挿入するため、円柱状に陥没された凹部1025となっている。各固定用突起部1024の先端部の中央には上下に貫通する貫通穴1026がそれぞれ形成されている。また、足甲部材1010の天板部1011のセンサ用台座部1015に設けられた力センサ1016にそれぞれ対応する位置には、該力センサ1016に接離自在に圧接ないし当接するセンサ押圧用台座部(センサ押圧部材)1027がそれぞれ一体的に形成されている。
【0032】
接地部材1022は、足底本体1021の外形と略同一の形状を有しており、足底本体1021の凹部1025に対応して貫通穴1028がそれぞれ形成されている。接地部材1022は、足部150の路面への接地時にその衝撃を緩和するため、例えば、弾性ゴムシートから形成される。接地部材1022の材料としては、路面状況対応性の観点から、ゴムシート以外に、金属やプラスチック、その他、各種のものを採用することができ、その下面(接地面)の形状も路面状況対応性の観点から、溝を形成したものや土踏まずを形成したものを採用することができる。この接地部材1022の材質や接地面の形状を適宜に変更・選択することにより、各種の路面状況にそれぞれ対応した各種の足底部材1020を構成することができる。
【0033】
足底部材1020の凹部1025及び貫通穴1026に、段付きボルト1150を下側から挿入し、該段付きボルト1150がその内側に貫通するように、コイルバネ1160を装着し、段付きボルト1150の先端のネジ山を天板部1011のネジ穴1014に限界(段差面)までねじ込むことにより、足底部材1020を足甲部材1010に装着することができる。なお、凹部1025の天井部分と段付きボルト1150の頭部との間に、円筒状の例えば弾性ゴム又はコイルバネ等からなる緩衝部材(不図示)を介装してもよい。
【0034】
このような構成の足部がロボットの脚の足首に取り付けられた状態で、歩行動作を開始すると、遊脚時、即ち、足部が路面から離間して、足底部材1020に路面からの力が作用していない状態では、コイルバネ1160の付勢力によって、足底部材1020は足甲部材1010に対して、段付きボルト1150によって規定されるストローク限界まで離間された状態となっており、天板部1011の下面に設けられたセンサ用台座部1015に取り付けられた力センサ1016と、足底本体1020に設けられたセンサ押圧用台座部1027の先端面とは、所定のギャップを保って対峙している。このギャップは、例えば、0.7mm程度に設定される。
【0035】
接地時、即ち、足部が路面に接地して、足底部材1020に路面からの力が作用している状態では、足底部材1020はコイルバネ1160の付勢力に抗して、足甲部材1010に接近し、天板部1011の下面に設けられたセンサ用台座部1015に取り付けられた力センサ1016に、足底本体1020に設けられたセンサ押圧用台座部1027の先端面が圧接し、各力センサ1016に路面からの圧力が伝達される。力センサ1016の出力はケーブル1130を介して電気回路基板1100上の演算処理手段1120に送られ、必要な処理が施された後に、ロボット本体の主制御ユニット300に伝送され、ZMPの算出処理が実行される。なお、ロボット本体の主制御ユニット300の処理負担を軽減するため、足部の演算処理手段1120によってZMPを算出した後に、ロボット本体の主制御ユニット300に伝送するようにしてもよい。
【0036】
本実施の形態によると、ZMP検出用の力センサ1016として予圧が不要なタイプのものを採用し、足底部材1020が路面に接地していない場合には、力センサ1016からセンサ押圧用台座部1027を離間させた状態、即ち、予圧しない状態とし、足底部材1020が路面に接地した場合に力センサ1016にセンサ押圧用台座部1027を圧接させるようにしたので、予圧の調整を実施する必要が全く無くなる。また、足底部材1020を足甲部材1010から離反させるように付勢するコイルバネ1160を足甲部材1010と足底部材1020の間に介装したので、足底部材1020の振動の発生が少なく、騒音の発生を低減することができる。さらに、各力センサ1016のキャリブレーションは、足底部材1020に外力が作用していない状態で行う得るので、歩行動作に伴う遊脚時にキャリブレーションを実施することができ、常に正確な検出値を得ることができるようになる。
【0037】
また、足底部材1020の交換は、段付きボルト1150を取り外すことにより容易に行うことができ、組立時には、段付きボルト1150を螺合の限界までねじ込むことにより、足底部材1020を足甲部材1010に対して所定の位置関係に容易に設定することができ、その交換作業が極めて容易である。
【0038】
また、遊脚時に力センサ1016から足底部材1010が離間しているので、足底部材1020に何らかの衝撃が加わった場合であっても、この衝撃が力センサ1016に伝達されることが少なくなり、力センサ1016の破損等も少なくすることができる。
【0039】
以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。従って、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
【0040】
【発明の効果】
本発明によれば、力センサのキャリブレーションのための予圧調整作業が不要になるとともに、該センサの検出値の高精度化を図ることができるという効果がある。また、足底部材の交換に伴う作業負担を軽減することもできるという効果がある。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る脚式移動ロボットの斜め前方から見た斜視図である。
【図2】 本発明の実施の形態に係る脚式移動ロボットの斜め後方から見た斜視図である。
【図3】 本発明の実施の形態に係る脚式移動ロボットの制御系の構成を示す図である。
【図4】 本発明の実施の形態の足部の構成を示す側断面図である。
【図5】 本発明の実施の形態の足部の足甲部材の底面図である。
【符号の説明】
150…足部(足)
300…主制御ユニット
1010…足甲部材
1016…力センサ
1020…足底部材
1027…センサ押圧用台座部
1100…電気回路基板
1150…段付きボルト、
1160…コイルバネ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a legged mobile robot having a plurality of movable legs, and more particularly to a foot structure that is provided at the tip of the movable legs and comes into contact with a floor surface during a walking motion.
[0002]
[Prior art]
In recent years, research and development on legged mobile robots imitating animals that walk biped upright, such as humans and monkeys, have progressed, and expectations for practical use are also increasing. A legged mobile robot with two legs standing upright is more unstable than a crawler or four-legged or six-legged robot, and posture control and walking control are complicated, but the walking surface has irregularities on the work path. It is excellent in that it can realize flexible moving work, such as being able to cope with discontinuous walking surfaces such as stairs and ladders (such as rough terrain and obstacles).
[0003]
Most of the human work space and living space are formed according to the human body's physical mechanism and behavioral style of standing upright with two legs. In other words, the human living space has too many barriers for the current mechanical system that uses wheels or other drive devices as moving means to move. In order for a mechanical system, that is, a robot to support or substitute for various human tasks and further penetrate deeply into a human living space, it is preferable that the movable range of the robot is substantially the same as that of a human. This is why the practical application of legged mobile robots is highly expected. It can be said that having a humanoid form is indispensable for a robot to enhance its affinity with a human living environment.
[0004]
Many techniques relating to posture control and stable walking have already been proposed for robots that perform legged movements by biped walking. Many of them use ZMP (Zero Moment Point) as a norm for determining the stability of walking. According to the ZMP stability criterion, gravity, inertial force, and these moments act on the road surface from the walking system, and this balances the floor reaction force and floor reaction force moment as a reaction from the road surface to the walking system. Based on D'Alembert principle. As a result of mechanical reasoning, there is a point where the pitch and roll axis moment become zero on or inside the side of the support polygon formed by the contact point of the sole and the road surface, and this point is called ZMP.
[0005]
Biped walking control based on the ZMP norm has advantages such that a foot landing point can be determined in advance, and it is easy to consider the kinematic constraint conditions of the foot according to the road surface shape. In addition, using ZMP as a stability determination criterion means that a trajectory, not a force, is treated as a target value in motion control, and thus technical feasibility increases. Regarding the concept of ZMP and the application of ZMP to the stability criteria for walking robots, Migir Vukobratovic's “LEGGED LOCATION ROBOTS” (Ichiro Kato's “Walking Robots and Artificial Feet” (Nikkan Kogyo Shimbun)) It is described in.
[0006]
When performing robot motion control using ZMP as a stability criterion, it is very effective to measure actual ZMP. For this reason, a plurality of sensors for detecting ZMP, such as force sensors, are disposed on the foot provided at the tip of the movable leg of the robot. The detection values of these sensors are A / D converted and taken into the main control unit provided in the robot body, and the main control unit calculates the actual ZMP based on these detection values, and performs the walking motion of the robot. It is used for the control of each part.
[0007]
As the installation position of the ZMP detection sensor, for example, when adopting a double structure in which a foot part is composed of a foot member and a sole member that is movably attached to the foot member, the foot member and the In general, it is interposed between the sole member and the sole member in a preloaded state.
[0008]
[Problems to be solved by the invention]
However, according to the conventional foot structure, since the ZMP detection sensor is provided in a pre-loaded state between the instep member and the sole member, each sensor is calibrated (zero point adjustment). There is a problem in that it is necessary to carry out the preload acting on the sensor so as to be an appropriate value within the detection range of each sensor, and the work is not easy.
[0009]
Further, when the sole member is replaced, it is necessary to perform the above operation every time, and there is a problem that the operation accompanying the replacement is complicated and the man-hour is large.
[0010]
The present invention has been made in view of such points, and the object of the present invention is to eliminate the need for preload adjustment work for calibration of the force sensor and to improve the accuracy of the detection value of the sensor. It is to reduce the work burden associated with the replacement of the sole member.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the leg of the legged mobile robot according to the first aspect of the present invention is a leg of a legged mobile robot provided with a movable leg, and an instep member attached to the tip of the movable leg. A sole member detachably attached to the instep member, four force sensors provided on one of the instep member and the sole member, and the other of the instep member and the sole member. When the sensor pressing member provided corresponding to each of the four force sensors and the sole member are not in contact with the road surface, the sensor pressing member is separated from the force sensor, and the sole member is grounded. The foot member and the sole member are biased so as to be separated from each other so that the sensor pressing member is pressed against the force sensor. four biasing member is, the instep member及And an electric circuit board to which a signal is transmitted from the plurality of force sensors with provided on one of said sole member, wherein the four force sensors, the four corners of the instep member or the sole member The four biasing members are arranged at positions between force sensors adjacent in the circumferential direction.
[0012]
In order to achieve the above object, a legged mobile robot according to the second aspect of the present invention includes the above-described leg according to the first aspect of the present invention.
[0013]
According to the present invention, when the sole member is not in contact with the road surface, the sensor pressing member is separated from the force sensor, that is, in a state in which no preload is applied, and when the sole member is in contact with the road surface, the force sensor Since the sensor pressing member is brought into pressure contact with the pressure sensor, there is no need for the work associated with the preload adjustment of each force sensor, which has been caused by preloading the force sensor as in the prior art.
[0014]
In addition, since the calibration of each force sensor can be performed in a state where the sensor pressing member is separated from the force sensor, that is, at the time of the swing leg, the calibration can be performed at a relatively short interval. The reliability of the detected value can be improved. Furthermore, as long as the relative positional relationship of each force sensor in the Z-axis direction (direction orthogonal to the sole surface) is set accurately, the relative positional relationship between the sole member and the force sensor can be changed when replacing the sole member. Therefore, the sole member can be easily replaced. In addition, since the impact from the sole member is not immediately transmitted to the force sensor, the impact resistance can be improved.
[0015]
In the present invention, although not particularly limited, it is desirable to provide the force sensor on the instep member and the sensor pressing member on the sole member. When the sensor is provided on the sole member, wiring connection work such as signal lines is required when replacing the sole member. However, by providing the sensor on the foot member side, such wiring connection work is required. This is because the work associated with the replacement can be facilitated. Further, when the sole member is configured to be able to move relative to the instep member, it is possible to eliminate damage to the wiring and obstruction of movement of the sole member due to the wiring.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 and FIG. 2 show a state in which the “humanoid” legged mobile robot 100 used for carrying out the present invention is viewed from the front (FIG. 1) and the rear (FIG. 2). Show. As shown in the figure, the legged mobile robot 100 is composed of left and right lower legs 110, trunk 120, left and right upper limbs 130, and a head 140 as movable legs that perform legged movement.
[0018]
Each of the left and right lower limbs 110 includes a thigh 111, a knee joint 112, a neck 113, an ankle 114, and a foot 150, and is connected by a hip joint 115 at a substantially lowermost end of the trunk 120. Yes. Each of the left and right upper limbs 130 includes an upper arm 131, an elbow joint 132, and a forearm 133, and is connected to the left and right side edges above the trunk 120 by shoulder joints 134. The head 140 is connected to the substantially uppermost center of the trunk 120 by a neck joint 141.
[0019]
In the following description, for convenience of description, in the description of the foot 150, a surface that includes a portion that contacts the road surface (floor surface) on the back surface of the foot 150 is referred to as an XY plane, and the XY plane. In the following description, it is assumed that the front-rear direction of the robot is the X axis, the left-right direction of the robot is the Y-axis, and the direction perpendicular to these is the Z-axis.
[0020]
Each joint is provided with an actuator. The operation of the robot is realized by driving the actuator. The joint actuator is small and lightweight due to various demands such as eliminating the extra bulge on the appearance of the device and approximating it to the natural shape of a human being, and performing posture control on an unstable structure called biped walking. It is preferable that For this reason, in the present embodiment, a small AC servo actuator of a type directly connected to the gear and having a servo control system in one chip and built in the motor unit is mounted. A small AC servo actuator applicable to a legged robot is disclosed in, for example, Japanese Patent Application No. 11-3386 already assigned to the present applicant.
[0021]
Inside the trunk 120, a main control unit, a power supply circuit, and other peripheral devices that are not visible in FIGS. 1 and 2 are mounted.
[0022]
FIG. 3 shows an outline of the configuration of the control system of the legged mobile robot 100. The main control unit (control means) 300 includes a CPU (Central Processing Unit) 301, a RAM (Random Access Memory) 302, a ROM (Read Only Memory) 303 in which operation patterns and the like are stored, and a legged mobile robot 100. Are provided with an A / D converter 305 for converting an analog signal as an output of various sensors 306 mounted on the digital signal into a digital signal, and these are connected to each other via a bus 304.
[0023]
The CPU 301 generates an operation of the legged mobile robot 100 based on information stored in the ROM 303 and outputs of various sensors 306, and determines a command value to the AC servo actuator 307 disposed at each joint.
[0024]
These AC servo actuators 307 are connected to the main control unit 300 via the bus 304 and can receive command values for the respective joints calculated by the CPU 301. The AC servo actuator 307 is operated according to this command value, and various operations including the walking motion of the legged mobile robot 100 are realized.
[0025]
Next, the structure of the foot 150 will be described. FIG. 4 is a cross-sectional view showing the structure of the foot portion according to the embodiment of the present invention, and FIG. 5 is a bottom view of the instep member. The foot 150 includes a toe member 1010 that is connected to the ankle 114 of each of the left and right lower limbs 110 and a sole member 1020 that is directly grounded to the road surface, and the sole member 1020 moves freely to the instep member 1010. It has a double structure that can be attached.
[0026]
The instep member 1010 is a substantially rectangular box-shaped member whose lower surface is opened, and has a substantially rectangular plate-shaped top plate portion 1011 and a side plate portion 1012 that is integrally provided along the periphery thereof. . A connecting portion 1013 for connecting to the ankle 114 is integrally provided on the top surface of the top plate portion 1011. Screw holes (four in this example) 1014 for attaching the sole member 1020 are formed in the top plate portion 1011. The boundary portion of the outer surface of each side plate portion 1012 is an R surface (arc surface) or a smooth curved surface.
[0027]
The instep member 1010 is attached to the ankle 114 by fixing the instep member 1010 to the ankle 114 using a screw or other fixing means, or although not shown, it can be attached and detached via a coupling mechanism. You may make it attach to. An electric circuit board 1100 is attached via a plurality of support members 1110 substantially at the center of the lower surface of the top plate portion 1011 of the instep member 1010.
[0028]
Convex sensor pedestals 1015 are integrally formed in the vicinity of the four corners on the lower surface of the top plate 1011 of the instep member 1010, and ZMP is calculated at the tip of the sensor pedestal 1015. A plurality of force sensors (for example, load cells) 1016 for detecting the pressure in the Z-axis direction are provided. Each of these force sensors 1016 includes a metal diaphragm and four strain gauges, and a bridge circuit is formed by the four strain gauges, and the strain gauges are attached to the metal diaphragm. However, the force sensor 1016 is not limited to such a configuration, and may have another configuration. In the present embodiment, the force sensor 1016 is of a type that can detect pressure with desired accuracy even without preload.
[0029]
A cable (here, a flexible cable) 1130 for supplying power to the force sensor 1016 and transmitting a signal from the force sensor 1016 is connected to the electric circuit board 1100. To connect the force sensor 1016 and the electric circuit board 1100 in the flexible cable 1130, unnecessary force to the force sensor 1016 by the cable tension in order to prevent the action. On the electric circuit board 1100, arithmetic processing means (CPU, ROM, RAM, etc.) 1120, an acceleration sensor 1140 for detecting acceleration in the X-axis direction and the Y-axis direction, and the like are also mounted. The output of the acceleration sensor 1140 is used to detect the inclination of the road surface with respect to the gravitational direction and to detect the rolling due to the road surface unevenness.
[0030]
The sole member 1020 is formed by attaching a grounding member 1022, which is also a substantially rectangular plate member, to the lower surface of the sole body 1021, which is a substantially rectangular plate member, and is integrally attached using screws or the like. It has a heavy structure.
[0031]
The outer shape of the sole main body 1021 is substantially the same shape as the outer shape of the side plate portion 1012 of the instep member 1010 on the opening side. On the upper surface of the sole body 1021, there are formed fixing protrusions 1024 that are convex upward corresponding to the screw holes 1014 formed in the top plate part 1011 for attachment to the instep member 1010. The lower side of the fixing projection 1024 is a recessed portion 1025 that is recessed in a columnar shape in order to insert a stepped bolt 1150 having a thread at its tip from the lower side. A through hole 1026 penetrating vertically is formed at the center of the tip of each fixing projection 1024. Further, a sensor pressing pedestal portion that presses or abuts against the force sensor 1016 at a position corresponding to each of the force sensors 1016 provided on the sensor pedestal portion 1015 of the top plate portion 1011 of the instep member 1010. (Sensor pressing members) 1027 are integrally formed.
[0032]
The grounding member 1022 has substantially the same shape as the outer shape of the sole body 1021, and through holes 1028 are formed corresponding to the recesses 1025 of the sole body 1021. The grounding member 1022 is formed of, for example, an elastic rubber sheet in order to reduce the impact when the foot 150 is grounded on the road surface. As a material of the ground contact member 1022, in addition to the rubber sheet, various materials such as metal, plastic, and the like can be adopted from the viewpoint of the road surface condition compatibility. From this point of view, it is possible to adopt a groove formed or a arch formed. By appropriately changing and selecting the material of the grounding member 1022 and the shape of the grounding surface, various types of sole members 1020 corresponding to various road surface conditions can be configured.
[0033]
A stepped bolt 1150 is inserted into the recess 1025 and the through hole 1026 of the sole member 1020 from below, and a coil spring 1160 is attached so that the stepped bolt 1150 penetrates the inside of the stepped bolt 1150. The sole member 1020 can be attached to the instep member 1010 by screwing the screw thread into the screw hole 1014 of the top plate portion 1011 to the limit (step surface). A cylindrical cushioning member (not shown) made of, for example, elastic rubber or a coil spring may be interposed between the ceiling portion of the recess 1025 and the head of the stepped bolt 1150.
[0034]
When the walking operation is started in a state where the foot portion having such a configuration is attached to the ankle of the leg of the robot, the foot portion is separated from the road surface at the time of the free leg, that is, the force from the road surface is applied to the sole member 1020. In the state in which no action is applied, the sole member 1020 is separated from the instep member 1010 to the stroke limit defined by the stepped bolt 1150 by the urging force of the coil spring 1160, and the top plate The force sensor 1016 attached to the sensor pedestal portion 1015 provided on the lower surface of the portion 1011 and the tip surface of the sensor pressing pedestal portion 1027 provided on the sole body 1020 face each other with a predetermined gap therebetween. ing. This gap is set to about 0.7 mm, for example.
[0035]
At the time of grounding, that is, in a state where the foot is grounded on the road surface and the force from the road surface is acting on the sole member 1020, the sole member 1020 resists the urging force of the coil spring 1160 and the instep member 1010. The tip surface of the sensor pressing pedestal portion 1027 provided on the sole body 1020 is pressed against the force sensor 1016 attached to the sensor pedestal portion 1015 provided on the lower surface of the top plate portion 1011, Pressure from the road surface is transmitted to the force sensor 1016. The output of the force sensor 1016 is sent to the arithmetic processing means 1120 on the electric circuit board 1100 via the cable 1130, and after necessary processing is transmitted to the main control unit 300 of the robot body, ZMP calculation processing is performed. Executed. In order to reduce the processing load on the main control unit 300 of the robot body, ZMP may be calculated by the foot calculation processing means 1120 and then transmitted to the main control unit 300 of the robot body.
[0036]
According to the present embodiment, a force sensor 1016 for detecting ZMP is a type that does not require preload, and when the sole member 1020 is not in contact with the road surface, the sensor pressing base portion from the force sensor 1016. 1027 is in a separated state, that is, in a state in which no preload is applied, and when the sole member 1020 comes in contact with the road surface, the sensor pressing base 1027 is pressed against the force sensor 1016, so it is necessary to adjust the preload. Is completely gone. In addition, since the coil spring 1160 that biases the sole member 1020 away from the instep member 1010 is interposed between the instep member 1010 and the sole member 1020, the occurrence of vibration of the sole member 1020 is small. Generation of noise can be reduced. Further, since the calibration of each force sensor 1016 can be performed in a state where no external force is applied to the sole member 1020, the calibration can be performed at the time of a swinging leg accompanying a walking motion, and an accurate detection value is always obtained. Be able to get.
[0037]
Further, the sole member 1020 can be easily replaced by removing the stepped bolt 1150, and at the time of assembly, the stepped bolt 1150 is screwed to the limit of screwing, so that the sole member 1020 is replaced with the instep member. A predetermined positional relationship with respect to 1010 can be easily set, and the replacement work is extremely easy.
[0038]
In addition, since the sole member 1010 is separated from the force sensor 1016 during the swinging leg, even if some kind of impact is applied to the sole member 1020, the impact is less likely to be transmitted to the force sensor 1016. Further, the damage of the force sensor 1016 can be reduced.
[0039]
The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment includes all design changes and equivalents belonging to the technical scope of the present invention.
[0040]
【The invention's effect】
According to the present invention, there is an effect that the preload adjustment work for calibration of the force sensor becomes unnecessary, and the detection value of the sensor can be made highly accurate. In addition, there is an effect that it is possible to reduce the work burden associated with the replacement of the sole member.
[Brief description of the drawings]
FIG. 1 is a perspective view of a legged mobile robot according to an embodiment of the present invention as viewed obliquely from the front.
FIG. 2 is a perspective view of the legged mobile robot according to the embodiment of the present invention as viewed obliquely from the rear.
FIG. 3 is a diagram showing a configuration of a control system of the legged mobile robot according to the embodiment of the present invention.
FIG. 4 is a side sectional view showing a configuration of a foot portion according to the embodiment of the present invention.
FIG. 5 is a bottom view of the instep member of the foot portion according to the embodiment of the present invention.
[Explanation of symbols]
150 ... Foot (foot)
300 ... Main control unit 1010 ... Instep member 1016 ... Force sensor 1020 ... Sole member 1027 ... Sensor pressing base 1100 ... Electric circuit board 1150 ... Stepped bolt,
1160 Coil spring

Claims (3)

可動脚を備えた脚式移動ロボットの足において、
前記可動脚の先端部に取り付けられる足甲部材と、
前記足甲部材に着脱自在に取り付けられる足底部材と、
前記足甲部材及び前記足底部材の一方に設けられた4つの力センサと、
前記足甲部材及び前記足底部材の他方に前記4つの力センサのそれぞれに対応して設けられたセンサ押圧部材と、
前記足底部材が路面に接地していないときには、前記センサ押圧部材が前記力センサから離間し、該足底部材が接地したときには、該センサ押圧部材が該力センサに圧接するように該足甲部材と該足底部材とが互いに離反するように付勢する、該足甲部材と該足底部材の間に介装された4つの付勢部材と、
前記足甲部材及び前記足底部材の一方に設けられると共に前記複数の力センサからの信号が伝送される電気回路基板とを備え、
前記4つの力センサは、前記足甲部材或いは前記足底部材の4隅に配置し、前記4つの付勢部材は、周方向に隣り合う力センサの間の位置それぞれ配置したことを特徴とする脚式移動ロボットの足。
In the legs of a legged mobile robot with movable legs,
An instep member attached to the tip of the movable leg;
A sole member detachably attached to the instep member;
Four force sensors provided on one of the instep member and the sole member;
A sensor pressing member provided corresponding to each of the four force sensors on the other of the instep member and the sole member;
When the sole member is not in contact with the road surface, the sensor pressing member is separated from the force sensor, and when the sole member is grounded, the sensor pressing member is in pressure contact with the force sensor. Four urging members interposed between the instep member and the sole member for urging the member and the sole member to be separated from each other;
An electric circuit board that is provided on one of the instep member and the sole member and that transmits signals from the plurality of force sensors;
Said four force sensors, the arranged four corners of the instep member or the sole member, wherein the four biasing member, characterized in that arranged at a position between the force sensor circumferentially adjacent Legs of legged mobile robot.
前記足甲部材に前記力センサを、前記足底部材に前記センサ押圧部材を設けたことを特徴とする請求項1に記載の脚式移動ロボットの足。  The leg of the legged mobile robot according to claim 1, wherein the force sensor is provided on the instep member and the sensor pressing member is provided on the sole member. 請求項1又は2に記載の足を備えたことを特徴とする脚式移動ロボット。  A legged mobile robot comprising the foot according to claim 1.
JP2002073198A 2002-03-15 2002-03-15 Legs of legged mobile robot and legged mobile robot Expired - Fee Related JP4078857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002073198A JP4078857B2 (en) 2002-03-15 2002-03-15 Legs of legged mobile robot and legged mobile robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002073198A JP4078857B2 (en) 2002-03-15 2002-03-15 Legs of legged mobile robot and legged mobile robot

Publications (2)

Publication Number Publication Date
JP2003266362A JP2003266362A (en) 2003-09-24
JP4078857B2 true JP4078857B2 (en) 2008-04-23

Family

ID=29202992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002073198A Expired - Fee Related JP4078857B2 (en) 2002-03-15 2002-03-15 Legs of legged mobile robot and legged mobile robot

Country Status (1)

Country Link
JP (1) JP4078857B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105564528A (en) * 2016-01-14 2016-05-11 大连理工大学 High-adaptability foot mechanism of robot
CN109129560A (en) * 2018-08-30 2019-01-04 浙江大学 A kind of flexible waist structure and its design method suitable for biped robot

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2439494B (en) * 2004-01-14 2008-08-13 Konami Digital Entertainment Transformable toy and toy foot structure
GB2427833B (en) * 2004-01-14 2008-07-02 Konami Digital Entertainment Transformable toy and leg structure for toys
KR100571829B1 (en) * 2004-02-06 2006-04-17 삼성전자주식회사 Structure, foot structure and robot employing the same
JP4506512B2 (en) * 2005-03-07 2010-07-21 トヨタ自動車株式会社 Offset adjustment system and offset adjustment method for walking robot with supporting legs
JP4824492B2 (en) * 2006-07-07 2011-11-30 富士通株式会社 Mobile robot
CN102180206B (en) * 2011-04-24 2012-07-04 杭州电子科技大学 Robot foot mechanism with flexible joint
CN102556201B (en) * 2012-01-19 2013-08-07 浙江大学 Flat-sole foot structure of multi-foot walk robot
CN103738428A (en) * 2013-12-27 2014-04-23 天津科技大学 Human-like biped robot foot structure
WO2018198480A1 (en) * 2017-04-28 2018-11-01 ソニー株式会社 Control device and control method
CN108216420B (en) * 2018-01-23 2024-03-19 杭州云深处科技有限公司 Adjustable plantar mechanism carrying with film pressure sensor
JP7126182B2 (en) * 2019-10-25 2022-08-26 株式会社ソニー・インタラクティブエンタテインメント FOOT STRUCTURE OF LEGED MOBILE ROBOT, AND LEGED MOBILE ROBOT
JP7126181B2 (en) * 2019-10-25 2022-08-26 株式会社ソニー・インタラクティブエンタテインメント FOOT STRUCTURE OF LEGED MOBILE ROBOT, AND LEGED MOBILE ROBOT
KR102503700B1 (en) * 2021-02-18 2023-02-28 한국원자력연구원 Force measurement system for attitude control of walking robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105564528A (en) * 2016-01-14 2016-05-11 大连理工大学 High-adaptability foot mechanism of robot
CN109129560A (en) * 2018-08-30 2019-01-04 浙江大学 A kind of flexible waist structure and its design method suitable for biped robot

Also Published As

Publication number Publication date
JP2003266362A (en) 2003-09-24

Similar Documents

Publication Publication Date Title
JP4078857B2 (en) Legs of legged mobile robot and legged mobile robot
JP4404639B2 (en) Leg device for legged mobile robot and control method for legged mobile robot
JP4312558B2 (en) Method for calculating torque applied to joint part of leg and arithmetic processing unit
US5402050A (en) Locomotion control system for mobile robot
US7343223B2 (en) Robot apparatus and load sensor
KR100687461B1 (en) Robot And Knuckle Apparatus For Robot
US8583283B2 (en) Legged mobile robot and control system thereof
EP1637050B1 (en) Legged mobile robot with means for removing the static electric charge accumulated in the robot's feet
US7904200B2 (en) Leg type mobile robot
JP2004114288A (en) Method for determining torque to be imparted to joint part of leg body and arithmetic processing unit
JPWO2005051611A1 (en) Control device for moving body
JP3621808B2 (en) Foot contact state grasping device for legged mobile robot
Kuehn et al. Additional DOFs and sensors for bio-inspired locomotion: Towards active spine, ankle joints, and feet for a quadruped robot
JP4295947B2 (en) Legged mobile robot and its movement control method
CN114013532A (en) Integrated ankle foot system for improving walking stability of biped robot
Rogelio Guadarrama Olvera et al. Plantar tactile feedback for biped balance and locomotion on unknown terrain
JP4234624B2 (en) Robot device
Yamaguchi et al. Development of a leg part of a humanoid robot—development of a biped walking robot adapting to the humans' normal living floor
US7017395B2 (en) Method of estimating floor reaction of bipedal movable body
JP2009107033A (en) Legged mobile robot and its control method
US11813742B2 (en) Foot structure of legged mobile robot and legged mobile robot
JPWO2009128125A1 (en) Foot mechanism of multi-legged walking device
JP4359423B2 (en) Legged mobile robot and leg mechanism of legged mobile robot
Wu et al. Development of an integrated perceptual foot system for humanoid robots
KR101357208B1 (en) Walking robot

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees