JP4077236B2 - Method for manufacturing hollow rack member - Google Patents

Method for manufacturing hollow rack member Download PDF

Info

Publication number
JP4077236B2
JP4077236B2 JP2002118785A JP2002118785A JP4077236B2 JP 4077236 B2 JP4077236 B2 JP 4077236B2 JP 2002118785 A JP2002118785 A JP 2002118785A JP 2002118785 A JP2002118785 A JP 2002118785A JP 4077236 B2 JP4077236 B2 JP 4077236B2
Authority
JP
Japan
Prior art keywords
rack
tooth
tube
forging
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002118785A
Other languages
Japanese (ja)
Other versions
JP2003311366A (en
Inventor
千秋 久保田
Original Assignee
松岡 美奈子
塩川 博久
塩川 明正
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松岡 美奈子, 塩川 博久, 塩川 明正 filed Critical 松岡 美奈子
Priority to JP2002118785A priority Critical patent/JP4077236B2/en
Publication of JP2003311366A publication Critical patent/JP2003311366A/en
Application granted granted Critical
Publication of JP4077236B2 publication Critical patent/JP4077236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/76Making machine elements elements not mentioned in one of the preceding groups
    • B21K1/767Toothed racks
    • B21K1/768Toothed racks hollow

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は車両の操舵機構などに使用されるラックバーを管材を素材として鍛造により成形する方法及び装置に関するものである。
【0002】
【従来の技術】
車両の操舵系の部品であるラックバーは、通常、中実の棒材を素材にブローチによって切削加工されていた。しかしながら、中実故に重く、また、パワーステアリング等に用いられる歯形傾斜角が変化する可変歯車比(所謂VGR)ではその溝幅が変化するのでブローチ切削では加工そのものがなしえない。そこで、軽量化及び可変歯の成形を可能とするためパイプ材から中空ラックバーを鍛造成形するものが特開平3−5892号公報や特開平5−169181号公報や特開平6−246379号公報などに開示されている。しかしながら、これらの従来技術に開示されたラックバーの鍛造成形は各種の問題点を内在しており、本発明者は特願2001-15439 などにおいてその改善策を既に提案している。
【0003】
【発明が解決しようとする課題】
中空ラックバーの鍛造成形に際してはパイプ材は歯型を有した金型により保持され、金型により保持された素管に芯金を圧入し、歯型に向けての素材の半径方向の張り出し(素材金属の塑性流動)を惹起させ、ラック歯の成形を行っている。したがって、所期の精度のラックバーとするためには素材の断面積管理が肝要である。しかしながら、素材となるパイプ材はメーカーからの供給段階ではその内外径及び肉厚はJIS等の所定の公差に管理されているのみで、鍛造成形用の素材としては精度が不十分であり、そのままでは鍛造成形時に金属流動の大きな変動と共に過剰成形力を要する原因となり、これが製品精度低下の原因及び治工具に過重な負担がかかることによる寿命短縮の原因となっていた。また、後工程の焼き入れにおいて、中空製品は外方を割型で押さえ込んで焼き入れしても内径への熱歪の逃げは一切規制できず、素管の内径が市販品の公差のままでは芯金挿入による逃げ防止も行い得ない。そのため、中空ラックバーの焼き入れは特殊工法を必要とし、その分手間暇がかかり、コスト増の原因となっていた。更に、鍛造では移動距離の短い移動し易い方向に金属の流動は惹起される。そのため、形状によっては単純均一断面積化での均等荷重負荷形状芯金では、金属流動に過不足を生じ易く、高性能が得られない。そこで、複数本の芯金の形状を不均等形状に仕上げて金属に不均一流動を与える工法も提案されていたが、この工法はコスト的には大いに不利であると共に軸方向の金属流動調整には無効であった。
【0004】
この発明は以上の問題点に鑑みなされたものであり、素管からのラックバーの鍛造に関し、製品精度を高めると同時に治工具の寿命をも延長し、さらなる低コストをも実現することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に記載の発明によれば、素管をその外周側よりラック成形用型によって素管のラック成面を平坦に圧潰した状態にて保持し、素管に心金を圧入することにより素管の平坦に圧潰されたラック成形面に前記ラック成形用型に応じた歯形状を鍛造工程により成形するようにした中空ラック部材の製造方法において、素管の圧潰及びこれに引き続く芯金圧入による歯形の成形よりなる前記鍛造工程に先立ち、スエージングによる縮径を行い、次いで縮径された素管の外径を、素管のラック成形面の両端部に対応する両端内周部に円形形状からの半径外方への膨れ部分を形成したクランプ金型により保持しつつアイヨニングによる内径しごきを行うことによって素管の内外径を調整すると共にラック成形面の両端部に対応する部位における素管の断面形状を両肩の張った異形に成形する工程を具備し、内外径調整及び異形成形後の素管に対し素管の圧潰及びこれに引き続く芯金圧入による歯形の成形よりなる前記鍛造工程に付すことを特徴とする中空ラック部材の製造方法が提供される。
【0006】
請求項1の発明の作用・効果を説明すると、この発明において中空ラックバーの成形は歯型により保持される素管に芯金を挿入することにより行われる。芯金の挿入により材料は歯型に向けて塑性流動される。そして、鍛造工程に先行した塑性加工による素管の断面形状の調整は歯型に向けての適正な金属流動を確保し、切削工程なしで数十μ単位の公差での高い最終製品精度を得ることと、歯型に加わる荷重の適正化と、その長寿命化を実現することができる。そして、調整による数μ単位での部材内径の厳密な管理は、後工程における焼入れ時に、しっくりした芯金を挿入した状態での押さえ込み焼き入れが可能となり、焼入れ歪を最小に押さえるために、焼き入れ処理時に用いられる挿入芯金の形状・寸法公差・材質と、高周波コイルの形状・周波数・磁力密度・渦巻電流選択などの適合によって低原価の理想的な焼き入れ製品を得ることができる。
芯金の圧入により材料が歯型内に流動し成形が行われるが、軸方向移動限の内径側の肉は歯型内に鍛造流動するよりも、距離が短く逃げやすい軸方向若しくは歯幅方向の解放部に一部が流動するためのこの部分の歯型鍛造量は不足気味となる。これはラック精度不良の原因となる。この発明では圧入工程前に素管の断面形状を円形や異形などの所定形状に成形しておき、そのままでは流動不足になる部分において断面形状を増肉しておくことにより流動不足分を補正し、所期の鍛造工程の実施が可能となる。また、歯型鍛造にあたって、歯幅全体に均一に張り出しを行わせる必要は必ずしもなく力伝達に十分なピニオンとの噛合幅があればよい。従って、鍛造歯型の歯幅の両側は開放せしめられていることが通常である。しかしながら、そのままでは歯幅方向への肉の逃げ量が増大されて、噛合不足を招く恐れがある。この発明では鍛造成形前のアイヨニングによる断面形状管理により素管断面形状を不均一化すること、即ち、長手方向及び幅方向の端部において素管の肉厚を増大しておくことで所望の肉の流れを得ることができる。即ち、不均一断面積形状の管理はマイタギヤ及び VGR 化によるピッチ変化や斜角変化による歯部の溝幅の拡縮変化、芯金移動による歯成形部軸方向の開放両端図の肉量の不足現象、鍛造歯幅左右両端部の肉の不足現象に対応するように行う。これにより、金属移動距離は均一化されるので、あえて複数の芯金への不均等形状化仕上げを行うことなく、クランプ型一型のみの異形化で成形力抑制と治工具長寿命化と精度向上と噛合率向上とに役立たせることができる。
スエージングにより素管の縮径を行い、その後のアイヨニングにより所期の外径で所期の肉厚でかつ偏肉を含めた所期の断面形状を鍛造に先立って素管に付することができ、製品の精度向上と治工具の寿命の延長に寄与させることができる。
【0008】
請求項2の発明の作用・効果を説明すると、芯金の圧入により材料が歯型内に流動し成形が行われるが、軸方向移動限の内径側の肉は歯型内に鍛造流動するよりも、距離が短く逃げやすい軸方向若しくは歯幅方向の解放部に一部が流動するためのこの部分の歯型鍛造量は不足気味となる。これはラック精度不良の原因となる。この発明では圧入工程前に素管の断面形状を円形や異形などの所定形状に成形しておき、そのままでは流動不足になる部分において断面形状を増肉しておくことにより流動不足分を補正し、所期の鍛造工程の実施が可能となる。また、歯型鍛造にあたって、歯幅全体に均一に張り出しを行わせる必要は必ずしもなく力伝達に十分なピニオンとの噛合幅があればよい。従って、鍛造歯型の歯幅の両側は開放せしめられていることが通常である。しかしながら、そのままでは歯幅方向への肉の逃げ量が増大されて、噛合不足を招く恐れがある。請求項2の発明では鍛造成形前のアイヨニングによる断面形状管理により素管断面形状を不均一化すること、即ち、長手方向及び幅方向の端部において素管の肉厚を増大しておくことで所望の肉の流れを得ることができる。即ち、不均一断面積形状の管理はマイタギヤ及びVGR化によるピッチ変化や斜角変化による歯部の溝幅の拡縮変化、芯金移動による歯成形部軸方向の開放両端図の肉量の不足現象、鍛造歯幅左右両端部の肉の不足現象に対応するように行う。これにより、金属移動距離は均一化されるので、あえて複数の芯金への不均等形状化仕上げを行うことなく、クランプ型一型のみの異形化で成形力抑制と治工具長寿命化と精度向上と噛合率向上とに役立たせることができる。
【0027】
【発明の実施の形態】
以下この発明によるラックバーの成形のための一連の工程について順を追って説明すると、先ず、鍛造に先立った準備工程として断面形状の調整が行われる。即ち、素材としてのパイプ材(素管)としては製管メーカーから供給されるが、JISの公差に準じたばらつきを有しているため、所期の断面形状となっておらず、これが芯金圧入による歯型鍛造時の精度低下及び歯型などの治工具の寿命短縮の原因となる。この発明においては塑性加工(スエージング及びアイヨニング)により所期の断面形状を得るようにしている。即ち、図1において10はスチール製の素管、12はスエージング用のダイスである。(イ)の段階では素管10は適当な手段により保持され、次いでダイス12が矢印a方向に移動され、段階(ロ)はダイス12が移動した状態を示し、素管10はその外径がダイス12の内径に縮径される。その後、ダイス12はa´のように反対方向に復帰移動され、縮径後の素管10から抜去される。このようにして、スエージングにより塑性加工による素管10の縮径が完了される。
【0028】
次は、素管10の断面形状の異形化などの所定形状への成形工程を説明すると、この実施形態では後述の本工程でのラック鍛造時のラック両端部の両端での歯幅確保のための断面異形化を行っている。すなわち、ラック鍛造時においては鍛造用芯金頭部は素管に圧入されることにより半径方向の肉の張り出しを行い、素管に金型に応じた歯型を成形するが、鍛造用芯金の両端側では軸方向への肉の逃げが多く、幅方向への肉の流れが不足し、歯幅が短くなり、ラック歯は平面的に上から見て舟形になり易い。ラック両端での歯幅が不足勝ちになるという傾向を解消し、ラック両端でも必要な歯幅を確保するため素管の両端での肉厚を大きくとりうるように異形断面の素管形状を得るようにしている。即ち、(ハ)において、素管の断面形成手段は芯金14と所定形状付与クランプ金型16とから構成される。所定形状付与クランプ金型16は上下の半割型16-1及び16-2から構成される。段階(ハ)においては芯金14は素管10に挿入された状態を示す。芯金14はその先端にアイヨニングのための拡径頭部14-1を備えている。他方、上下の半割型16-1及び16-2は開放状態にある。この状態から上下の半割型16-1及び16-2は矢印のように相互に対向するように又は半割型16-1及び16-2のいずれか一方が移動され、(ニ)に示すように上下の半割型16-1及び16-2は合体せしめられ、上下半割型16-1及び16-2に当接する素管10の外径は幾分縮径される。図2(A)は(ニ)のA-A線に沿った金型中央部の上下の半割型16-1及び16-2の断面形状を示しており、上下の割型共にその内周面16-1a及び16-2aは半円形状をなしている。他方、図2(B)は(ニ)のB-B線に沿った金型両端部の上下の半割型16-1及び16-2の断面形状を示しており、下側の割型16-2はその内周面16-2bは半円形状をなしているが上側の割型16-2はその内周面16-2aは両端が膨れた異形形状をなしている。もとより、A-A線部を含めた、アイヨニング加工全長部に亘って、B-B線部状、即ち、図2の(B)断面状に不均一化することも容易に可能である。
【0029】
素管の断面異形化工程は図1の(ニ)の状態から矢印bの方向に芯金14を引き抜くことによるスエージングにより行われる。芯金14の引き抜きにおいてその頭部14-1は素管10の、所定形状付与クランプ金型16により保持されている部分の内径より幾分大きく、他方所定形状付与クランプ金型16の両端には内周の膨れ部分16-1bが存在している。そのため、スエージングによる肉の流動はこの膨れ部分16-1bにも惹起され、図2の(B)に示すように金型両端における素管10の部位は上面の両肩部分100が肉厚となった異形断面を呈する。(ホ)は芯金14の抜去後の状態を示し、断面異形化により肉厚とされたラック歯の両端となる素管の部分100も示されている。このような、金型両端における素管10の部位を肉厚にした異形化によりラック鍛造におけるラック両端での歯幅の確保を実現することができる。
【0030】
以上の実施形態の説明では異形化は金型両端における素管10の部位を厚肉にすることにより金型16の両端部位での歯幅確保を行ったものであるが、この発明における異形化の思想は歯幅方向両端における肉の逃げの対策にも解決手段として役立たせることができる。即ち、金型の中央部においても歯幅方向両端では肉の逃げが起こり得、これは歯幅方向両端での歯高の不足を惹起せしめる。この対策として、金型の中央部においても歯型の両端部を図2(ロ)に準じて異形化しておき、肉厚となるようにしておくことができ、このような異形化により、スエージングにより歯幅方向の両端において肉の量に余裕があるため、歯幅両端での歯高の歯高の不足を回避することができる。
【0031】
以上の断面異形化工程においては、素管10は所定形状付与クランプ金型16により強力クランプされた状態で芯金14により壁肉厚が強力にしごかれて減肉(アイヨニング)され、素管の内外径の表面粗度は、所定形状付与クランプ金型16と芯金14の表面粗度が転写され、1〜2μmの表面粗度と共に、数μの内外径公差の加工を容易に実現することができる。
【0032】
図3〜図7は以上のように予備成形された素管からの傾斜歯型のラック部材の成形のための金型18を示す。ラック成形金型18は上型20と下型22とを具備している。上型20は支持部材24と、ホルダ26と、歯型28と、ロック駒30と、ラック突き出しピン32, 33とから構成される。歯型28はその下面に凹凸部28-1を備えており、凹凸部28-1は鍛造成形すべきラック部材の歯型に準じた形状をなしている。図7(イ)は鍛造成形されたラック部材34の平面図であり、この実施形態では鍛造により形成すべきラック部材34は傾斜歯34-1を備えたものを意図しており、そのため図3において歯型28のラック歯状凹凸部28-1もラック部材の歯型に応じた傾斜形状をなしている。ホルダ26は適宜の手段により支持部材24に固定される。そして、ホルダ26は歯型28の収容のための貫通した細長い歯型埋め込み開口26Aを形成している。歯型28は支持部材24との突当面にライナ33を介在させた状態で埋め込み開口26Aに装着される。そして、図3に示すように開口26Aへの歯型28の装着状態では歯型28の下面の凹凸部28-1は歯型ホルダ26から幾分突出している。ロック駒30は歯型28を装着した状態で開口26Aの対向壁面との間に打ち込まれ、ロック駒30は幾分のテーパ形状をなしているため、ロック駒30の打ち込みにより歯型28はホルダ26に強固に固定することができる。ホルダ26はシリンダ部26-1を備えており、このシリンダ部26-1にラック突き出しピン32及び33が摺動自在に挿入される。ラック突き出しピン32及び33はシリンダ部26-1への油圧の導入方向の切り替えにより出没され、その突出動作により鍛造後のラック部材の突き出しが可能となる。このラック突き出しピン32及び33は油圧による抜き動作が可能であればよく通常の油圧シリンダでは必要となるシール部品が省略可能であり、その分構造としては単純化しうる。なお、ラック突き出しピン32及び33の出没動作用の油圧配管や切り替え弁は必要であるが、簡明化のため図示は省略している。
【0033】
ラック歯鍛造成形に先立って上型20と下型22とは素管10を介して相互に向き合うように移動合体され、この合体状態を図3に示す。このとき、図5(イ)及び図6(イ)に示すように歯型28の凹凸部28-1が素管10の上面に当接し、歯型28の凹凸部28-1が当接する素管10の上面であるラック成形面10Aはやや平坦状に圧潰される。図6(イ)に示す、予備成形工程におけるスエージングにより肉厚化された部分100は、このやや平坦状に圧潰されたラック成形面10Aの両端に位置している。
【0034】
図3において素管10の開口部と対向して鍛造用芯金40が配置される。図では鍛造用芯金40は片側のみに図示されているが、この出願人の先願にて開示したように鍛造用芯金40は両側に設けられ、素管10への芯金40の圧入を左右から交互に繰り返し的に行うことによりラック部材の鍛造成形が行われる。芯金40は先端の案内部40-1と、作用径が徐々に拡大する複数の拡頭部40-2, 40-3と拡頭部40-2, 40-3の背後の油溝部40-4, 40-5を備えており、歯型28により平坦化された素管の部位に拡頭部40-2, 40-3が作用することにより半径方向、即ち、凹凸部28-1における凹部への素材の塑性流動が惹起され、凹凸部28-1の形状に応じたラック歯を素管に鍛造成形することができる。即ち、図5及び図6において(ロ)は素管10に芯金40を圧入した状態を示し、芯金40の挿入により素管の上面平坦部分10Aの肉が半径外方に張出され、10″で示す肉の部分が歯型28の凹凸部28-1における凹部に流動することにより図7(イ)のラック歯34-1が形成される。そして、図5における歯型中央部では歯幅方向の全体にわたった肉の流動は比較的スムースに行われ、所期の歯幅のものを得ることができる。しかしながら、歯型の両端部(ラック成形面10Aの両端部)では軸方向に逃げやすくそのままでは鍛造後の歯幅が不足気味となり、従来は図7の(ロ)に示すような中央で歯幅が大きく両端で小さい舟形のラック歯を有したラック部材となりやすかった。然るに、この発明では歯型28の凹凸部28-1に当接する素管の部位の両端は図6に示すように両側が厚肉部分100となるように異形化されている。そのため、図6(ロ)に示すように芯金40を圧入時において歯幅の両端にも流動しうるような余裕を持っているため図7(イ)に示すように中央から両端に至るまでは幅がそろった歯部34-1を備えたラック部材34とすることが可能である。
【0035】
以上述べたように即ち、芯金による内径側からの張り出し成形鍛造時に、軸長手方向の歯型鍛造の前後端部は金属流動の逃げが起こり易い開放部となるが、この部分の減肉を押さえるため、図2(B)に示すように歯型鍛造部位の歯幅の中央側の肉厚t1に対してt2になるように異形化加工しておくことにより、鍛造に先立つ異形化によって肉の逃げの生じやすい開放部位における所定歯幅の確保を1型のみで実現する。また、歯型鍛造部位の軸長手方向の左右両端部も金属流動の逃げが起こり易い開放部であるが、この部位においても同様な異形化を行うことができる。このような金属流動の逃げが起こり易い開放部の肉厚化により所期の歯幅を確保することができる。従来は、異形の芯金を複数本使用することにより対処していたが、それでも軸長手方向の逃げは対処不可能であった。この発明では1型のみの異形化によりに歯幅方向及び軸方向の双方の逃げに同時に対処することができる点で優れている。
【0036】
図8及び図9はこの発明における鍛造成形用芯金の別実施形態を示す。この実施形態においては芯金で140はその拡頭部140-1, 140-2が中心線143に対して傾斜している。拡頭部140-1, 140-2の傾斜角度はθにて表され、この傾斜角度は一つの拡頭部140-1又は140-2による、歯型128の隣接した複数の歯溝に対する同時的な張り出し作用(歯型128に対する素材の肉の流動)を可能とするものである。例えば、図9では第1の拡頭部140-1 が歯型128の隣接する溝128-1, 128-2に対して張り出しを行い、第2の拡頭部140-2 が歯型128の隣接する溝128-3, 128-4に対して張り出しを行っている状態を示している。このような歯型128の隣接する溝128-1, 128-2又は128-3, 128-4に対する一つの拡頭部128-1又は128-2による同時的な張り出し作用により芯金140より歯型128にかかる荷重を分散させることができ、芯金や歯型の寿命を延長することができる効果がある。
【0037】
図10及び図11は別実施形態の芯金240を示しており、芯金240は勾配式であり、緩く傾斜した拡頭部を備えており、この拡頭部に山形に傾斜した油溝240-1が間隔をおいて平行に多数形成される。そのため、4〜6段以上の連続噛合となり、よりスムースな荷重の移動を得ることができる。即ち、この実施形態では4〜6段相当の拡頭部による張り出し量相当を連続せる勾配面一つで達成できる。そして、油溝に傾斜を設けつつ、多数の油溝が後加工で容易に自在に設けうるので、10本前後必要とする芯金の加工費用が大幅に削減しうる。変形実施形態として山形の溝240-1の代りに単なる多数の並行な傾斜溝でもよい。
【図面の簡単な説明】
【図1】図1はスエージング及びアイヨニングによる素管の断面積管理工程を示す図である。
【図2】図2は異形化後の素管の断面形状を示す図であり、(A)は図1のA-A線に沿った断面図、(B)は図1のB-B線に沿った断面図である。
【図3】図3は素管よりのラックバー鍛造装置の断面図である。
【図4】図4は図3のラックバー鍛造装置における金型の底面図図である。
【図5】図5は図3のV−V線に沿って表される断面図であり、(イ)は平潰し時、(ロ)は芯金圧入時を示す。
【図6】図6は図3のVI−VI線に沿って表される断面図であり、(イ)は平潰し時、(ロ)は芯金圧入時を示す。
【図7】図7は鍛造により得られるラックバーの平面図であり、(イ)は本発明、(ロ)は従来技術により得られたものをそれぞれを示す。
【図8】図8は芯金の別実施形態を示す図である。
【図9】図9は図8の芯金による金型内での鍛造時の断面図である。
【図10】図10は芯金の更に別の別実施形態を示す図である。
【図11】図11は図10の芯金による金型内での鍛造時の断面図である。
【符号の説明】
10…スチール製の素管
12…スエージング用ダイス
14…芯金
16…クランプ金型
18…ラック成形様金型
20…上型
22…下型
24…支持部材
26…ホルダ
28…歯型
30…ロック駒
32, 33…ラック突き出しピン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for forming a rack bar used in a vehicle steering mechanism or the like by forging a pipe material.
[0002]
[Prior art]
A rack bar, which is a part of a vehicle steering system, is usually cut with a broach from a solid bar. However, in the variable gear ratio (so-called VGR) in which the tooth profile inclination angle used for power steering or the like changes because the groove width changes, machining itself cannot be performed by broach cutting. Therefore, forging a hollow rack bar from a pipe material in order to make it possible to reduce the weight and form a variable tooth, Japanese Patent Laid-Open No. 3-5892, Japanese Patent Laid-Open No. 5-169181, Japanese Patent Laid-Open No. 6-246379, etc. Is disclosed. However, the forging of rack bars disclosed in these prior arts has various problems, and the present inventor has already proposed measures for improvement in Japanese Patent Application No. 2001-15439.
[0003]
[Problems to be solved by the invention]
In the forging of the hollow rack bar, the pipe material is held by a die having a tooth mold, and a core metal is press-fitted into an element tube held by the mold, and the material is radially projected toward the tooth mold ( The rack teeth are formed by inducing a plastic flow of the material metal. Therefore, it is essential to manage the cross-sectional area of the material in order to obtain a rack bar with the desired accuracy. However, the pipe material that is the raw material is only managed within the specified tolerances such as JIS in the inner and outer diameters and thicknesses at the supply stage from the manufacturer, and the accuracy is insufficient as a raw material for forging. In this case, excessive forging force is required along with large fluctuations in metal flow during forging, which causes a decrease in product accuracy and a shortening of life due to an excessive burden on the tool. Also, in the subsequent quenching process, even if the hollow product is hardened by pressing the outside with a split mold, the escape of thermal strain to the inner diameter cannot be regulated at all, and the inner diameter of the bare tube remains within the tolerance of the commercial product. It is not possible to prevent escape by inserting a mandrel. For this reason, quenching of the hollow rack bar requires a special method, which takes time and increases the cost. Further, in forging, metal flow is induced in a direction in which the moving distance is short and easy to move. Therefore, depending on the shape, the uniform load loaded shape cored bar with a simple uniform cross-sectional area tends to cause excess and deficiency in the metal flow, and high performance cannot be obtained. In view of this, a method has been proposed in which the shape of a plurality of metal cores is finished in an uneven shape to give the metal a non-uniform flow, but this method is very disadvantageous in terms of cost and is suitable for adjusting the metal flow in the axial direction. Was invalid.
[0004]
The present invention has been made in view of the above-mentioned problems, and relates to forging a rack bar from a raw pipe, and aims to increase product accuracy and at the same time extend the life of jigs and tools and further reduce costs. And
[0005]
[Means for Solving the Problems]
According to the invention described in claim 1, raw tube was held in a state of being flatly crushed rack formed shape surface of the base pipe by the rack molding die from its outer peripheral side, press-fitting the mandrel base tube the method of manufacturing a hollow rack member in the tooth shape corresponding to the rack molding dies to the rack molding surface that is flat crush raw tube to be molded by forging process by crushing the raw tube and subsequent thereto Prior to the forging step, which includes forming a tooth profile by press-fitting a core metal, the diameter is reduced by swaging, and the outer diameter of the reduced diameter pipe is then set to the inner circumference at both ends corresponding to both ends of the rack forming surface of the raw pipe. The inner and outer diameters of the raw tube are adjusted by carrying out the inner diameter ironing by ironing while being held by the clamp mold in which the radially outwardly bulging portion from the circular shape is formed on the part, and the portions corresponding to both ends of the rack forming surface In That the blank tube cross-sectional shape comprising a step of forming the irregular strung the shoulders, from adjustment and shaping of the teeth to blank tube after profiled by crushing and subsequent metal core pressed into it the base pipe inner and outer diameters A hollow rack member manufacturing method is provided, which is subjected to the forging step.
[0006]
The operation and effect of the invention of claim 1 will be described. In this invention, the hollow rack bar is formed by inserting a cored bar into an element tube held by a tooth mold. By inserting the cored bar, the material is plastically flowed toward the tooth mold. And the adjustment of the cross-sectional shape of the tube by plastic working prior to the forging process ensures proper metal flow toward the tooth mold, and obtains high final product accuracy with a tolerance of several tens of μ without a cutting process. This makes it possible to optimize the load applied to the tooth mold and to extend its service life. Strict control of the inner diameter of the member in units of several μm by adjustment enables quenching and quenching in a state where a suitable cored bar is inserted during quenching in the subsequent process, and in order to minimize quenching distortion, An ideal quenched product can be obtained at a low cost by matching the shape, dimensional tolerance, and material of the insertion core used during the quenching process with the shape, frequency, magnetic density, and eddy current selection of the high frequency coil.
The material flows into the tooth mold due to the press-fitting of the core metal, and molding is performed, but the inner diameter side of the axial movement limit is shorter in the axial direction or tooth width direction than the forging flow in the tooth mold. The amount of tooth die forging in this part, which is partly flowing in the release part, becomes insufficient. This causes poor rack accuracy. In this invention, the cross-sectional shape of the raw tube is formed into a predetermined shape such as a circular shape or an irregular shape before the press-fitting process, and the flow shortage is corrected by increasing the cross-sectional shape in a portion where the flow is insufficient if it is left as it is. The intended forging process can be carried out. Further, in the forging of the tooth shape, it is not always necessary to uniformly overhang the entire tooth width, and it is sufficient that the meshing width with the pinion is sufficient for force transmission. Therefore, it is normal that both sides of the tooth width of the forged tooth mold are opened. However, if it is left as it is, the flesh escape amount in the tooth width direction is increased, which may lead to insufficient meshing. In the present invention, the cross-sectional shape of the pipe is made non-uniform by controlling the cross-sectional shape by ironing before forging, that is, the thickness of the pipe is increased at the ends in the longitudinal and width directions. You can get a flow of In other words, the management of non-uniform cross-sectional area is the miter gear and the change in pitch of the tooth due to the change of VGR due to VGR change, the change in the width of the tooth groove due to the change in oblique angle, the phenomenon of insufficient thickness in the open end view in the axial direction of the tooth forming part due to the movement of the metal core The forging tooth width is performed so as to cope with the lack of meat at the left and right ends. As a result, the metal travel distance is made uniform, so it is possible to reduce the forming force and increase the tool life and accuracy by deforming only one clamp type without the need to finish uneven shaping on multiple cores. It can be used for improvement and meshing rate improvement.
The diameter of the pipe can be reduced by swaging, and the desired cross-section including the desired thickness and uneven thickness can be applied to the pipe prior to forging by subsequent ironing. It is possible to contribute to the improvement of product accuracy and the extension of the tool life.
[0008]
The operation and effect of the invention of claim 2 will be explained. Although the material flows into the tooth mold by the press-fitting of the core metal, the inner diameter side meat in the axial movement limit is forged and flowed into the tooth mold. However, the amount of forging of this portion of the portion for flowing partly to the release portion in the axial direction or tooth width direction where the distance is short and easy to escape becomes insufficient. This causes poor rack accuracy. In this invention, the cross-sectional shape of the raw tube is formed into a predetermined shape such as a circular shape or an irregular shape before the press-fitting process, and the flow shortage is corrected by increasing the cross-sectional shape in a portion where the flow is insufficient if it is left as it is. The intended forging process can be carried out. Further, in the forging of the tooth shape, it is not always necessary to uniformly overhang the entire tooth width, and it is sufficient that the meshing width with the pinion is sufficient for force transmission. Therefore, it is normal that both sides of the tooth width of the forged tooth mold are opened. However, if it is left as it is, the flesh escape amount in the tooth width direction is increased, which may lead to insufficient meshing. In the invention of claim 2, by making the cross-sectional shape of the raw pipe non-uniform by controlling the cross-sectional shape by ionizing before forging, that is, by increasing the wall thickness of the raw pipe at the ends in the longitudinal direction and the width direction. The desired meat flow can be obtained. In other words, the management of non-uniform cross-sectional area is the miter gear and the change in pitch of the tooth due to the change of VGR due to VGR change, the change in the width of the tooth groove due to the change in oblique angle, the phenomenon of insufficient thickness in the open end view in the axial direction of the tooth forming part due to the movement of the metal core The forging tooth width is performed so as to cope with the lack of meat at the left and right ends. As a result, the metal travel distance is made uniform, so it is possible to reduce the forming force and increase the tool life and accuracy by deforming only one clamp type without the need to finish uneven shaping on multiple cores. It can be used for improvement and meshing rate improvement.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a series of steps for forming the rack bar according to the present invention will be described in order. First, the cross-sectional shape is adjusted as a preparation step prior to forging. In other words, the pipe material (raw tube) as a material is supplied from a pipe manufacturer, but because it has variations according to JIS tolerances, it does not have the desired cross-sectional shape. This will cause a decrease in accuracy during forging of the tooth mold due to press fitting and a shortening of the life of the tool such as the tooth mold. In the present invention, an intended cross-sectional shape is obtained by plastic working (swaging and ionizing). That is, in FIG. 1, 10 is a steel base tube, and 12 is a swaging die. At the stage (a), the raw tube 10 is held by an appropriate means, and then the die 12 is moved in the direction of arrow a. Step (b) shows the state where the die 12 has moved. The diameter is reduced to the inner diameter of the die 12. Thereafter, the die 12 is moved back in the opposite direction as indicated by a ′, and is removed from the base tube 10 after the diameter reduction. In this way, the diameter reduction of the raw tube 10 by plastic working is completed by swaging.
[0028]
Next, a forming process to a predetermined shape, such as the modification of the cross-sectional shape of the raw tube 10, will be described. In this embodiment, in order to secure the tooth width at both ends of the rack at the time of rack forging in this process described later. The cross-section of the cross section is made. In other words, at the time of rack forging, the forging core bar head is pressed into the base tube to project the radial meat, and a tooth mold corresponding to the die is formed on the base pipe. At both ends, there is a lot of meat escape in the axial direction, the flow of meat in the width direction is insufficient, the tooth width is shortened, and the rack teeth tend to be boat-shaped when viewed from above. To eliminate the tendency of the tooth width at both ends of the rack to be insufficient, and to obtain the necessary tooth width at both ends of the rack, obtain a tube shape with a modified cross section so that the wall thickness at both ends of the tube can be increased. I am doing so. That is, in (C), the raw tube cross-section forming means is composed of a cored bar 14 and a predetermined shape imparting clamp mold 16. The predetermined shape imparting clamp mold 16 includes upper and lower halves 16-1 and 16-2. In the step (c), the cored bar 14 is inserted into the base tube 10. The cored bar 14 is provided with an enlarged head 14-1 for ionizing at the tip. On the other hand, the upper and lower halves 16-1 and 16-2 are in an open state. From this state, the upper and lower half molds 16-1 and 16-2 are moved so as to face each other as shown by arrows, or either one of the half molds 16-1 and 16-2 is moved, as shown in (d). Thus, the upper and lower halves 16-1 and 16-2 are united, and the outer diameter of the raw tube 10 contacting the upper and lower halves 16-1 and 16-2 is somewhat reduced. FIG. 2 (A) shows the cross-sectional shapes of the upper and lower halves 16-1 and 16-2 at the center of the mold along the line AA in (d). -1a and 16-2a are semicircular. On the other hand, FIG. 2 (B) shows the cross-sectional shapes of the upper and lower halves 16-1 and 16-2 at both ends of the mold along the line BB in (d). The inner peripheral surface 16-2b has a semicircular shape, but the upper split mold 16-2 has an inner peripheral surface 16-2a having a deformed shape in which both ends are swollen. Needless to say, it is also possible to easily make the BB line portion, that is, the (B) cross-sectional shape of FIG. 2 nonuniform, over the entire length of the ionizing process including the AA line portion.
[0029]
The cross section deforming step of the raw tube is performed by swaging by pulling out the cored bar 14 in the direction of arrow b from the state of FIG. When the core metal 14 is pulled out, the head portion 14-1 is somewhat larger than the inner diameter of the portion of the base tube 10 held by the predetermined shape-giving clamp die 16, while There is a swollen portion 16-1b on the inner periphery. Therefore, the flow of meat due to swaging is also induced in the swollen portion 16-1b. As shown in FIG. 2 (B), the upper and lower shoulder portions 100 of the base tube 10 at both ends of the mold are thick. It has a deformed cross section. (E) shows a state after the core bar 14 is removed, and also shows a portion 100 of the raw tube that becomes both ends of the rack tooth that has been thickened by cross-sectional deformation. It is possible to secure a tooth width at both ends of the rack in rack forging by making the base tube 10 thick at both ends of the mold.
[0030]
In the above description of the embodiment, the deforming is to secure the tooth width at both end portions of the mold 16 by thickening the portion of the raw tube 10 at both ends of the mold. This idea can also be used as a solution for measures against meat escape at both ends in the tooth width direction. That is, even in the central part of the mold, flesh escape can occur at both ends in the tooth width direction, which causes insufficient tooth height at both ends in the tooth width direction. As a countermeasure, both ends of the tooth mold can be modified according to FIG. 2 (b) even in the center of the mold so as to be thicker. Due to aging, there is a surplus in the amount of meat at both ends in the tooth width direction, so that a lack of tooth height at both ends of the tooth width can be avoided.
[0031]
In the above-described cross-section deforming process, the raw tube 10 is strongly clamped by the predetermined shape imparting clamp die 16 and the wall thickness is strongly reduced by the core metal 14 to reduce the thickness (ironing). The surface roughness of the inner and outer diameters is obtained by transferring the surface roughness of the predetermined shape-imparting clamp die 16 and the cored bar 14, and easily realizes processing with an inner / outer diameter tolerance of several μ along with the surface roughness of 1 to 2 μm. Can do.
[0032]
3 to 7 show a mold 18 for forming an inclined tooth type rack member from a preformed pipe as described above. The rack molding die 18 includes an upper die 20 and a lower die 22. The upper mold 20 includes a support member 24, a holder 26, a tooth mold 28, a lock piece 30, and rack protruding pins 32 and 33. The tooth mold 28 has an uneven portion 28-1 on its lower surface, and the uneven portion 28-1 has a shape according to the tooth shape of the rack member to be forged. FIG. 7A is a plan view of the rack member 34 formed by forging. In this embodiment, the rack member 34 to be formed by forging is intended to have inclined teeth 34-1. In FIG. 5, the rack tooth-shaped uneven portion 28-1 of the tooth mold 28 also has an inclined shape corresponding to the tooth mold of the rack member. The holder 26 is fixed to the support member 24 by an appropriate means. The holder 26 forms a long and narrow tooth-type embedded opening 26 </ b> A for accommodating the tooth-type 28. The tooth mold 28 is attached to the embedded opening 26 </ b> A with the liner 33 interposed between the contact surface with the support member 24. As shown in FIG. 3, when the tooth mold 28 is mounted in the opening 26 </ b> A, the uneven portion 28-1 on the lower surface of the tooth mold 28 protrudes somewhat from the tooth mold holder 26. The lock piece 30 is driven between the opposing wall surfaces of the opening 26A in a state in which the tooth mold 28 is mounted, and the lock piece 30 has a somewhat tapered shape. 26 can be firmly fixed. The holder 26 includes a cylinder portion 26-1, and rack protruding pins 32 and 33 are slidably inserted into the cylinder portion 26-1. The rack ejecting pins 32 and 33 are projected and retracted by switching the direction in which the hydraulic pressure is introduced into the cylinder portion 26-1, and the projecting operation allows the rack member after forging to be ejected. The rack protrusion pins 32 and 33 are only required to be able to be pulled out by hydraulic pressure, and seal parts required in a normal hydraulic cylinder can be omitted, and the structure can be simplified accordingly. In addition, although the hydraulic piping and switching valve for the protrusion / retraction operation of the rack protrusion pins 32 and 33 are necessary, the illustration is omitted for simplification.
[0033]
Prior to the rack tooth forging, the upper die 20 and the lower die 22 are moved together so as to face each other through the base tube 10, and this combined state is shown in FIG. At this time, as shown in FIGS. 5 (a) and 6 (a), the uneven portion 28-1 of the tooth mold 28 abuts on the upper surface of the element tube 10, and the uneven portion 28-1 of the tooth mold 28 abuts. The rack forming surface 10A, which is the upper surface of the tube 10, is crushed slightly flat. The portions 100 thickened by swaging in the preforming step shown in FIG. 6 (a) are located at both ends of the rack forming surface 10A, which is crushed to a slightly flat shape.
[0034]
In FIG. 3, a forging metal core 40 is disposed so as to face the opening of the raw tube 10. In the figure, the forging core 40 is shown only on one side, but as disclosed in the applicant's previous application, the forging core 40 is provided on both sides, and the core 40 is press-fitted into the base tube 10. The rack member is forged and formed by alternately and repeatedly performing left and right. The cored bar 40 has a guide part 40-1 at the tip, a plurality of enlarged heads 40-2 and 40-3 whose working diameter gradually increases, and oil groove parts 40-4 behind the enlarged heads 40-2 and 40-3, 40-5, and the expanded heads 40-2 and 40-3 act on the portion of the tube that has been flattened by the tooth mold 28, so that the material in the recesses in the concavo-convex portion 28-1 is provided in the radial direction. Thus, the rack teeth corresponding to the shape of the concavo-convex portion 28-1 can be forged into the base tube. That is, in FIG. 5 and FIG. 6, (B) shows a state in which the core metal 40 is press-fitted into the base tube 10, and the meat of the upper surface flat portion 10 </ b> A of the base tube is projected outwardly by insertion of the core metal 40, The rack portion 34-1 shown in FIG. 7 (a) is formed by the meat portion indicated by 10 ″ flowing into the concave portion of the concave / convex portion 28-1 of the tooth die 28. Then, in the central portion of the tooth die shown in FIG. The flow of meat over the entire width of the teeth is relatively smooth, and the desired tooth width can be obtained.However, the shafts at both ends of the tooth mold (both ends of the rack forming surface 10A) are shafts. As it is easy to escape in the direction, the tooth width after forging becomes insufficient, and conventionally, it has been easy to become a rack member having boat-shaped rack teeth having a large tooth width at the center and small at both ends as shown in FIG. However, in the present invention, the raw tube that contacts the concavo-convex portion 28-1 of the tooth mold 28 is used. As shown in Fig. 6, both ends of the center are deformed so that both sides become thick portions 100. Therefore, as shown in Fig. 6 (B), the cored bar 40 is also inserted into both ends of the tooth width at the time of press-fitting. Since there is an allowance for fluidization, as shown in FIG. 7 (a), it is possible to provide a rack member 34 having a tooth portion 34-1 having a uniform width from the center to both ends.
[0035]
As described above, at the time of overhang forming forging from the inner diameter side by the core metal, the front and rear end portions of the tooth die forging in the longitudinal direction of the shaft are open portions where the metal flow easily escapes. As shown in FIG. 2 (B), by deforming so that it becomes t2 with respect to the thickness t1 on the center side of the tooth width of the tooth die forging part, as shown in FIG. Securing a predetermined tooth width at the open part where the clearance is likely to occur is realized with only one type. Further, both the left and right end portions in the axial longitudinal direction of the tooth die forging portion are open portions where the metal flow easily escapes, but similar deformation can be performed also in this portion. The desired tooth width can be ensured by increasing the thickness of the open portion where the metal flow easily escapes. Conventionally, it has been dealt with by using a plurality of irregularly shaped core bars, but it still cannot deal with the escape in the longitudinal direction of the shaft. The present invention is excellent in that it can cope with both the clearance in the tooth width direction and the axial direction at the same time by deforming only one type.
[0036]
8 and 9 show another embodiment of the forged metal core according to the present invention. In this embodiment, the cored bar 140 has its enlarged heads 140-1 and 140-2 inclined with respect to the center line 143. The inclination angle of the extended heads 140-1 and 140-2 is represented by θ, and this inclination angle is determined simultaneously by a single extended head 140-1 or 140-2 with respect to a plurality of adjacent tooth spaces of the tooth mold 128. The overhanging action (the flow of the meat of the material with respect to the tooth mold 128) is enabled. For example, in FIG. 9, the first enlarged head 140-1 overhangs the adjacent grooves 128-1 and 128-2 of the tooth mold 128, and the second enlarged head 140-2 is adjacent to the tooth mold 128. A state in which the grooves 128-3 and 128-4 are overhanging is shown. The tooth shape from the cored bar 140 by the simultaneous overhanging action by one enlarged head 128-1 or 128-2 with respect to the adjacent grooves 128-1, 128-2 or 128-3, 128-4 of the tooth shape 128 as described above. The load applied to 128 can be dispersed, and the life of the core bar and the tooth mold can be extended.
[0037]
10 and 11 show a cored bar 240 according to another embodiment. The cored bar 240 is of a gradient type and includes an enlarged head portion that is gently inclined, and an oil groove 240-1 that is inclined in a mountain shape at the enlarged head portion. Are formed in parallel at intervals. Therefore, it becomes 4-6 steps or more of continuous meshing, and a smoother movement of the load can be obtained. That is, in this embodiment, it is possible to achieve a single sloped surface that allows the amount of overhang corresponding to 4 to 6 steps of head expansion to be continued. And since many oil grooves can be easily provided by post-processing, providing an inclination in an oil groove, the processing cost of the core metal which needs around 10 can be reduced significantly. As an alternative embodiment, a multitude of parallel inclined grooves may be used instead of the chevron grooves 240-1.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional area management process of a raw tube by swaging and ionizing.
2 is a view showing a cross-sectional shape of a blank after profile modification, (A) is a cross-sectional view taken along line AA in FIG. 1, and (B) is a cross-sectional view taken along line BB in FIG. FIG.
FIG. 3 is a cross-sectional view of a rack bar forging device using a raw pipe.
4 is a bottom view of a mold in the rack bar forging device of FIG. 3. FIG.
5 is a cross-sectional view taken along the line VV in FIG. 3. FIG. 5 (a) shows when flattened, and FIG.
6 is a cross-sectional view taken along the line VI-VI in FIG. 3. (A) is when flattened, and (B) is when the core metal is press-fitted.
FIG. 7 is a plan view of a rack bar obtained by forging. FIG. 7A shows the present invention, and FIG. 7B shows a rack bar obtained by the prior art.
FIG. 8 is a view showing another embodiment of the cored bar.
9 is a cross-sectional view at the time of forging in a metal mold using the cored bar of FIG. 8. FIG.
FIG. 10 is a view showing still another embodiment of the cored bar.
11 is a cross-sectional view at the time of forging in a metal mold using the cored bar of FIG. 10;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Steel base pipe 12 ... Swaging die 14 ... Core metal 16 ... Clamp metal mold | die 18 ... Rack molding-like metal mold 20 ... Upper mold | type 22 ... Lower mold | type 24 ... Support member 26 ... Holder 28 ... Tooth mold 30 ... Rock piece
32, 33… Rack protruding pin

Claims (1)

素管をその外周側よりラック成形用型によって素管のラック成面を平坦に圧潰した状態にて保持し、素管に心金を圧入することにより素管の平坦に圧潰されたラック成形面に前記ラック成形用型に応じた歯形状を鍛造工程により成形するようにした中空ラック部材の製造方法において、素管の圧潰及びこれに引き続く芯金圧入による歯形の成形よりなる前記鍛造工程に先立ち、スエージングによる縮径を行い、次いで縮径された素管の外径を、素管のラック成形面の両端部に対応する両端内周部に円形形状からの半径外方への膨れ部分を形成したクランプ金型により保持しつつアイヨニングによる内径しごきを行うことによって素管の内外径を調整すると共にラック成形面の両端部に対応する部位における素管の断面形状を両肩の張った異形に成形する工程を具備し、内外径調整及び異形成形後の素管に対し素管の圧潰及びこれに引き続く芯金圧入による歯形の成形よりなる前記鍛造工程に付すことを特徴とする中空ラック部材の製造方法。Mother tube was held in a state where the flat crush the rack forming the shape surface of the base pipe by the rack molding die from the outer peripheral side thereof, which is flat crush raw tube by press-fitting the mandrel base tube rack in the method for manufacturing the tooth shape corresponding to the rack molding die the molding surface hollow rack member so as to molded by forging, consisting molding of teeth by crushing and subsequent metal core pressed into this raw tube the forging Prior to the process, the diameter is reduced by swaging, and the outer diameter of the reduced diameter pipe is then transferred from the circular shape to the outer radius of both ends corresponding to both ends of the rack forming surface of the raw pipe. stretched base tube cross section at a site corresponding to both ends of the rack forming surface while adjusting the inner and outer diameters of the blank tube by performing internal diameter ironing by ironing while holding the clamp mold in which the blister portion formed of the shoulders Hollow comprising a step of forming a profile, characterized in that subjecting the forging process to blank tube after the adjustment and profiled inner and outer diameters consisting molding of teeth by crushing and subsequent metal core pressed into this raw tube A method for manufacturing a rack member.
JP2002118785A 2002-04-22 2002-04-22 Method for manufacturing hollow rack member Expired - Fee Related JP4077236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002118785A JP4077236B2 (en) 2002-04-22 2002-04-22 Method for manufacturing hollow rack member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002118785A JP4077236B2 (en) 2002-04-22 2002-04-22 Method for manufacturing hollow rack member

Publications (2)

Publication Number Publication Date
JP2003311366A JP2003311366A (en) 2003-11-05
JP4077236B2 true JP4077236B2 (en) 2008-04-16

Family

ID=29535528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002118785A Expired - Fee Related JP4077236B2 (en) 2002-04-22 2002-04-22 Method for manufacturing hollow rack member

Country Status (1)

Country Link
JP (1) JP4077236B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006099661A1 (en) * 2005-03-23 2006-09-28 Bishop Innovation Limited Steering rack and method of manufacture thereof
EP1769859B1 (en) * 2005-09-29 2008-08-20 Matsuoka, Minako Method and apparatus for producing hollow rack bar
KR100799935B1 (en) * 2006-11-27 2008-01-31 주식회사 코우 Rack forming method of rack bar
KR100794927B1 (en) * 2007-04-06 2008-01-21 황호진 Automobile hollow style steering rack bar and the manufacture method
KR100964881B1 (en) 2008-01-31 2010-06-23 주식회사 코우 spline tube manufacturing method for steering apparatus
JP5067468B2 (en) * 2010-04-07 2012-11-07 株式会社デンソー Auto-frettage processing apparatus, auto-frettage processing method, and method of manufacturing a workpiece subjected to auto-frettage processing
JP2012051002A (en) * 2010-09-01 2012-03-15 Mitsuboshi Seisakusho:Kk Inner shaft of telescopic shaft and method of manufacturing the same
JP6855327B2 (en) * 2017-05-26 2021-04-07 高周波熱錬株式会社 Rack bar manufacturing method and manufacturing equipment
CN109513794B (en) * 2018-12-29 2024-01-19 西南铝业(集团)有限责任公司 Large-specification hollow profile stretching and straightening equipment for aviation and core rod thereof
JP7256379B2 (en) * 2019-04-15 2023-04-12 日本製鉄株式会社 Structural member manufacturing method and structural member manufacturing apparatus

Also Published As

Publication number Publication date
JP2003311366A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
KR100815463B1 (en) Steering rack manufacture
JP4077236B2 (en) Method for manufacturing hollow rack member
US7225541B2 (en) Method for producing hollow rack bar
EP1032715B1 (en) Method of manufacturing ejector pin sleeves
JP2005059097A (en) Forging method, forged article and forging equipment
US3818746A (en) Rod end cold forming process
JP2002273543A (en) Parking gear having shaft, and manufacturing method thereof
KR20070094448A (en) Method and apparatus for plastic working of hollow rack and hollow rack
JP2005118789A (en) Method for forming gear-shaped member with boss and this member
JP2002178095A (en) Manufacturing method of tubular member having rack
JPS61235033A (en) Production of gear wheel
JP3331499B2 (en) Bush processing method
JPH0890135A (en) Joint metal tool and manufacture of this half-made product
GB2088256A (en) Manufacturing toothed racks
JP3772084B2 (en) Manufacturing method of tubular member with rack
JP3405372B2 (en) Manufacturing method of cam lobe for assembly
KR101002987B1 (en) A method of producing hollow rack member
JP3494349B2 (en) Helical gear manufacturing method
RU2107574C1 (en) Process for manufacturing semi-tubular rivets
JPS58122144A (en) Manufacture of gear blank material having dog hole, and its device
JP2001058239A (en) Manufacture of hollow rack bar and device therefor
JP2003343672A (en) Forming method of hollow shaft pulley for belt type continuously variable transmission
JPS58315A (en) Working method of turbine blade
JPH0679392A (en) Gear forging method
JP2868319B2 (en) Internal spline with tooth chamfer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees