JP4077051B2 - Battery electrode substrate and method for manufacturing battery electrode substrate - Google Patents

Battery electrode substrate and method for manufacturing battery electrode substrate Download PDF

Info

Publication number
JP4077051B2
JP4077051B2 JP01446596A JP1446596A JP4077051B2 JP 4077051 B2 JP4077051 B2 JP 4077051B2 JP 01446596 A JP01446596 A JP 01446596A JP 1446596 A JP1446596 A JP 1446596A JP 4077051 B2 JP4077051 B2 JP 4077051B2
Authority
JP
Japan
Prior art keywords
electrode substrate
mat
battery electrode
battery
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01446596A
Other languages
Japanese (ja)
Other versions
JPH09213341A (en
Inventor
徹 森本
敏直 伊藤
Original Assignee
フクイシンター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フクイシンター株式会社 filed Critical フクイシンター株式会社
Priority to JP01446596A priority Critical patent/JP4077051B2/en
Publication of JPH09213341A publication Critical patent/JPH09213341A/en
Application granted granted Critical
Publication of JP4077051B2 publication Critical patent/JP4077051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電池用電極基板の改良に関する。
【0002】
【従来の技術】
図7は円筒形リチウム二次電池の構成原理図であり、円筒形リチウム二次電池100は、正極リード101を備えた正極基板102と、セパレータ103と、負極リード104を備えた負極基板105をこの順に重ねたものを、更に渦巻状にして電池ケース107に収納し、絶縁パッキン108を介して封口板109で封じたものである。
前記正極基板102は、正極用活物質合剤を結合剤と混ぜてペーストとし、このペーストをアルミニウム箔に塗布し、乾燥させたものが一般に採用されている。前記負極基板105は、負極用活物質合剤を結合剤と混ぜてペースト状とし、このペーストを銅箔に塗布し、乾燥させたものが一般に使用されている。
【0003】
【発明が解決しようとする課題】
上記電池の性能は正極用活物質合剤及び負極用活物質合剤の充填量に依存するので正極用活物質合剤/負極用活物質合剤を共に厚く塗る必要がある。
しかし、上記正極基板102は、アルミニウム箔の表面が平坦であるため一度に多量のペーストを塗ることが難かしく、塗布、乾燥を何回か繰り返して、膜厚を大きくするしかなく、且つ接合力が弱いため電池ケースに組込むために折り曲げると正極用活物質合剤が剥離し、脱落することがあり、膜厚を大きくすることは難しいと云う問題がある。
【0004】
同様に、上記負極基板105は、銅箔の表面が平坦であるため一度に多量のペーストを塗ることが難かしく、塗布、乾燥を何回か繰り返して、膜厚を大きくするしかなく、且つ接合力が弱いため電池ケースに組込むために折り曲げると負極用活物質合剤が剥離し、脱落することがあり、膜厚を大きくすることは難しいと云う問題がある。
すなわち、従来は正極/負極の基板にはともに表面が滑らかな金属箔が用いられるため、十分な活物質合剤の塗布量に限界があり、更に電池へ組込み際に活物質合剤が脱落すると云う問題があった。
【0005】
【課題を解決するための手段】
本発明者等は、金属箔にペーストを塗布する従来の技術に代る技術を模索する中で、微細な金属繊維に着目した。すなわち、金属繊維をシートにしてこれにペーストを塗布すればペーストは容易に金属繊維間に滲み込み、付着性が格段に向上するという特徴がある。しかし、金属繊維の集合体であるから「ほつれ」の不都合がある。さらに、研究を重ね、ほつれを克服し得る技術を開発することに成功した。
【0006】
具体的には、請求項1の電池用電極基板は、多孔率が50〜98%で且つ、金属繊維のマット状不織布を糸で縫ってほつれ防止を施したものであることを特徴とする。
糸の種類は電池用の活物質合剤によって異なるが、ナイロン繊維製糸、ポリエステル繊維製糸などの合成繊維製糸若しくはカーボン繊維製糸、及びガラス繊維製糸などの電池構成材(活物質剤など)に対して不活性のものが好ましい。
正極用及び負極用活物質合剤がマット状不織布によく滲み込むので正極用及び負極用活物質合剤の脱落の心配がない。
そして、全体を不活性な糸で縫ったので、電池に組込んだとき副反応(局部電池の発生)などの問題がない。
従って、曲げに強く、高容量の正極用電極基板及び負極用電極基板を容易に提供することができる。
【0009】
請求項は、金属繊維を、アルミニウム若しくは銅としたことを特徴とする。
入手容易なアルミニウム若しくは銅を採用したので、電極基板のコストを下げることができる。
【0010】
請求項は、金属繊維のマット状不織布を第1ローラで圧下して密度を高める圧下工程と、圧下されたマット状不織布をミシンにて全体的に縫う縫合工程と、第2ローラで上下面を平坦にする仕上工程とからなる電池用電極基板の製造方法であり、電極基板を大量に安価に生産できる。
【0012】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。
図1は本発明に係る電池用電極基板の断面拡大図であり、電池用電極基板1は、金属繊維のマット状不織布2と、このマット状不織布2をばらばらにならぬよう縫い合わせる縫い糸3・・・(・・・は複数を示す。以下同様。)とからなる。
【0013】
本実施例における金属繊維は電極基板材料であり、安価で入手容易なアルミニウム(含むアルミニウム合金)や銅(含む銅合金)が好適である。
また、金属繊維の不織布はアルミニウム、銅などの電極基板材料の微細繊維をランダムウエバー機やカード機にて不織布(ウェブ)したものである。
さらに金属箔は120μm程度のアルミニウム、銅の薄板である。
【0014】
図2は参考図であり、電池用電極基板10は、金属繊維のマット状不織布11と、このマット状不織布11の片面にのみ被せた金属箔12と、これらを縫い合わせる縫い糸13・・・とからなる。
【0015】
図3は参考図であり、電池用電極基板20は、金属繊維のマット状不織布21と、このマット状不織布21の両面に被せた金属箔22,22と、これらを縫い合わせる縫い糸23・・・とからなる。
【0016】
図4は参考図であり、電池用電極基板30は、金属繊維のマット状不織布31と、このマット状不織布31をばらばらにならぬよう縫い止めるニードルループ32・・・とからなる。
【0017】
以上に述べた電池用電極基板の製造方法を次に説明する。
図5は電池用電極基板の製造要領図であり、金属繊維のマット状不織布2・・・を、第1ローラ41で圧下して緻密にし、次に縫い針43,ボビン44からなるミシン42を用いて縫い糸3(ナイロン繊維製糸、ポリエステル繊維製糸などの合成繊維製糸若しくはカーボン繊維製糸、及びガラス繊維製糸など)で全体を縫上げ、第2ローラ45で仕上げる。ミシン42をかけたことで、上下面に凹凸ができるが、この凹凸は第2ローラ45を通すことで解消できる。
出来上がったものが、図1に示す電池用電極基板1である。
【0018】
更に、図5において、前記金属繊維のマット状不織布11・・・の片面に金属箔12を添えて縫い糸13を用いてミシン42で縫い合わせれば、図2に示す電池用電極基板10が製造できる。
【0019】
同様に、図5において、前記金属繊維のマット状不織布21・・・の両面に金属箔22,22を添えて前記縫い糸23を用いてミシン42で縫い合わせれば、図3に示す電池用電極基板20が製造できる。
【0020】
図6は参考図であり、金属繊維のマット状不織布31・・・を、第1ローラ41で圧下して緻密にし、次にニードルパンチ機46のかぎ針47・・・を用いてニードルパンチ処理(かぎ針47・・・で金属繊維を引張り上げ、得られたニードルループ32・・・で繊維同士を絡ませる処理)をした後、第2ローラ45で所定の厚さに仕上げる。ニードルパンチ処理で、上下面に凹凸ができるが、この凹凸は第2ローラ45を通すことで解消できる。
出来上がったものが、図4に示す電池用電極基板30である。
【0021】
【実施例】
以下、本発明に係る実施例を説明するが、本発明はこれに限定されるものではない。
実施例1、2及び参考例1〜6
ウェブ(金属繊維をマット状不織布にしたもの)の材質、片面乃至は両面に載せた金属箔の有無及び有る場合にはその材質、縫合方法、多孔率及び電極基板の良否を表1に示す。
【0022】
【表1】

Figure 0004077051
【0023】
表1に加えて、実施例毎の詳細を以下に述べる。
実施例1;
熔融紡糸法により製造した繊維径約50μm、長さ100〜500mmのアルミニウム繊維をカード(金属繊維を解繊、次いで均一に散布し、マット状不織布にする機械)に導入して得た、厚さ約3mm、面密度405g/m2、多孔率約95%のアルミニウムウェブ(マット)を、図5に基づいて、先ず、ロールギャップを1.5mmに設定した第1ローラ41を通して、厚さ約1.5mm、面密度405g/m2、多孔率約90%で表面が平坦なウェブを得た。
このウェブを上糸ならびに下糸にポリエステル繊維製糸(糸番号50)を用い、縫い目長さを5mmに設定した工業ミシンにて直線縫いで縦及び横ピッチが20mmの格子状に縫い合わせた。これをロールギャップを1.5mmに設定した第2ローラ45に通して、繊維同士が良く絡まって繊維の脱落が無い、厚さ約1.5mm、多孔率90%の図1に示す形態の(正極)基板1を得た。
【0024】
実施例2;
線引き切断法により製造した繊維径約50μm、長さ30〜100mmの銅繊維錐をランダムウエバー機に導入して得られた、厚さ約3mm、面密度1,345g/m2、多孔率約95%の銅ウェブを、図5に基づいて、先ず、ロールギャップを1.5mmに設定した第1ローラ41を通して、厚さ約1.5mm、面密度1,345g/m2、多孔率約90%で表面が平坦なウェブを得た。
このウェブを上糸ならびに下糸にポリエステル繊維製糸(糸番号50)を用い、縫い目長さを5mmに設定した工業ミシンにて直線縫いで縦及び横ピッチが20mmの格子状に縫い合わせた。これをロールギャップを1.5mmに設定した第2ローラ45に通して、繊維同士が良く絡まって繊維の脱落が無い、厚さ約1.5mm、多孔率90%の図1に示す形態の(負極)基板1を得た。
【0025】
参考例1
実施例1にアルミニウム箔(100μm)の片面張り付けを加えたものであり、繊維同士が良く絡まって繊維の脱落の無い、電気伝導性の良い、強度の大きい、厚さ約1.5mm、マット部分の多孔率90%の図2に示す形態の(正極)基板10を得た。
【0026】
参考例2
実施例2に銅箔(100μm)の片面張り付けを加えたものであり、繊維同士が良く絡まって繊維の脱落の無い、電気伝導性の良い、強度の大きい、厚さ約1.5mm、マット部分の多孔率90%の図2に示す形態の(負極)基板10を得た。
【0027】
参考例3
実施例1にアルミニウム箔(50μm)の両面張り付けを加えたものであり、繊維同士が良く絡まって繊維の脱落の無い、電気伝導性の良い、強度の大きい、厚さ約1.5mm、マット部分の多孔率90%の図3に示す形態の(正極)基板20を得た。
【0028】
参考例4
実施例2に銅箔(50μm)の片面張り付けを加えたものであり、繊維同士が良く絡まって繊維の脱落の無い、電気伝導性の良い、強度の大きい、厚さ約1.5mm、マット部分の多孔率約90%の図3に示す形態の(負極)基板20を得た。
【0029】
参考例5
熔融紡糸法により製造した繊維径約50μm、長さ100〜500mmのアルミニウム繊維をカードに導入して得た、厚さ3mm、面密度405g/m、多孔率約95%のアルミニウムウェブ(マット)を、図6のニードルパンチ法で処理した。
先ず、ロールギャップを1.5mmに設定した第1ローラ41を通して、厚さ約1.5mm、面密度405g/m、多孔率約90%で表面が平坦なウェブを得た。
かぎ針47のピッチを7mmに設定したニードルパンチ機46でニードルパンチ処理をし、ロールギャップを1.5mmに設定した第2ローラ45を通して、繊維同士が良く絡まって繊維の脱落が無い、厚さ約1.5mm、多孔率90%の図4に示す形態の(正極)基板30を得た。
【0030】
参考例6
線引き切断法により製造した繊維径約50μm、長さ30〜100mmの銅繊維錐をランダムウエバー機に導入して得られた、厚さ3mm、面密度1,345g/m、多孔率約95%の銅ウェブを、図6のニードルパンチ法で処理した。
先ず、ロールギャップを1.5mmに設定した第1ローラ41を通して、厚さ約1.5mm、面密度1,345g/m、多孔率90%で表面が平坦なウェブを得た。
かぎ針47のピッチを7mmに設定したニードルパンチ機46でニードルパンチ処理をし、ロールギャップを1.5mmに設定した第2ローラ45を通して、繊維同士が良く絡まって繊維の脱落が無い、厚さ約1.5mm、多孔率90%の図4に示す形態の(負極)基板30を得た。
【0031】
尚、電極基板の多孔率が少な過ぎると正極用活物質合剤及び負極用活物質合剤の充填量が減少し、電池容量の増加が期待できない。逆に、多孔率が過多になると、電極板の強度の低下、電気伝導度の低下、正負極用活物質合剤の保持力の低下を招く。従って、多孔率は、50〜98%が好しく、その内でも、60〜95%が最適である。
【0032】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1の電池用電極基板は、多孔率が50〜98%で且つ、金属繊維のマット状不織布を糸で縫ってほつれ防止を施したものであることを特徴とする。
糸の種類は電池用の活物質合剤によって異なるが、ナイロン繊維製糸、ポリエステル繊維製糸などの合成繊維製糸若しくはカーボン繊維製糸、及びガラス繊維製糸などの電池構成材(活物質剤など)に対して不活性のものが好ましい。
正極用及び負極用活物質合剤がマット状不織布によく滲み込むので正極用及び負極用活物質合剤の脱落の心配がない。
そして、全体を不活性な糸で縫ったので、電池に組込んだとき副反応(局部電池の発生)などの問題がない。
従って、曲げに強く、高容量の正極用電極基板及び負極用電極基板を容易に提供することができる。
【0035】
請求項は、金属繊維を、アルミニウム若しくは銅としたことを特徴とする。 入手容易なアルミニウム若しくは銅を採用したので、電極基板のコストを下げることができる。
【0036】
請求項は、金属繊維のマット状不織布を第1ローラで圧下して密度を高める圧下工程と、圧下されたマット状不織布をミシンにて全体的に縫う縫合工程と、第2ローラで上下面を平坦にする仕上工程とからなる電池用電極基板の製造方法であり、電極基板を大量に安価に生産できる。
【図面の簡単な説明】
【図1】 本発明に係る電池用電極基板の断面拡大図
【図2】 参考図
【図3】 参考図
【図4】 参考図
【図5】 電池用電極基板の製造要領図
【図6】 参考図
【図7】 円筒形リチウム二次電池の構成原理図
【符号の説明】
1,10,20,30…電池用電極基板、2,11,21,31…金属繊維のマット状不織布、3,13,23…縫い糸、12,22…金属箔、32…ニードルループ、41…第1ローラ、42…ミシン、43…縫い針、44…ボビン、45…第2ロール、46…ニードルパンチ機、47…かぎ針。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement of a battery electrode substrate.
[0002]
[Prior art]
FIG. 7 is a structural principle diagram of a cylindrical lithium secondary battery. A cylindrical lithium secondary battery 100 includes a positive electrode substrate 102 having a positive electrode lead 101, a separator 103, and a negative electrode substrate 105 having a negative electrode lead 104. The layers stacked in this order are further spirally accommodated in the battery case 107 and sealed with a sealing plate 109 via an insulating packing 108.
As the positive substrate 102, a paste obtained by mixing a positive electrode active material mixture with a binder and applying the paste to an aluminum foil and drying is generally employed. The negative electrode substrate 105 is generally used by mixing a negative electrode active material mixture with a binder into a paste, applying the paste to a copper foil, and drying the paste.
[0003]
[Problems to be solved by the invention]
Since the performance of the battery depends on the filling amount of the positive electrode active material mixture and the negative electrode active material mixture, it is necessary to apply both the positive electrode active material mixture / negative electrode active material mixture thickly.
However, since the positive electrode substrate 102 has a flat aluminum foil surface, it is difficult to apply a large amount of paste at a time. The coating and drying must be repeated several times to increase the film thickness and the bonding strength. Therefore, there is a problem that it is difficult to increase the film thickness because the active material mixture for the positive electrode may be peeled off when it is bent for incorporation into the battery case.
[0004]
Similarly, since the negative electrode substrate 105 has a flat copper foil surface, it is difficult to apply a large amount of paste at a time. The coating and drying are repeated several times to increase the film thickness, and the bonding is performed. Since the force is weak, there is a problem in that it is difficult to increase the film thickness because the negative electrode active material mixture may be peeled off when it is bent for incorporation into a battery case.
That is, since metal foil with a smooth surface is used for both positive and negative electrode substrates in the past, there is a limit to the amount of active material mixture that can be applied sufficiently, and if the active material mixture falls off when incorporated into a battery. There was a problem.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have focused on fine metal fibers while searching for an alternative technique to the conventional technique of applying a paste to a metal foil. That is, if the metal fiber is made into a sheet and the paste is applied to the sheet, the paste easily penetrates between the metal fibers and the adhesion is remarkably improved. However, since it is an aggregate of metal fibers, there is a disadvantage of “fraying”. In addition, research was successful and a technology that could overcome fraying was successfully developed.
[0006]
Specifically, the battery electrode substrate according to claim 1 is characterized in that the porosity is 50 to 98% and a mat-like nonwoven fabric of metal fibers is sewn with a thread to prevent fraying.
The type of yarn varies depending on the active material mixture for the battery, but for battery components (active material, etc.) such as nylon fiber yarn, polyester fiber yarn, synthetic fiber yarn, carbon fiber yarn, and glass fiber yarn Inactive ones are preferred.
Since the positive electrode and negative electrode active material mixture soaks well into the mat-like nonwoven fabric, there is no fear of the positive electrode and negative electrode active material mixture falling off.
Since the whole is sewn with an inert thread, there is no problem such as a side reaction (generation of a local battery) when the battery is assembled.
Therefore, it is possible to easily provide a positive electrode substrate and a negative electrode substrate which are strong against bending and have a high capacity.
[0009]
According to a second aspect of the present invention, the metal fiber is aluminum or copper.
Since easily available aluminum or copper is used, the cost of the electrode substrate can be reduced.
[0010]
The third aspect of the present invention provides a reduction process in which a mat-like nonwoven fabric of metal fibers is squeezed by a first roller to increase the density, a suturing process in which the squeezed mat-like nonwoven fabric is entirely sewn with a sewing machine, This is a method for producing a battery electrode substrate comprising a finishing step for flattening, and can be produced in large quantities at a low cost.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
With reference to the accompanying drawings of embodiments of the present invention that describes below.
Figure 1 is a cross-sectional enlarged view of the electrode substrate for a battery according to the present onset bright, battery electrode substrate 1 has a mat-like nonwoven fabric 2 of the metal fibers, sewing thread 3-sewing so as not to become the mat nonwoven fabric 2 apart (... indicates a plurality. The same shall apply hereinafter).
[0013]
Metal fibers in the real施例is an electrode substrate material, inexpensive and easily available aluminum (including aluminum alloy) or copper (including copper alloy) is preferable.
The metal fiber nonwoven fabric is a nonwoven fabric (web) of fine fibers of electrode substrate material such as aluminum, copper, etc., using a random weber machine or a card machine.
Furthermore, the metal foil is a thin plate of about 120 μm aluminum and copper.
[0014]
FIG. 2 is a reference diagram , and the battery electrode substrate 10 includes a mat-like nonwoven fabric 11 of metal fibers, a metal foil 12 covered only on one surface of the mat-like nonwoven fabric 11, and sewing threads 13 for sewing them together. Become.
[0015]
FIG. 3 is a reference diagram , and the battery electrode substrate 20 includes a metal fiber mat-like nonwoven fabric 21, metal foils 22 and 22 covered on both sides of the mat-like nonwoven fabric 21, and sewing threads 23 for sewing them together. Consists of.
[0016]
FIG. 4 is a reference diagram , and the battery electrode substrate 30 includes a mat-like non-woven fabric 31 of metal fibers, and needle loops 32... For sewing the mat-like non-woven fabric 31 so as not to be separated.
[0017]
Next, a method for manufacturing the battery electrode substrate described above will be described.
FIG. 5 is a manufacturing procedure diagram of a battery electrode substrate . A metal fiber mat-like nonwoven fabric 2... Is pressed down with a first roller 41 to be dense, and then a sewing machine 42 including a sewing needle 43 and a bobbin 44 is provided. Using the sewing thread 3 (synthetic fiber yarn such as nylon fiber yarn, polyester fiber yarn or the like, carbon fiber yarn, and glass fiber yarn), the whole is sewed and finished by the second roller 45. By applying the sewing machine 42, irregularities are formed on the upper and lower surfaces, but these irregularities can be eliminated by passing the second roller 45.
The completed product is the battery electrode substrate 1 shown in FIG.
[0018]
Furthermore, in FIG. 5, the battery electrode substrate 10 shown in FIG. 2 can be manufactured by attaching the metal foil 12 to one side of the mat-like non-woven fabric 11 ... of the metal fibers and sewing them with the sewing thread 42 using the sewing thread 13. .
[0019]
Similarly, in FIG. 5, when the metal foils 22 and 22 are attached to both surfaces of the mat-like nonwoven fabric 21... Of the metal fiber and the sewing thread 23 is used to sew together with the sewing machine 42, the battery electrode substrate shown in FIG. 20 can be manufactured.
[0020]
FIG. 6 is a reference diagram , and a metal-fiber mat-like non-woven fabric 31... Is pressed down with a first roller 41 to make it dense, and then needle punching processing using a crochet needle 47. The metal fibers are pulled up with the crooks 47... And the fibers are entangled with each other with the obtained needle loops 32. The needle punching process creates irregularities on the upper and lower surfaces, but these irregularities can be eliminated by passing the second roller 45.
The completed product is a battery electrode substrate 30 shown in FIG.
[0021]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereto.
Examples 1 and 2 and Reference Examples 1 to 6 ;
Table 1 shows the material of the web (metal fibers made into a mat-like non-woven fabric), the presence or absence of metal foil placed on one side or both sides, and the material, stitching method, porosity, and electrode substrate quality, if any.
[0022]
[Table 1]
Figure 0004077051
[0023]
In addition to Table 1, details for each example are described below.
Example 1;
Thickness obtained by introducing aluminum fiber with a fiber diameter of about 50 μm and a length of 100 to 500 mm manufactured by melt spinning method into a card (a machine that defibrates metal fibers and then uniformly sprays them into a mat-like nonwoven fabric) Based on FIG. 5, an aluminum web (mat) having a surface density of about 3 mm, an area density of 405 g / m 2 and a porosity of about 95% is first passed through a first roller 41 having a roll gap of 1.5 mm. A web having a flat surface with a thickness of 0.5 mm, an areal density of 405 g / m 2 and a porosity of about 90% was obtained.
This web was sewed into a lattice shape having a vertical and horizontal pitch of 20 mm by straight stitching with an industrial sewing machine using a polyester fiber thread (thread number 50) as the upper thread and lower thread and a stitch length of 5 mm. This is passed through a second roller 45 with a roll gap set to 1.5 mm, and the fibers are well entangled so that the fibers do not fall off, and the thickness is about 1.5 mm and the porosity is 90% (FIG. 1) ( A positive electrode) substrate 1 was obtained.
[0024]
Example 2;
Thickness of about 3 mm, surface density of 1,345 g / m 2 , porosity of about 95, obtained by introducing a copper fiber cone with a fiber diameter of about 50 μm and a length of 30 to 100 mm manufactured by a wire-drawing method into a random weber machine. % Copper web first through a first roller 41 with a roll gap set at 1.5 mm, thickness about 1.5 mm, surface density 1,345 g / m 2 , porosity about 90% A web with a flat surface was obtained.
This web was sewed into a lattice shape having a vertical and horizontal pitch of 20 mm by straight stitching with an industrial sewing machine using a polyester fiber thread (thread number 50) as the upper thread and lower thread and a stitch length of 5 mm. This is passed through a second roller 45 with a roll gap set to 1.5 mm, and the fibers are well entangled so that the fibers do not fall off, and the thickness is about 1.5 mm and the porosity is 90% (FIG. 1) ( A negative electrode) substrate 1 was obtained.
[0025]
Reference Example 1 ;
Example 1 with aluminum foil (100 μm) attached on one side, fibers are entangled well, no fibers fall off, good electrical conductivity, high strength, thickness of about 1.5 mm, mat part A (positive electrode) substrate 10 having a porosity of 90% as shown in FIG. 2 was obtained.
[0026]
Reference Example 2 ;
A copper foil (100 μm) single-sided paste is added to Example 2, the fibers are entangled well, the fibers do not fall off, the electrical conductivity is good, the strength is high, the thickness is about 1.5 mm, and the mat portion A (negative electrode) substrate 10 having a porosity of 90% as shown in FIG. 2 was obtained.
[0027]
Reference Example 3 ;
Example 1 is obtained by adding both sides of an aluminum foil (50 μm) to Example 1. The fibers are well entangled, the fibers do not fall off, the electrical conductivity is good, the strength is high, the thickness is about 1.5 mm, and the mat portion A (positive electrode) substrate 20 having a porosity of 90% as shown in FIG. 3 was obtained.
[0028]
Reference Example 4 ;
A copper foil (50 μm) single-sided paste is added to Example 2, the fibers are entangled well, the fibers do not fall off, the electrical conductivity is good, the strength is high, the thickness is about 1.5 mm, and the mat portion A (negative electrode) substrate 20 having a porosity of about 90% as shown in FIG. 3 was obtained.
[0029]
Reference Example 5 ;
Aluminum web (mat) having a thickness of 3 mm, an area density of 405 g / m 2 , and a porosity of about 95%, obtained by introducing aluminum fibers having a fiber diameter of about 50 μm and a length of 100 to 500 mm manufactured by the melt spinning method into a card. Was processed by the needle punch method of FIG.
First, a web having a flat surface with a thickness of about 1.5 mm, a surface density of 405 g / m 2 , a porosity of about 90% was obtained through a first roller 41 having a roll gap set to 1.5 mm.
The needle punching process is performed by a needle punching machine 46 in which the pitch of the crochet needle 47 is set to 7 mm, and the fibers are well entangled through the second roller 45 in which the roll gap is set to 1.5 mm. A (positive electrode) substrate 30 having the form shown in FIG. 4 having a thickness of 1.5 mm and a porosity of 90% was obtained.
[0030]
Reference Example 6 ;
Thickness of 3 mm, surface density of 1,345 g / m 2 , porosity of about 95% obtained by introducing copper fiber cones with a fiber diameter of about 50 μm and a length of 30 to 100 mm manufactured by a wire-drawing method into a random weber machine The copper web was processed by the needle punch method of FIG.
First, a web having a flat surface with a thickness of about 1.5 mm, a surface density of 1,345 g / m 2 and a porosity of 90% was obtained through a first roller 41 having a roll gap set to 1.5 mm.
The needle punching process is performed by a needle punching machine 46 in which the pitch of the crochet needle 47 is set to 7 mm, and the fibers are well entangled through the second roller 45 in which the roll gap is set to 1.5 mm. A (negative electrode) substrate 30 having a form shown in FIG. 4 having a thickness of 1.5 mm and a porosity of 90% was obtained.
[0031]
When the porosity of the electrode substrate is too small, the filling amount of the positive electrode active material mixture and the negative electrode active material mixture decreases, and an increase in battery capacity cannot be expected. On the other hand, when the porosity is excessive, the strength of the electrode plate is lowered, the electrical conductivity is lowered, and the holding power of the active material mixture for positive and negative electrodes is lowered. Accordingly, the porosity is preferably 50 to 98%, and among them, 60 to 95% is optimal.
[0032]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
The battery electrode substrate according to claim 1 is characterized in that the porosity is 50 to 98%, and a mat-like non-woven fabric of metal fibers is sewn with a thread to prevent fraying.
The type of yarn varies depending on the active material mixture for the battery, but for battery components (active material, etc.) such as nylon fiber yarn, polyester fiber yarn, synthetic fiber yarn, carbon fiber yarn, and glass fiber yarn Inactive ones are preferred.
Since the positive electrode and negative electrode active material mixture soaks well into the mat-like nonwoven fabric, there is no fear of the positive electrode and negative electrode active material mixture falling off.
Since the whole is sewn with an inert thread, there is no problem such as a side reaction (generation of a local battery) when the battery is assembled.
Therefore, it is possible to easily provide a positive electrode substrate and a negative electrode substrate which are strong against bending and have a high capacity.
[0035]
According to a second aspect of the present invention, the metal fiber is aluminum or copper. Since easily available aluminum or copper is used, the cost of the electrode substrate can be reduced.
[0036]
The third aspect of the present invention provides a reduction process in which a mat-like nonwoven fabric of metal fibers is squeezed by a first roller to increase the density, a suturing process in which the squeezed mat-like nonwoven fabric is entirely sewn with a sewing machine, This is a method for producing a battery electrode substrate comprising a finishing step for flattening, and can be produced in large quantities at a low cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional enlarged view of a battery electrode substrate according to the present onset bright [2] reference view [FIG 3] reference view [4] reference view [5] Production procedure view of the battery electrode substrate 6 ] Reference drawing [Fig. 7] Diagram of the principle of cylindrical lithium secondary battery [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,10,20,30 ... Battery electrode board | substrate, 2, 11, 21, 31 ... Matt-like nonwoven fabric of metal fiber, 3, 13, 23 ... Sewing thread, 12, 22 ... Metal foil, 32 ... Needle loop, 41 ... 1st roller, 42 ... sewing machine, 43 ... sewing needle, 44 ... bobbin, 45 ... 2nd roll, 46 ... needle punch machine, 47 ... crochet.

Claims (3)

電池用活物質合剤を塗着するための電池用電極基板において、この電池用電極基板は、多孔率が50〜98%で且つ、金属繊維のマット状不織布を糸で縫ってほつれ防止を施したものであることを特徴とする電池用電極基板。  In the battery electrode substrate for applying the battery active material mixture, the battery electrode substrate has a porosity of 50 to 98%, and a metal fiber mat-like non-woven fabric is sewn with a thread to prevent fraying. A battery electrode substrate characterized by comprising: 前記金属繊維は、アルミニウム若しくは銅であることを特徴とする請求項1記載の電池用電極基板。The metal fibers, battery electrode substrate according to claim 1 Symbol mounting, characterized in that an aluminum or copper. 金属繊維のマット状不織布を第1ローラで圧下して密度を高める圧下工程と、圧下されたマット状不織布をミシンにて全体的に縫う縫合工程と、第2ローラで上下面を平坦にする仕上工程とからなる電池用電極基板の製造方法。  A reduction process in which the mat-like nonwoven fabric of metal fibers is squeezed by the first roller to increase the density, a stitching process in which the squeezed mat-like nonwoven fabric is entirely sewn with a sewing machine, and a top and bottom surface is made flat by the second roller. The manufacturing method of the electrode substrate for batteries which consists of a process.
JP01446596A 1996-01-30 1996-01-30 Battery electrode substrate and method for manufacturing battery electrode substrate Expired - Lifetime JP4077051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01446596A JP4077051B2 (en) 1996-01-30 1996-01-30 Battery electrode substrate and method for manufacturing battery electrode substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01446596A JP4077051B2 (en) 1996-01-30 1996-01-30 Battery electrode substrate and method for manufacturing battery electrode substrate

Publications (2)

Publication Number Publication Date
JPH09213341A JPH09213341A (en) 1997-08-15
JP4077051B2 true JP4077051B2 (en) 2008-04-16

Family

ID=11861814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01446596A Expired - Lifetime JP4077051B2 (en) 1996-01-30 1996-01-30 Battery electrode substrate and method for manufacturing battery electrode substrate

Country Status (1)

Country Link
JP (1) JP4077051B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4359678B2 (en) * 2003-09-18 2009-11-04 独立行政法人産業技術総合研究所 Secondary battery electrode and secondary battery using the same
KR100625892B1 (en) * 2004-04-12 2006-09-20 경상대학교산학협력단 Thread-type flexible battery
JP5252535B2 (en) * 2007-09-03 2013-07-31 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
KR20110090099A (en) * 2010-02-02 2011-08-10 삼성전기주식회사 Electric double layer capacitor and method for manufacturing the same
WO2014038970A1 (en) * 2012-09-06 2014-03-13 Общество С Ограниченной Ответственностью "Товарищество Энергетических И Электромобильных Проектов" High-power electric double-layer capacitor

Also Published As

Publication number Publication date
JPH09213341A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
DE60118066T2 (en) battery separator
US5722134A (en) Battery electrode substrates and methods of making the same
Kritzer et al. Nonwovens as separators for alkaline batteries: an overview
JP5094729B2 (en) Alkaline battery separator, method for producing the same, and alkaline battery
US4161569A (en) Composite electrode for storage batteries, accumulators and the like
WO2004073094A1 (en) Separator material and method of producing the same, and alkali secondary battery separator
US4439916A (en) Method of making a composite electrode
DE69834977T2 (en) Alkaline battery separator and method of manufacture
JP4077051B2 (en) Battery electrode substrate and method for manufacturing battery electrode substrate
JP2003533000A (en) Multi-layer electrode
JPH09143510A (en) Metallic fiber porous body for battery electrode substrate, battery electrode substrate and its production
US4223081A (en) Composite electrode for storage batteries and the like
JP2001207362A (en) Non-woven fabric having excellent thrust resistance, method for producing the same and separator for battery
JPH1032006A (en) Metal sheet for battery electrode plate and electrode for battery using the metal sheet
JP2984561B2 (en) Battery separator and manufacturing method thereof
JP3917873B2 (en) Nonwoven fabric and battery using the same
JPH08321303A (en) Electrode for alkaline secondary battery
JP4965039B2 (en) Battery separator
JP3402335B2 (en) Nickel electrode
JP3002830B2 (en) Battery separator and manufacturing method thereof
JP2000215873A (en) Alkaline storage battery and its manufacture
JP4450518B2 (en) Battery separator and battery
EP0674810B1 (en) Battery electrode substrates and methods of making the same
JPH03129667A (en) Electrode for battery and battery using this electrode
JPH08329953A (en) Manufacture of nickel plated nonwoven fabric electrode substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term