JP4078156B2 - Single crystal pulling apparatus and single crystal pulling method - Google Patents

Single crystal pulling apparatus and single crystal pulling method Download PDF

Info

Publication number
JP4078156B2
JP4078156B2 JP2002260847A JP2002260847A JP4078156B2 JP 4078156 B2 JP4078156 B2 JP 4078156B2 JP 2002260847 A JP2002260847 A JP 2002260847A JP 2002260847 A JP2002260847 A JP 2002260847A JP 4078156 B2 JP4078156 B2 JP 4078156B2
Authority
JP
Japan
Prior art keywords
single crystal
diameter
pulling
meniscus
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002260847A
Other languages
Japanese (ja)
Other versions
JP2004099346A (en
Inventor
康幸 岩田
高義 藤田
孝昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK, Covalent Materials Corp filed Critical Hamamatsu Photonics KK
Priority to JP2002260847A priority Critical patent/JP4078156B2/en
Publication of JP2004099346A publication Critical patent/JP2004099346A/en
Application granted granted Critical
Publication of JP4078156B2 publication Critical patent/JP4078156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、単結晶引上げ装置及び単結晶引上げ方法に係わり、特に固液界面に形成されるメニスカスの円弧形状を基にして演算した楕円の長径をテール部直径として単結晶の直径の制御を行なう単結晶引上げ装置及び単結晶引上げ方法に関する。
【0002】
【従来の技術】
一般にシリコンウェーハを製造するには、多結晶シリコンからチョクラルスキー法(以下、CZ法という。)によりシリコン単結晶のインゴットを作り、このインゴットをスライシングマシンで所定の厚さに切断し、シリコンウェーハを製造する。
【0003】
このようなシリコン単結晶の引上げには図8に示すような単結晶引上げ装置が用いられる。
【0004】
このような従来の単結晶装置21を用いた単結晶の育成工程において、育成される単結晶Ig中に転位が発生しないように2度の絞り込み工程が行われる。第1の絞り込み工程は、ネック部育成工程であり、このネック部Nは、結晶育成の初期に種結晶22が、ヒータ23により加熱、溶融された石英ルツボ24中のシリコン融液Mに接触することによる温度ショックにより、単結晶Ig中に転位が発生するため、比較的高速で引上げてネック部Nを育成し、転位を完全に除去するものである。第2の絞り込み工程は、テール部育成工程であり、テール部Tは最大直径の直胴部B育成後の結晶育成終期に縮径を行ない、単結晶Igを融液Mから切り離すときに転位が単結晶Ig内に生じるのを防止するためのものである。
【0005】
しかしながら、従来の単結晶引上げ装置では、装置上部に設けられた2次元カメラによって、固液界面に形成されるメニスカスの直径を撮像し、これを基にして単結晶直径の制御を行なっているため、上記のような単結晶を縮径するテール部の育成工程時には、図7に示すように、図7(a)に示すテール部Tの育成工程初期から、図7(b)に示す中期、図7(c)に示す終期へと徐々にメニスカスmが光らなくなり、直接完全な結晶径(結晶幅)を撮像することが困難になり、また、撮像が直径の大きな直胴部Bが撮像の障害になり、正確にメニスカスmの直径を撮像することができないため、メニスカスmを撮像し、これを基にしてテール部Tの直径の制御を行なうことが困難であった。
【0006】
従来、チョクラルスキー法において、メニスカスを撮像し、これを基にしてテール部の直径の制御を行なう方法が種々提案されている。
【0007】
特許文献1には、単結晶引上げ装置は2次元カメラを用いて結晶近傍の光輝リングの部分画像パターンを作成する画像平面とを有し、この画像平面は、シリコン結晶に対する2次元カメラの位置によって生じる画像パターンのひずみを補正するために、概ねシリコン融液表面と平行とし、また、画像パターンの特徴を検出するための検出回路と、光輝領域のエッジを検出特徴の関数として定義すると共に光輝領域の定義されたエッジを含む形を定義する定義回路とを有して、この測定回路は定義された形状の寸法を求め、これによりシリコン結晶の寸法が定義形状の決定寸法の関数として求めるものである。この公報記載の単結晶引上げ装置は、自動的に結晶径を測定できるが、画像平面に画像円が得られるようにするため、2次元カメラを含む撮像系が複雑になり、さらに、テール部の育成工程時には、上記のように、メニスカスを完全な弧状として撮像することが困難であり、また、正確にメニスカスの直径を撮像することができないため、メニスカスを撮像し、これを基にしてテール部の直径の制御を行なうことは困難である。
【0008】
また、特許文献2には、単結晶引上げ装置は複数台の2次元カメラを用いて、育成工程毎に特定の画像角を有する2次元カメラを切替え、結晶近傍の光輝リングの部分画像パターンを作成する画像平面とを有し、完全に撮像される楕円の円弧形状から結晶径を求めるものである。この公報記載の単結晶引上げ装置は、完全な楕円の円弧形状を用いるので、複数台の2次元カメラを必要とするため、装置の構造が複雑になり、高価になる。
【0009】
【特許文献1】
特開平9−175896号公報(第6頁段落番号29、第4図)
【0010】
【特許文献2】
特開平11−153418号公報(第7〜8頁段落番号0049〜0062、第10図)
【0011】
【発明が解決しようとする課題】
そこで、一般的な撮像手段を用いて、メニスカスを撮像し、これを基にしてテール部の直径の自動制御が容易かつ正確に行なえ、かつ、装置の構造が簡単で安価な単結晶引上げ装置が要望されていた。
【0012】
本発明は上述した事情を考慮してなされたもので、一般的な撮像手段を用いて、メニスカスを撮像し、これを基にしてテール部の直径の自動制御が容易かつ正確に行なえ、かつ、装置の構造が簡単で安価な単結晶引上げ装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明の1つの態様によれば、チャンバ内に設けられたルツボと、このルツボに装填されたポリシリコンを加熱して溶融するヒータと、育成された単結晶を引上げる結晶引上げ手段と、固液界面に形成されるメニスカスを撮像する撮像手段と、この撮像手段からのメニスカス画像信号を2値化し、画像処理手段を介して入力され前記結晶引上げ手段を制御して単結晶径を制御する制御手段とを有し、種結晶をポリシリコンが溶融された融液に浸漬して単結晶を引上げる単結晶引上げ装置において、単結晶を縮径するテール部の育成工程時、前記撮像手段により前記メニスカスの円弧形状を撮像し、この撮像した円弧形状を基にして前記画像処理手段により平均移動法を用いて楕円を演算し、この楕円の長径をテール部直径として前記制御手段により前記結晶引上げ手段を制御しテール部の育成を行なうことを特徴とする単結晶引上げ装置が提供される。これにより、一般的な撮像手段を用いて、メニスカスを撮像し、これを基にしてテール部の直径の自動制御を容易かつ正確に行なえ、かつ、装置の構造が簡単で安価な単結晶引上げ装置が実現される。
【0014】
好適な一例では、上記単結晶を一定の直径で育成する直胴部の育成工程時は、撮像手段によりメニスカスの直径を撮像しこれを直胴部直径として直胴部の育成を行なう。これにより、直胴部育成工程は、完全なメニスカスを撮像して結晶直径画像情報に基づき直径が算出され、テール部の育成工程においては、部分的に撮像可能なメニスカスの円弧形状を基にして楕円を演算し、この楕円の長径をテール部直径とするので、効率よく確実に結晶径の自動制御を行なえる。
【0015】
本発明の他の態様によれば、固液界面に形成されるメニスカスを撮像し、メニスカス画像信号を2値化し、画像処理して径情報として入力されて単結晶径を制御するチョクラルスキー法を用いた単結晶引上げ方法において、単結晶を縮径するテール部の育成工程時、メニスカスの円弧形状を撮像し、この撮像した円弧形状を基にして平均移動法を用いて楕円を演算し、この楕円の長径をテール部直径として結晶径の制御を行ないながらテール部の育成を行なうことを特徴とする単結晶引上げ方法が提供される。これにより、テール部の直径の自動制御を容易かつ正確に行なえる。
【0016】
好適な一例では、上記単結晶を一定の直径で育成する直胴部の育成工程時は、メニスカスの直径を撮像しこれを直胴部直径として直胴部の育成を行なう。
【0017】
【発明の実施の形態】
以下、本発明に係わる単結晶引上げ装置の実施形態について添付図面を参照して説明する。
【0018】
図1は本発明に係わる単結晶引上げ装置の実施形態の概念図である。
【0019】
図1に示すように、単結晶引上げ装置1は、水冷された炉体2と、この炉体2に収納され原料であるポリシリコンを溶融し溶融シリコンMにする石英ルツボ3と、この石英ルツボ3を保持する黒鉛ルツボ4と、この黒鉛ルツボ4を囲繞するヒータ5とを有している。この黒鉛ルツボ4は炉体2を貫通し、モータ6に結合されて回転され、かつ昇降装置7によって昇降されるルツボ回転軸8に取り付けられている。また、石英ルツボ3の上方には、単結晶引上げのための種結晶9を保持するシードチャック10が取り付けられた引上げ用のワイヤー11が設けられている。このワイヤー11は炉体2外に設けられモータMtにより付勢されワイヤー11を巻き取ると共に回転させる結晶引上げ手段としてのワイヤー回転装置12が取り付けられている。
【0020】
また、炉体2のショルダー2aの外壁には、透孔を耐熱ガラスにより塞ぎ透光可能なカメラポート13が設けられ、このカメラポート13を貫通する光軸Lを有する撮像手段としての通常の2次元カメラ14は、その焦点が単結晶成長領域Aに合わされて設置されて、単結晶Igの育成領域に形成されるメニスカスを撮像するようになっている。
【0021】
この2次元カメラ14はAD変換回路15に接続され、2次元カメラ14からの結晶直径信号がAD変換回路15に送信されるようになっている。このAD変換回路15により結晶直径信号は2値化され、画像処理手段としての画像処理装置16に送信され、画像処理装置16により画像処理されて結晶直径データとして出力され制御装置17に送られるようになっている。
【0022】
図2に示すように、画像処理装置16は、2次元カメラ14からの結晶直径データを処理するカメラ情報演算処理部16aと、メモリ16bとを有し、制御装置17は、一般的なコンピュータが用いられて制御手段をなし、後述する各制御器を制御する制御部17aと、テーブルメモリ17bが設けられたメモリ17cとを有し、テーブルメモリ17bには、結晶の形状情報(テール長に対する結晶径の減少量)、その形状にするのに必要な引上げ速度、ヒータ入力、ルツボ回転数、ルツボ上昇速度等の最適な引上げ条件を予め設定し記憶させてある。この最適な引上げ条件の各種のデータ等は、理論上からあるいは過去の経験や実験等によって、種々の結晶形状に対応してそれぞれ求められた最適な値で構成されたものである。
【0023】
これらを実際に制御するために制御系として、制御装置17には、シリコン融液の温度を制御するヒータ5の供給電力量を制御するヒータ制御器5c、石英ルツボ3の回転数を制御するモータ制御器6c、石英ルツボ3の高さを制御する昇降装置制御器7c、成長結晶の引上げ速度と回転数を制御するワイヤーリール回転装置制御装置12cなどが接続されて制御され、これら各制御器5c、6c、7c、12cなどを制御して、引上げ条件を変更し、成長結晶の直径を制御する。
【0024】
なお、単結晶育成工程中、制御装置17によるこれらの各制御器5c、6c、7c、12c、アルゴン供給制御装置制御器(図示せず)の制御は、事前に制御装置17にプログラムされた制御手順に従って行われ、また、必要に応じ制御装置17に設けられた入力手段(図示せず)からの入力により行われる。また、2次元カメラからの結晶直径データを処理するカメラ情報演算処理部は、画像処理装置に設けられても、制御装置と一体的に形成されてもよい。また、引上げ速度を制御する方法としては、PIDやファジー制御が有効である。
【0025】
次に本発明に係わるシリコン単結晶の引上げ方法について説明する。
【0026】
図1に示すように、ポリシリコンを石英ルツボ3に入れ、プログラム化された育成工程により育成が自動的に行われる。このとき、図3(a)に示すように、ネック部育成工程においては、2次元カメラ14は、ネック成長領域An、例えば、石英ルツボ3の中心から3mm外側に偏位した位置に焦点を合わせ、かつ育成の開始時点から撮像可能な電源ONの状態にしておく。
【0027】
引上げ準備完了後、図1に示すように、例えばアルゴンガスを炉体2の上方より炉体2内に流入させ、ヒータ5に通電して石英ルツボ3を加熱し、ルツボ回転モータ6に通電してこのルツボ回転モータ6に結合されたルツボ回転軸8を回転させて石英ルツボ3を回転させる。
【0028】
一定時間が経過した後、ワイヤー11を下ろし、シード9をシリコン融液Mの液面に接触させなじませる。
【0029】
しかる後、育成を開始し、図3(a)のように2次元カメラ14でネック成長領域Anのネック部Nのメニスカスの幅(径)を撮像し、図1及び図2に示すように、2次元カメラ14の結晶直径画像情報はAD変換回路15に送信されて2値化され、画像処理装置16により画像処理され、結晶直径画像データからカメラ情報演算部16aにより、直径の正味値が演算され、結晶直径データとして制御装置17に送られ、この制御部17aにより直径が算出され、テーブルメモリ17bに記憶された直径との比較が行われ、制御装置17により、ヒータ制御器5c、モータ制御器6c、昇降装置制御器7c、及びワイヤー巻取装置制御器12cを制御し、ネックNが一定の長さ、例えば、300mmまで育成が継続される。
【0030】
ネックNが300mmになった時点でメモリ17cに組み込まれた工程用のプログラムにより制御装置17を介してヒータ制御器5c、モータ制御器6c、昇降装置制御器7c、及びワイヤー巻取装置制御器12cを制御し、単結晶の育成は、図3(b)に示すクラウンCの育成工程に入る。引続き、2次元カメラ14でクラウン成長領域Aをモニタし、上記同様に、2次元カメラ14の結晶直径画像情報に基づき直径が算出され、テーブルメモリ17bに記憶された直径との比較が行われ、制御部17eにより、各制御器5c、6c、7c、12cを制御し、クラウン部Cが育成される。
【0031】
さらに、図3(c)に示すように、直胴部Bの育成を行なう。
【0032】
この直胴部育成工程も、上記ネック部育成工程及びクラウン部育成工程と同様に、2次元カメラ14により図4に示すようなメニスカスを撮像し、結晶直径画像情報に基づき直径が算出され、テーブルメモリ17bに記憶された直径との比較が行われ、制御部17eにより、各制御器5c、6c、7c、12cを制御し、直胴部Bが育成される。
【0033】
この単結晶Igの主要部であり最大直径の直胴部Bの育成が完了すると、図3(d)に示すように、テール部Tの育成が開始される。
【0034】
このテール部育成工程においては、図7(a)に示すテール部Tの育成工程初期から、図7(b)に示す中期、図7(c)に示す終期へと徐々にメニスカスが光らなくなり、直接完全な結晶径(メニスカス幅)を撮像することが困難となる。
【0035】
そこで、図7(a)〜図7(c)の各工程において、直接完全なメニスカス幅を撮像することができないため、メニスカスの部分的な円弧形状を撮像し、この撮像した円弧形状を基にして楕円を演算し、この楕円の長径をテール部直径として育成を行なう。
【0036】
例えば、図5に示すように、2次元カメラ14により、メニスカスの部分的な円弧形状を撮像し、AD変換回路15により2値化し、画像処理装置16により、図6に示す円弧形状を基にして、この円弧形状線上の30点(n1、n2…n30)の画像から測定画像を作成し、この測定画像に対して長径の測定を行い、楕円を演算し、この楕円の長径を演算する。
【0037】
ここで、単なる楕円算出法を用いると、引上げ工程中、単結晶に振れが発生すると大きな算出誤差が生じるおそれがあり、本発明ではこのような誤差を最小限にするために、平均移動法を用いて算出を行なう。この平均移動法は、例えば、はじめに、30点の画像を取り込み(n、n…n30)、これから算出される径値の平均を初期データとし、所定時間経過後に1点での算出値をとり(n31)、n…n31の平均値を次データとし、順次n…n32、n…n33の平均値をとっていく方法である。
【0038】
制御装置17は、演算された楕円の長径を結晶径(D)とみなし、予め設定されテーブルメモリ17bに記憶された目標径(D)と比較する。
【0039】
結晶径(D)が目標径(D)に対して許容範囲内であれば、育成を継続し。結晶径(D)が目標径(D)よりも小さい場合(D<D)には、制御装置17により、モータ制御器6c、昇降装置制御器7c、及びワイヤー巻取装置制御器12cを制御して、引上げ速度を減じて、結晶径(D)が大きくなるように修正する。
【0040】
また、結晶径(D)が目標径(D)よりも大きい場合(D>D)には、制御装置17により、引上げ速度を増して、結晶径(D)が小さくなるように修正する。
【0041】
このように、直接結晶径(幅)を計測できないテール部の育成工程において、1個の2次元カメラにより部分的に撮像可能なメニスカスの円弧形状を基にして楕円を演算し、この楕円の長径をテール部直径とすることにより、結晶径の自動制御が可能となる。また、直胴部育成工程は、完全なメニスカスを撮像して結晶直径画像情報に基づき直径が算出され、テール部の育成工程においては、部分的に撮像可能なメニスカスの円弧形状を基にして楕円を演算し、この楕円の長径をテール部直径とするので、効率よく確実に結晶径の自動制御を行なえる。さらに、1個の2次元カメラしか設置する必要がないので、装置の構造が簡単で安価な単結晶引上げ装置が実現できる。
【0042】
【発明の効果】
本発明に係わる単結晶引上げ装置によれば、一般的な撮像手段を用いて、メニスカスを撮像し、これを基にしてテール部の直径の自動制御が容易かつ正確に行なえ、かつ、装置の構造が簡単で安価な単結晶引上げ装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係わる単結晶引上げ装置の概念図。
【図2】本発明に係わる単結晶引上げ装置に用いられる制御回路図。
【図3】本発明に係わる単結晶引上げ方法の工程概念図。
【図4】本発明に係わる単結晶引上げ方法の直胴部の結晶直径撮像状態の概念図。
【図5】本発明に係わる単結晶引上げ方法のテール部育成工程の結晶径制御プロセス図。
【図6】本発明に係わる単結晶引上げ方法のテール部育成工程の結晶径演算方法の概念図。
【図7】(a)〜(c)は、一般的な単結晶引上げ方法のテール部育成工程のメニスカスの撮像状態の概念図。
【図8】従来のチョクラルスキー法を用いた単結晶引上げ装置の概念図。
【符号の説明】
1 単結晶引上げ装置
2 炉体
2a ショルダー
3 石英ルツボ
4 黒鉛ルツボ
5 ヒータ
5c ヒータ制御器
6 モータ
6c モータ制御器
7 昇降装置
7c 昇降装置制御器
8 ルツボ回転軸
9 種結晶
10 シードチャック
11 ワイヤー
12 ワイヤー回転装置
12c ワイヤーリール回転装置制御装置
13 カメラポート
14 2次元カメラ
15 AD変換回路
16 画像処理装置
16a カメラ情報演算処理部
16b メモリ
17 制御装置
17a 制御部
17b テーブルメモリ
17c メモリ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single crystal pulling apparatus and a single crystal pulling method, and in particular, controls the diameter of a single crystal using a major axis of an ellipse calculated based on a circular arc shape of a meniscus formed at a solid-liquid interface as a tail diameter. The present invention relates to a single crystal pulling apparatus and a single crystal pulling method.
[0002]
[Prior art]
In general, in order to manufacture a silicon wafer, a silicon single crystal ingot is made from polycrystalline silicon by the Czochralski method (hereinafter referred to as CZ method), and this ingot is cut into a predetermined thickness with a slicing machine. Manufacturing.
[0003]
For pulling such a silicon single crystal, a single crystal pulling apparatus as shown in FIG. 8 is used.
[0004]
In such a growth step of the conventional single crystal device 21 of single crystal using twice the narrowing step as dislocation is not generated in the single crystal Ig 1 to be grown is performed. The first narrowing step is a neck portion growing step, and this neck portion N 1 is formed in the silicon melt M 1 in the quartz crucible 24 in which the seed crystal 22 is heated and melted by the heater 23 in the initial stage of crystal growth. Since dislocation occurs in the single crystal Ig 1 due to the temperature shock caused by the contact, the neck portion N 1 is grown at a relatively high speed to completely remove the dislocation. Second narrowing process is a tail portion growth step, the tail portion T 1 performs a reduced diameter to crystal growth end of the straight body portion B 1 after development of maximum diameter, disconnect the single crystal Ig 1 from the melt M 1 dislocations is for preventing from occurring in the single crystal Ig 1 when.
[0005]
However, in the conventional single crystal pulling apparatus, the diameter of the meniscus formed at the solid-liquid interface is imaged by the two-dimensional camera provided on the upper part of the apparatus, and the single crystal diameter is controlled based on this. In the tail growing step for reducing the diameter of the single crystal as described above, as shown in FIG. 7, from the initial stage of the tail T growing step shown in FIG. 7 (a), the middle stage shown in FIG. 7 (b), As shown in FIG. 7C, the meniscus m gradually disappears toward the final stage, and it becomes difficult to directly capture the complete crystal diameter (crystal width). Since it is an obstacle and the diameter of the meniscus m cannot be accurately imaged, it is difficult to control the diameter of the tail portion T based on the image of the meniscus m.
[0006]
Conventionally, in the Czochralski method, various methods have been proposed in which a meniscus is imaged and the diameter of the tail portion is controlled based on this image.
[0007]
In Patent Document 1, the single crystal pulling apparatus has an image plane for creating a partial image pattern of a bright ring near the crystal using a two-dimensional camera, and this image plane depends on the position of the two-dimensional camera relative to the silicon crystal. In order to correct the distortion of the generated image pattern, it is made substantially parallel to the surface of the silicon melt, and the detection circuit for detecting the feature of the image pattern and the edge of the bright region are defined as a function of the detected feature and the bright region And a measuring circuit for defining a shape including a defined edge, wherein the measuring circuit determines a dimension of the defined shape, whereby the dimension of the silicon crystal is determined as a function of the determined dimension of the defined shape. is there. The single crystal pulling apparatus described in this publication can automatically measure the crystal diameter, but in order to obtain an image circle on the image plane, the imaging system including the two-dimensional camera becomes complicated, and the tail portion During the growing process, as described above, it is difficult to image the meniscus as a complete arc, and since the meniscus diameter cannot be accurately imaged, the meniscus is imaged and the tail portion is based on this. It is difficult to control the diameter.
[0008]
Also, in Patent Document 2, a single crystal pulling apparatus uses a plurality of two-dimensional cameras to switch a two-dimensional camera having a specific image angle for each growth process, and create a partial image pattern of a glitter ring near the crystal. The crystal diameter is obtained from an elliptical arc shape that is completely imaged. Since the single crystal pulling apparatus described in this publication uses a perfect elliptical arc shape, a plurality of two-dimensional cameras are required, so that the structure of the apparatus becomes complicated and expensive.
[0009]
[Patent Document 1]
JP-A-9-175896 (paragraph number 29 on page 6, FIG. 4)
[0010]
[Patent Document 2]
Japanese Patent Laid-Open No. 11-153418 (paragraph numbers 0049 to 0062 on page 7-8, FIG. 10)
[0011]
[Problems to be solved by the invention]
Therefore, a single crystal pulling apparatus which can easily and accurately control the diameter of the tail part easily and accurately based on the image of the meniscus using a general imaging means, and has a simple and inexpensive structure. It was requested.
[0012]
The present invention has been made in consideration of the above-mentioned circumstances, and images a meniscus using a general imaging means, and based on this, automatic control of the diameter of the tail portion can be easily and accurately performed, and An object of the present invention is to provide a single crystal pulling apparatus having a simple and inexpensive structure.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to one aspect of the present invention, a crucible provided in a chamber, a heater for heating and melting polysilicon loaded in the crucible, and a grown single crystal are drawn. A crystal pulling means for raising, an image pickup means for picking up an image of a meniscus formed at a solid-liquid interface, and binarizing a meniscus image signal from the image pickup means and controlling the crystal pulling means inputted through an image processing means And a tail growth process for reducing the diameter of the single crystal in a single crystal pulling apparatus that pulls the single crystal by immersing the seed crystal in a melt in which polysilicon is melted. when images the arc shape of the meniscus by the imaging means, calculates an ellipse using the average transfer method by the image processing means in the captured arc shape based on, tail the major axis of the ellipse Single crystal pulling apparatus is provided which is characterized by controlling the crystal pulling means by the control means as the diameter is performed to foster tail. This makes it possible to image a meniscus using a general imaging means, and easily and accurately control the diameter of the tail portion based on this, and the apparatus structure is simple and inexpensive. Is realized.
[0014]
In a preferred example, during the step of growing the straight body portion where the single crystal is grown with a constant diameter, the diameter of the meniscus is imaged by the imaging means, and the straight body portion is grown using this as the diameter of the straight body portion. Thereby, in the straight body part growing step, the complete meniscus is imaged and the diameter is calculated based on the crystal diameter image information, and in the tail growing process, the meniscus arc shape that can be partially imaged is used as a basis. Since the ellipse is calculated and the major axis of the ellipse is used as the tail diameter, automatic control of the crystal diameter can be performed efficiently and reliably.
[0015]
According to another aspect of the present invention, a Czochralski method for imaging a meniscus formed at a solid-liquid interface, binarizing a meniscus image signal, performing image processing, and inputting the diameter information to control a single crystal diameter In the method of pulling a single crystal using the method, during the tail growing process for reducing the diameter of the single crystal, the arc shape of the meniscus is imaged, and an ellipse is calculated using the average moving method based on the imaged arc shape, There is provided a single crystal pulling method characterized in that the tail portion is grown while controlling the crystal diameter with the major axis of the ellipse as the tail portion diameter. Thereby, automatic control of the diameter of a tail part can be performed easily and correctly.
[0016]
In a preferred example, during the step of growing the straight body for growing the single crystal with a constant diameter, the diameter of the meniscus is imaged and this is used as the diameter of the straight body to grow the straight body.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a single crystal pulling apparatus according to the present invention will be described with reference to the accompanying drawings.
[0018]
FIG. 1 is a conceptual diagram of an embodiment of a single crystal pulling apparatus according to the present invention.
[0019]
As shown in FIG. 1, a single crystal pulling apparatus 1 includes a water-cooled furnace body 2, a quartz crucible 3 that melts polysilicon, which is a raw material housed in the furnace body 2, into molten silicon M, and the quartz crucible. 3, a graphite crucible 4 that holds 3, and a heater 5 that surrounds the graphite crucible 4. This graphite crucible 4 passes through the furnace body 2, is connected to a motor 6, is rotated, and is attached to a crucible rotating shaft 8 that is lifted and lowered by a lifting device 7. Above the quartz crucible 3, a pulling wire 11 to which a seed chuck 10 for holding a seed crystal 9 for pulling a single crystal is attached is provided. This wire 11 is provided outside the furnace body 2 and is attached with a wire rotating device 12 as a crystal pulling means for winding and rotating the wire 11 while being energized by a motor Mt.
[0020]
Further, the outer wall of the shoulder 2a of the furnace body 2 is provided with a camera port 13 capable of transmitting light by closing a through hole with heat-resistant glass, and a normal 2 as an imaging means having an optical axis L penetrating the camera port 13 is provided. The dimensional camera 14 is installed with its focal point aligned with the single crystal growth region A, and images the meniscus formed in the growth region of the single crystal Ig.
[0021]
The two-dimensional camera 14 is connected to an AD conversion circuit 15 so that a crystal diameter signal from the two-dimensional camera 14 is transmitted to the AD conversion circuit 15. The crystal diameter signal is binarized by the AD conversion circuit 15 and transmitted to the image processing device 16 as image processing means. The image processing device 16 performs image processing and outputs it as crystal diameter data to be sent to the control device 17. It has become.
[0022]
As shown in FIG. 2, the image processing device 16 includes a camera information calculation processing unit 16a that processes crystal diameter data from the two-dimensional camera 14, and a memory 16b. The control device 17 is a general computer. A control unit 17a that controls each controller to be described later and a memory 17c provided with a table memory 17b are used. The table memory 17b includes crystal shape information (crystals for tail length). Optimum pulling conditions such as the diameter reduction amount), the pulling speed necessary for making the shape, the heater input, the crucible rotation speed, the crucible rising speed, etc. are preset and stored. The various data and the like of the optimum pulling conditions are composed of optimum values respectively obtained corresponding to various crystal shapes theoretically or by past experience or experiment.
[0023]
As a control system for actually controlling these, the control device 17 includes a heater controller 5c that controls the amount of power supplied to the heater 5 that controls the temperature of the silicon melt, and a motor that controls the rotational speed of the quartz crucible 3. A controller 6c, a lifting device controller 7c for controlling the height of the quartz crucible 3, a wire reel rotating device controller 12c for controlling the pulling speed and the number of rotations of the grown crystal, and the like are connected and controlled. , 6c, 7c, 12c, etc. are controlled to change the pulling conditions and control the diameter of the grown crystal.
[0024]
During the single crystal growth process, control of each of these controllers 5c, 6c, 7c and 12c and an argon supply controller controller (not shown) by the controller 17 is a control programmed in the controller 17 in advance. This is performed according to a procedure, and is performed by an input from an input means (not shown) provided in the control device 17 as necessary. In addition, the camera information calculation processing unit that processes the crystal diameter data from the two-dimensional camera may be provided in the image processing device or may be formed integrally with the control device. PID and fuzzy control are effective as a method for controlling the pulling speed.
[0025]
Next, the silicon single crystal pulling method according to the present invention will be described.
[0026]
As shown in FIG. 1, polysilicon is put in a quartz crucible 3, and the growth is automatically performed by a programmed growth process. At this time, as shown in FIG. 3A, in the neck portion growing step, the two-dimensional camera 14 focuses on the neck growth region An, for example, a position displaced 3 mm outward from the center of the quartz crucible 3. In addition, the power is turned on so that imaging can be performed from the start of growth.
[0027]
After completion of the pulling preparation, as shown in FIG. 1, for example, argon gas is allowed to flow into the furnace body 2 from above the furnace body 2, the heater 5 is energized to heat the quartz crucible 3, and the crucible rotation motor 6 is energized. The quartz crucible 3 is rotated by rotating the crucible rotating shaft 8 coupled to the lever crucible rotation motor 6.
[0028]
After a certain period of time has passed, the wire 11 is lowered and the seed 9 is brought into contact with the surface of the silicon melt M and allowed to become familiar.
[0029]
Thereafter, the growth is started, and the width (diameter) of the meniscus of the neck portion N of the neck growth region An is imaged by the two-dimensional camera 14 as shown in FIG. 3A, and as shown in FIGS. The crystal diameter image information of the two-dimensional camera 14 is transmitted to the AD conversion circuit 15 to be binarized, subjected to image processing by the image processing device 16, and the net diameter value is calculated by the camera information calculation unit 16a from the crystal diameter image data. The crystal diameter data is sent to the control device 17, the diameter is calculated by the control unit 17a, and the diameter is compared with the diameter stored in the table memory 17b. The control device 17 controls the heater controller 5c and the motor control. The device 6c, the lifting device controller 7c, and the wire winding device controller 12c are controlled, and the growth is continued until the neck N has a certain length, for example, 300 mm.
[0030]
When the neck N becomes 300 mm, the heater controller 5c, the motor controller 6c, the lift controller 7c, and the wire take-up controller 12c are connected via the controller 17 according to the process program incorporated in the memory 17c. The growth of the single crystal enters the crown C growth step shown in FIG. Subsequently, the crown growth region AC is monitored by the two-dimensional camera 14, and the diameter is calculated based on the crystal diameter image information of the two-dimensional camera 14 and compared with the diameter stored in the table memory 17b as described above. The controller 17e controls the controllers 5c, 6c, 7c, and 12c, and the crown portion C is grown.
[0031]
Further, as shown in FIG. 3C, the straight body portion B is grown.
[0032]
In the straight body part growing process, similarly to the neck part growing process and the crown part growing process, a meniscus as shown in FIG. 4 is imaged by the two-dimensional camera 14, and the diameter is calculated based on the crystal diameter image information. Comparison with the diameter stored in the memory 17b is performed, and the controller 17c controls the controllers 5c, 6c, 7c, and 12c, and the straight body portion B is grown.
[0033]
When the growth of the straight body portion B having the maximum diameter, which is the main portion of the single crystal Ig, is completed, the tail portion T starts to be grown as shown in FIG.
[0034]
In this tail part growing process, the meniscus gradually ceases to shine from the initial stage of the tail part T shown in FIG. 7 (a) to the middle stage shown in FIG. 7 (b) and the final stage shown in FIG. 7 (c). It becomes difficult to directly image the complete crystal diameter (meniscus width).
[0035]
7A to 7C, the complete meniscus width cannot be directly imaged. Therefore, a partial arc shape of the meniscus is imaged, and the captured arc shape is used as a basis. Then, the ellipse is calculated, and the major axis of the ellipse is used as the tail diameter.
[0036]
For example, as shown in FIG. 5, by the two-dimensional camera 14 captures the partial arc shape of the meniscus, is binarized by the AD converter 15, the image processing apparatus 16, a indicates to arcs shape in FIG. 6 Based on the image of 30 points (n1, n2,..., N30) on this arc-shaped line, a measurement image is created, the major axis is measured for the measurement image, the ellipse is calculated, and the major axis of the ellipse is calculated. To do.
[0037]
Here, if the simple ellipse calculation method is used, a large calculation error may occur if the single crystal is shaken during the pulling process. In the present invention, in order to minimize such an error, the average moving method is used. To calculate. In this average moving method, for example, first, 30 images are captured (n 1 , n 2 ... N 30 ), and the average of the diameter values calculated therefrom is used as initial data. taken up (n 31), the average value of n 2 ... n 31 and following data are sequentially n 3 ... n 32, n 4 ... how we take the average value of n 33.
[0038]
The control device 17 regards the calculated major axis of the ellipse as the crystal diameter (D) and compares it with the target diameter (D T ) that is preset and stored in the table memory 17b.
[0039]
If the crystal diameter (D) is within an allowable range with respect to the target diameter (D T ), the growth is continued. When the crystal diameter (D) is smaller than the target diameter (D T ) (D <D T ), the controller 17 causes the motor controller 6c, the lift controller 7c, and the wire winding device controller 12c to be Control to reduce the pulling speed and correct the crystal diameter (D) to increase.
[0040]
When the crystal diameter (D) is larger than the target diameter (D T ) (D> D T ), the controller 17 corrects the crystal diameter (D) to be increased by increasing the pulling rate. .
[0041]
In this way, in the tail growing process in which the crystal diameter (width) cannot be directly measured, an ellipse is calculated based on the arc shape of the meniscus that can be partially imaged by one two-dimensional camera, and the major axis of the ellipse is calculated. By using as the tail diameter, the crystal diameter can be automatically controlled. In the straight body part growing step, a complete meniscus is imaged and the diameter is calculated based on the crystal diameter image information. In the tail growing process, an elliptical shape based on the arc shape of the meniscus that can be partially imaged is used. Since the major axis of this ellipse is used as the tail diameter, automatic control of the crystal diameter can be performed efficiently and reliably. Furthermore, since only one two-dimensional camera needs to be installed, a single crystal pulling apparatus with a simple and inexpensive structure can be realized.
[0042]
【The invention's effect】
According to the single crystal pulling apparatus according to the present invention, the meniscus is imaged using a general image pickup means, and the automatic control of the diameter of the tail portion can be easily and accurately performed based on the image. However, a simple and inexpensive single crystal pulling apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a single crystal pulling apparatus according to the present invention.
FIG. 2 is a control circuit diagram used in the single crystal pulling apparatus according to the present invention.
FIG. 3 is a process conceptual diagram of a single crystal pulling method according to the present invention.
FIG. 4 is a conceptual diagram of a crystal diameter imaging state of a straight body portion of a single crystal pulling method according to the present invention.
FIG. 5 is a crystal diameter control process diagram of a tail portion growing step of the single crystal pulling method according to the present invention.
FIG. 6 is a conceptual diagram of a crystal diameter calculation method in a tail portion growing step of a single crystal pulling method according to the present invention.
FIGS. 7A to 7C are conceptual diagrams of imaging states of a meniscus in a tail growing process of a general single crystal pulling method.
FIG. 8 is a conceptual diagram of a single crystal pulling apparatus using a conventional Czochralski method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 2 Furnace body 2a Shoulder 3 Quartz crucible 4 Graphite crucible 5 Heater 5c Heater controller 6 Motor 6c Motor controller 7 Lifting apparatus 7c Lifting apparatus controller 8 Crucible rotating shaft 9 Seed crystal 10 Seed chuck 11 Wire 12 Wire Rotating device 12c Wire reel rotating device control device 13 Camera port 14 Two-dimensional camera 15 AD conversion circuit 16 Image processing device 16a Camera information calculation processing unit 16b Memory 17 Control device 17a Control unit 17b Table memory 17c Memory

Claims (4)

チャンバ内に設けられたルツボと、このルツボに装填されたポリシリコンを加熱して溶融するヒータと、育成された単結晶を引上げる結晶引上げ手段と、固液界面に形成されるメニスカスを撮像する撮像手段と、この撮像手段からのメニスカス画像信号を2値化し、画像処理手段を介して入力され前記結晶引上げ手段を制御して単結晶径を制御する制御手段とを有し、種結晶をポリシリコンが溶融された融液に浸漬して単結晶を引上げる単結晶引上げ装置において、単結晶を縮径するテール部の育成工程時、前記撮像手段により前記メニスカスの円弧形状を撮像し、この撮像した円弧形状を基にして前記画像処理手段により平均移動法を用いて楕円を演算し、この楕円の長径をテール部直径として前記制御手段により前記結晶引上げ手段を制御しテール部の育成を行なうことを特徴とする単結晶引上げ装置。Imaging a crucible provided in the chamber, a heater for heating and melting polysilicon loaded in the crucible, a crystal pulling means for pulling up the grown single crystal, and a meniscus formed at the solid-liquid interface An imaging unit; and a control unit that binarizes the meniscus image signal from the imaging unit and is input via the image processing unit to control the crystal pulling unit to control a single crystal diameter. In a single crystal pulling apparatus for pulling up a single crystal by immersing it in a melt in which silicon is melted, the arc shape of the meniscus is picked up by the image pickup means at the time of growing a tail portion for reducing the diameter of the single crystal, and this image pickup the arc shape based on calculating the ellipse using the average transfer method by the image processing means, control the crystal pulling means by said control means the major axis of the ellipse as a tail portion diameter A single crystal pulling apparatus and performing growth of the tail part was. 請求項1に記載の単結晶引上げ装置において、上記単結晶を一定の直径で育成する直胴部の育成工程時は、撮像手段によりメニスカスの直径を撮像しこれを直胴部直径として直胴部の育成を行なうことを特徴とする単結晶引上げ装置。  2. The apparatus for pulling up a single crystal according to claim 1, wherein the diameter of the meniscus is imaged by an imaging means when the straight body is grown to grow the single crystal with a constant diameter. A single crystal pulling apparatus characterized in that growth is performed. 固液界面に形成されるメニスカスを撮像し、メニスカス画像信号を2値化し、画像処理して径情報として入力されて単結晶径を制御するチョクラルスキー法を用いた単結晶引上げ方法において、単結晶を縮径するテール部の育成工程時、メニスカスの円弧形状を撮像し、この撮像した円弧形状を基にして平均移動法を用いて楕円を演算し、この楕円の長径をテール部直径として結晶径の制御を行ないながらテール部の育成を行なうことを特徴とする単結晶引上げ方法。In a single crystal pulling method using the Czochralski method in which a meniscus formed at a solid-liquid interface is imaged, a meniscus image signal is binarized, image-processed and input as diameter information to control the single crystal diameter, During the tail-growing process for reducing the diameter of the crystal, the arc shape of the meniscus is imaged, an ellipse is calculated using the average moving method based on the imaged arc shape, and the major axis of the ellipse is used as the tail diameter. A method for pulling a single crystal, characterized in that a tail portion is grown while controlling a diameter. 請求項3に記載の単結晶引上げ方法において、上記単結晶を一定の直径で育成する直胴部の育成工程時は、メニスカスの直径を撮像しこれを直胴部直径として直胴部の育成を行なうことを特徴とする単結晶引上げ方法。  4. The method for pulling up a single crystal according to claim 3, wherein the diameter of the meniscus is imaged and this is used as the diameter of the straight body portion when the straight body portion is grown to grow the single crystal with a constant diameter. A method for pulling a single crystal, which is performed.
JP2002260847A 2002-09-06 2002-09-06 Single crystal pulling apparatus and single crystal pulling method Expired - Lifetime JP4078156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260847A JP4078156B2 (en) 2002-09-06 2002-09-06 Single crystal pulling apparatus and single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260847A JP4078156B2 (en) 2002-09-06 2002-09-06 Single crystal pulling apparatus and single crystal pulling method

Publications (2)

Publication Number Publication Date
JP2004099346A JP2004099346A (en) 2004-04-02
JP4078156B2 true JP4078156B2 (en) 2008-04-23

Family

ID=32261373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260847A Expired - Lifetime JP4078156B2 (en) 2002-09-06 2002-09-06 Single crystal pulling apparatus and single crystal pulling method

Country Status (1)

Country Link
JP (1) JP4078156B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071530B1 (en) * 2008-12-11 2011-10-10 주식회사 엘지실트론 Diameter measuring apparatus for single crystal ingot, apparatus for growing single crystal ingot having the same and diameter measuring method for single crystal ingot
JP5854757B2 (en) * 2011-10-21 2016-02-09 三菱マテリアルテクノ株式会社 Single crystal ingot diameter control method
KR101540235B1 (en) * 2013-08-16 2015-07-29 주식회사 엘지실트론 Apparutus and Method for Manufacturing Single Crystal Ingot
CN114990688B (en) * 2022-06-28 2024-01-26 西安奕斯伟材料科技股份有限公司 Single crystal diameter control method and device and single crystal silicon crystal pulling furnace

Also Published As

Publication number Publication date
JP2004099346A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP4929817B2 (en) Method for measuring distance between reference reflector and melt surface, method for controlling melt surface position using the same, and apparatus for producing silicon single crystal
US6241818B1 (en) Method and system of controlling taper growth in a semiconductor crystal growth process
KR20020081287A (en) Method for controlling growth of a silicon crystal to minimize growth rate and diameter deviations
JP4209082B2 (en) Single crystal pulling apparatus and pulling method
KR102696535B1 (en) Single crystal manufacturing device and single crystal manufacturing method
US6960254B2 (en) Method to monitor and control the crystal cooling or quenching rate by measuring crystal surface temperature
JP6627739B2 (en) Single crystal manufacturing method
JP3704710B2 (en) Method of setting seed crystal deposition temperature and silicon single crystal manufacturing apparatus
JP4078156B2 (en) Single crystal pulling apparatus and single crystal pulling method
CN112080793B (en) System and method for temperature control in semiconductor single crystal growth
CN114990688B (en) Single crystal diameter control method and device and single crystal silicon crystal pulling furnace
JP4035924B2 (en) Single crystal diameter control method and crystal growth apparatus
JP2003176199A (en) Apparatus and method for pulling single crystal
JP4109843B2 (en) Single crystal pulling apparatus and pulling method
JP3632427B2 (en) Raw material addition system for single crystal pulling equipment
JP3592909B2 (en) Single crystal pulling device
TWI782726B (en) Manufacturing method of single crystal
KR102533979B1 (en) Apparatus and method for manufacturing single crystal
JP4056206B2 (en) Ribbon crystal growth method and apparatus
WO2022185789A1 (en) Method for detecting state of surface of raw material melt, method for producing monocrystal, and cz monocrystal production device
KR101781463B1 (en) Apparatus and method for growing silicon single crystal ingot
JP4255578B2 (en) Single crystal pulling device
JP2000026197A (en) Production of silicon single crystal and equipment therefor
JP3669133B2 (en) Single crystal diameter control method
JP2000281481A (en) Apparatus for growing single crystal and growth of single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4078156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term