JP4076368B2 - Heat dissipation member and electronic device - Google Patents

Heat dissipation member and electronic device Download PDF

Info

Publication number
JP4076368B2
JP4076368B2 JP2002115991A JP2002115991A JP4076368B2 JP 4076368 B2 JP4076368 B2 JP 4076368B2 JP 2002115991 A JP2002115991 A JP 2002115991A JP 2002115991 A JP2002115991 A JP 2002115991A JP 4076368 B2 JP4076368 B2 JP 4076368B2
Authority
JP
Japan
Prior art keywords
heat
heat dissipation
silicone
conductive filler
paraffin wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002115991A
Other languages
Japanese (ja)
Other versions
JP2003309386A (en
Inventor
敏勝 光永
正人 川野
康彦 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2002115991A priority Critical patent/JP4076368B2/en
Publication of JP2003309386A publication Critical patent/JP2003309386A/en
Application granted granted Critical
Publication of JP4076368B2 publication Critical patent/JP4076368B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放熱部材及びそれが組み込まれた電子機器に関する。
【0002】
【従来の技術】
近年、コンピューターやワードプロセッサー、ゲーム機、デジタルビデオカメラ、デジタルカメラ等の電子機器は、携帯用使用の小型サイズのものが好まれるようになっている。それに伴い、半導体素子も高密度化・小型化され、そこから発生する熱も増加の一途をたどり、それを効率良く除去することが重要な課題となっている。従来、この放熱は、電子機器と放熱部品との間に放熱部材を挟むことによって行われており、高熱伝導化による熱抵抗の低減化が鋭意検討されている。放熱部材としては、放熱シート、放熱スペーサー、フェーズチェンジタイプ、液状タイプがある。
【0003】
放熱シート、放熱スペーサーというのは、いずれもシリコーンをマトリックスとする、熱伝導性フィラーの充填された放熱材料であるが、硬度(柔軟性)に著しい差異がある。放熱スペーサーは、アスカーC硬度が例えば50以下の柔らかい弾性体である。主な用途は、放熱フィンを取り付けるスペースがないとか、電子機器が密閉されていて放熱フィンからの放熱が困難な場合において、電子機器のケースに直接伝熱して放熱するとき、あるいはIC・LSIの半導体素子をプリント基板に実装するときの放熱に用いられる。これに対し、放熱シートは、アスカーC硬度が二桁以上の固いゴムシートであり、主に発熱性電子部品が搭載された基板を放熱フィンに取り付ける際に用いられる。フェーズチェンジタイプというのは、加温によって形態変化する熱塑性樹脂やワックス・パラフィンに熱伝導性フィラーが充填されたものである。また、液状タイプは放熱グリースである。
【0004】
熱抵抗は、放熱部材の厚みに正比例、熱伝導率に反比例し、また放熱部材と電子部品との間の熱接触抵抗の大きさに左右されることから、放熱部材の熱抵抗の低減には、熱伝導性フィラーを高充填して放熱部材自身の熱伝導率を高めるとともに、電子部品等との接合面に微視的に追随して密着させることによって熱接触抵抗を低減させ、しかも放熱部材の厚みを極力薄くすることが理想的である。
【0005】
そこで、放熱シートや放熱スペーサーの放熱部材では、熱抵抗を小さくするために、放熱部材の厚みを薄くしたり、柔軟性を付与して熱接触抵抗を低減することが行われているが、その反面、放熱部材の取り扱い性が悪化するので、このような方法で熱抵抗を低減させるにはおのずと限界があった。
【0006】
一方、フェーズチェンジタイプの放熱部材は、密着性が良好であるので熱抵抗の低減効果が大きいが、装着時に加圧・加熱溶融が必要となるので、発熱性電子部品を損傷させる危険性がある。また、放熱シートや放熱スペーサーと比較して耐熱信頼性に劣る。さらには、装着前の厚みはできるだけ薄いことが望ましいが、薄肉化によって脆くなり、取り扱いが不便となる。
【0007】
また、液状タイプの放熱材料では、塗布工程での作業性の悪さ、塗布厚みの不均一さ、材料のしみ出し、高温に長期間曝されると硬化するなどの問題から、今日敬遠される傾向にある。
【0008】
【発明が解決しようとする課題】
本発明の目的は、上記に鑑み、取り扱いが容易で、装着時の接合面の界面熱抵抗を著しく小さくした、放熱特性に優れた放熱部材と、それが組み込まれた電子機器を提供することである。
【0009】
【課題を解決するための手段】
すなわち、本発明は、熱伝導性フィラーの充填されたシリコーン硬化物の少なくとも一面の全部又は部分に、パラフィンワックス層を形成させてなることを特徴とする放熱部材である。この場合において、パラフィンワックス層が、10質量%以下(0を含まず)のシリコーンオイル及び/又は流動パラフィンを含有してなり、熱伝導性フィラーを含まないことが好ましい。また、シリコーン硬化物が、付加反応型液状シリコーンと熱伝導性フィラーを含む配合物の固化物であり、熱伝導率1W/m・K以上、アスカーC硬度40以下の放熱スペーサーであることが好ましい。さらに、本発明は、上記放熱部材が組み込まれた電子機器である。
【0010】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0011】
放熱部材の組み込まれた電子機器の放熱特性は、放熱部材の熱抵抗と実装面の界面熱抵抗の総和で表すことができる。これが小さいほど放熱特性は大きくなる。放熱部材の熱抵抗は、マトリックスと熱伝導性フィラーの種類と両者の割合によってほぼ定まる。これに対し、界面熱抵抗は、放熱部材と相手材の間に発生するものであり、多くの場合、総熱抵抗の半分以上を占める。そのため、放熱部材の放熱特性を最大限引き出すには、この界面抵抗を極力小さくなるように実装することである。本発明で採用されたその手段は、相手材との密着性を高めるだけの、できるだけ薄いパラフィンワックス層を、熱伝導性フィラーの充填されたシリコーン硬化物からなる基材面に形成させたことである。
【0012】
このパラフィンワックス層は、室温で固体のパラフィンワックスを用いて形成させることができる。具体的には、固形のパラフィンワックス層をシリコーン硬化物の上下に置いてフィルム等で挟み、加熱ローラー等を通すことで形成させることができる。形成部位は、基材の少なくとも一面の全部又は部分である。放熱部材は、相手材との間に挟まれて実装されることを考慮し、好ましくは相対する二面の全面である。
【0013】
パラフィンワックスとしては、平均分子量300〜600であるものが好ましい。電子機器の温度が低いときには、低分子量のパラフィンワックスが用いられ、温度が高いときには高分子量のパラフィンワックスが用いられる。パラフィンワックスの具体例としては、日本精鑞社製の「パラフィンワックス・シリーズ」、「マイクロクロスタリンワックスHi―Micシリーズ」などをあげることができる。
【0014】
パラフィンワックス層の厚みは、相手材の表面凹凸を吸収し密着性を高めるために少なくとも1μmは必要である。その上限は、熱抵抗を高めないためできるだけ薄い方が望ましく、200μmまで、特に100μmまでである。このパラフィンワックス層には、相手材の表面凹凸を吸収する機能を担わせるため、熱伝導性フィラー等の異物は含有させない方がよい。しかし、この機能を助長させる働きのあるシリコーンオイル及び/又は流動パラフィンを、最大10質量%まで含有させることは好ましいことである。これによって、放熱部材を再使用する際に、相手材からの剥離が容易となる利点もある。
【0015】
パラフィンワックス層の形成される基材は、熱伝導性フィラーの充填されたシリコーン固化物である。具体的には、窒化硼素、窒化珪素、窒化アルミニウム、アルミナ等の熱伝導性フィラーとシリコーンとを含む配合物の固化物からなる放熱シート又は放熱スペーサーである。特に好ましくは、付加反応型液状シリコーンと熱伝導性フィラーを含む配合物の固化物であり、熱伝導率1W/m・K以上、アスカーC硬度40以下の放熱スペーサーである。このような放熱シート又は放熱スペーサーには市販品があるので、それを用いることができる。中でも、骨格部と、骨格部の一部又は全部と一体的に形成された樹脂部の構造からなる熱伝導性シリコーン成形体(特開2000−185328号特許請求の範囲等参照)が好ましい。
【0016】
放熱スペーサーからなる基材は、付加反応型液状シリコーン40〜60体積%と熱伝導性フィラー60〜40体積%の配合物を、フッ素樹脂やステンレス等の型に流し込み、真空脱泡等で脱泡した後、加熱固化させることによって製造することができる。付加反応型液状シリコーンとしては、一液性のシリコーン、又は末端あるいは側鎖にビニル基を有するオルガノポリシロキサンと末端あるいは側鎖に2個以上のH−Si基を有するオルガノポリシロキサンとの二液性のシリコーンが使用される。放熱スペーサーの厚みは、一般的には0.3〜20mmである。また、その平面ないし断面の形状は、三角形、四角形、五角形等の多角形、円形、楕円形等である。
【0017】
本発明の電子機器は、本発明の放熱部材が実装されたものである。実装する箇所は、例えばパソコンのMPUと放熱フィン(ヒートシンク)との間である。
【0018】
【実施例】
以下、実施例、比較例をあげて更に本発明を説明する。
【0019】
実施例1〜4、比較例1
熱伝導性フィラーの充填されたシリコーン硬化物として、放熱スペーサー(電気化学工業社製商品名「FSB020G」)用意した。このものは、熱伝導率(TO−3形状:6cm2での測定)16W/m・K、アスカーC硬度35、寸法15mm×15mm×0.2mmである。この放熱スペーサーの相対する上下面に表1に示すパラフィンワックス層を形成した。
【0020】
パラフィンワックス層の形成は、固形のパラフィンワックス(日本精鑞社製商品名「WAX115」)をシリコーン硬化物の上下に置きPET製フィルムに挟み、100℃に加熱したローラーを通すことによって行った。実施例2〜5では、パラフィンワックス層に、シリコーンオイル(信越化学社製商品名「KF−96−100CS」)又は流動パラフィン(松村石油研究所社製商品名「モレスコホワイトP−500」)の所定量を混入した。
【0021】
得られた放熱部材1を、電子機器に組む込むことを想定し、図1に示すヒーター内蔵の銅製ブロック2(伝熱面1cm角)と銅製冷却板3(8cm角)からなる熱抵抗測定機に挟みセットした。銅製ブロックをフッ素樹脂製保持ケース5で覆い、銅製ブロック側に錘4を用いて9.8Nの荷重を掛け、また銅製冷却板側からホットプレートを使用し、銅製ブロック側の温度が60℃になるまで放熱部材を加熱圧縮した。ついで、熱抵抗測定機ごと室温まで冷却し、熱抵抗を測定した。
【0022】
熱抵抗は、ヒーターに15Wの印加電力を4分間掛け、銅製ブロックと銅製冷却板の温度差を測定し、式、熱抵抗(℃/W)=温度差(℃)/印加電力(W)、により算出した。それらの結果を表1に示す。
【表1】

Figure 0004076368
【0023】
表1から、本発明の放熱部材は、極めて優れた放熱特性を発現し、またその繰り返しの使用も従来材(比較例1)と比べて何ら遜色のないものであることがわかる。
【0024】
【発明の効果】
本発明によれば、取り扱いが容易で、界面熱抵抗の著しく小さくい、放熱特性に優れた放熱部材と、それが組み込まれた電子機器が提供される。
【図面の簡単な説明】
【図1】熱抵抗測定機の概略図
【符号の説明】
1 放熱部材
2 銅製ブロック
3 銅製冷却板
4 錘
5 保持ケース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat dissipation member and an electronic device in which the heat dissipation member is incorporated.
[0002]
[Prior art]
In recent years, electronic devices such as computers, word processors, game machines, digital video cameras, digital cameras, and the like have come to be favored to be small in size for portable use. Accordingly, the density and size of semiconductor elements have also been increased, and the heat generated therefrom has been increasing, and it has become an important issue to efficiently remove them. Conventionally, this heat radiation is performed by sandwiching a heat radiation member between an electronic device and a heat radiation component, and reduction of thermal resistance by high thermal conductivity has been studied earnestly. As a heat radiating member, there are a heat radiating sheet, a heat radiating spacer, a phase change type, and a liquid type.
[0003]
The heat radiating sheet and the heat radiating spacer are both a heat radiating material filled with a heat conductive filler using silicone as a matrix, but there is a significant difference in hardness (flexibility). The heat dissipation spacer is a soft elastic body having an Asker C hardness of, for example, 50 or less. The main applications are when there is no space to install the radiation fins, or when the electronic equipment is sealed and it is difficult to radiate heat from the radiation fins, when heat is transferred directly to the case of the electronic equipment to radiate heat, or IC / LSI It is used for heat dissipation when a semiconductor element is mounted on a printed circuit board. On the other hand, the heat dissipation sheet is a hard rubber sheet having an Asker C hardness of two digits or more, and is mainly used when a substrate on which a heat generating electronic component is mounted is attached to a heat dissipation fin. The phase change type is a type in which a thermally conductive filler is filled in a thermoplastic resin or wax / paraffin that changes its shape by heating. The liquid type is heat dissipating grease.
[0004]
The thermal resistance is directly proportional to the thickness of the heat dissipation member, inversely proportional to the thermal conductivity, and depends on the size of the thermal contact resistance between the heat dissipation member and the electronic component. In addition to increasing the thermal conductivity of the heat radiating member itself by high filling with a heat conductive filler, the thermal contact resistance is reduced by microscopically following and adhering to the joint surface with the electronic component etc., and the heat radiating member It is ideal to make the thickness of this as thin as possible.
[0005]
Therefore, in the heat radiating member of the heat radiating sheet or the heat radiating spacer, in order to reduce the thermal resistance, the thickness of the heat radiating member is reduced or the flexibility is given to reduce the thermal contact resistance. On the other hand, since the handleability of the heat radiating member is deteriorated, there is a natural limit to reducing the thermal resistance by such a method.
[0006]
On the other hand, the phase change type heat radiating member has a good effect of reducing the thermal resistance because of its good adhesion, but there is a risk of damaging the heat-generating electronic components because it requires pressurization / heating and melting at the time of mounting. . Moreover, it is inferior in heat-resistant reliability compared with a thermal radiation sheet or a thermal radiation spacer. Furthermore, it is desirable that the thickness before mounting is as thin as possible, but it becomes fragile due to thinning, and handling becomes inconvenient.
[0007]
Liquid type heat dissipation materials tend to be avoided today due to problems such as poor workability in the coating process, uneven coating thickness, exudation of materials, and curing when exposed to high temperatures for long periods of time. It is in.
[0008]
[Problems to be solved by the invention]
In view of the above, an object of the present invention is to provide a heat dissipating member that is easy to handle, has an extremely low interfacial thermal resistance at the time of mounting, has excellent heat dissipating characteristics, and an electronic device incorporating the heat dissipating member. is there.
[0009]
[Means for Solving the Problems]
That is, the present invention is a heat radiating member in which a paraffin wax layer is formed on all or a part of at least one surface of a silicone cured product filled with a heat conductive filler. In this case, it is preferable that the paraffin wax layer contains 10% by mass or less (not including 0) of silicone oil and / or liquid paraffin and does not contain a thermally conductive filler. Moreover, it is preferable that the silicone cured product is a solidified product of a composition containing an addition reaction type liquid silicone and a heat conductive filler, and is a heat dissipation spacer having a thermal conductivity of 1 W / m · K or more and an Asker C hardness of 40 or less. . Furthermore, the present invention is an electronic device in which the heat dissipation member is incorporated.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0011]
The heat dissipation characteristics of an electronic device in which a heat dissipation member is incorporated can be expressed by the sum of the thermal resistance of the heat dissipation member and the interface thermal resistance of the mounting surface. The smaller this, the greater the heat dissipation characteristics. The thermal resistance of the heat radiating member is substantially determined by the types of the matrix and the thermally conductive filler and the ratio of both. In contrast, the interfacial thermal resistance is generated between the heat radiating member and the counterpart material, and in many cases occupies more than half of the total thermal resistance. Therefore, in order to maximize the heat dissipation characteristics of the heat radiating member, it is necessary to mount the interface resistance as small as possible. The means employed in the present invention is that a paraffin wax layer as thin as possible is formed on the base material surface made of a silicone cured material filled with a heat conductive filler so as to increase the adhesion with the counterpart material. is there.
[0012]
This paraffin wax layer can be formed using paraffin wax that is solid at room temperature. Specifically, it can be formed by placing solid paraffin wax layers on the top and bottom of the cured silicone, sandwiching them with a film or the like, and passing a heating roller or the like. The formation site is all or part of at least one surface of the substrate. Considering that the heat dissipating member is sandwiched and mounted between the mating member, the heat dissipating member is preferably the entire surface of the two opposing surfaces.
[0013]
As the paraffin wax, those having an average molecular weight of 300 to 600 are preferable. When the temperature of the electronic device is low, a low molecular weight paraffin wax is used, and when the temperature is high, a high molecular weight paraffin wax is used. Specific examples of the paraffin wax include “Paraffin Wax Series” and “Microcrostalline Wax Hi-Mic Series” manufactured by Nippon Seisen Co., Ltd.
[0014]
The thickness of the paraffin wax layer needs to be at least 1 μm in order to absorb the surface irregularities of the counterpart material and improve the adhesion. The upper limit is preferably as thin as possible so as not to increase the thermal resistance, and is up to 200 μm, particularly up to 100 μm. Since this paraffin wax layer has a function of absorbing the surface irregularities of the counterpart material, it is better not to contain foreign substances such as a heat conductive filler. However, it is preferable to contain up to 10% by mass of silicone oil and / or liquid paraffin having a function of promoting this function. Accordingly, there is an advantage that peeling from the counterpart material is facilitated when the heat radiating member is reused.
[0015]
The substrate on which the paraffin wax layer is formed is a solidified silicone filled with a heat conductive filler. Specifically, it is a heat radiation sheet or a heat radiation spacer made of a solidified product of a composition containing a thermally conductive filler such as boron nitride, silicon nitride, aluminum nitride, alumina, and silicone. Particularly preferred is a solidified product of a composition containing an addition reaction type liquid silicone and a heat conductive filler, and a heat dissipation spacer having a thermal conductivity of 1 W / m · K or more and an Asker C hardness of 40 or less. Since there exists a commercial item in such a heat dissipation sheet or a heat dissipation spacer, it can be used. Among these, a heat conductive silicone molded body (see Japanese Patent Application Laid-Open No. 2000-185328, etc.) having a structure of a skeleton part and a resin part integrally formed with part or all of the skeleton part is preferable.
[0016]
The base material composed of a heat dissipation spacer is prepared by pouring a compound of 40-60% by volume of addition reaction type liquid silicone and 60-40% by volume of heat conductive filler into a mold such as fluororesin or stainless steel, and defoaming by vacuum defoaming etc. Then, it can be manufactured by heating and solidifying. As the addition reaction type liquid silicone, one-part silicone, or two-parts of organopolysiloxane having a vinyl group at the terminal or side chain and organopolysiloxane having two or more H-Si groups at the terminal or side chain Sex silicone is used. The thickness of the heat dissipation spacer is generally 0.3 to 20 mm. Further, the shape of the plane or cross section is a polygon such as a triangle, a quadrangle, or a pentagon, a circle, an ellipse, or the like.
[0017]
The electronic device of the present invention is mounted with the heat dissipating member of the present invention. The mounting location is, for example, between the MPU of the personal computer and the heat radiation fin (heat sink).
[0018]
【Example】
Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.
[0019]
Examples 1-4, Comparative Example 1
A heat-dissipating spacer (trade name “FSB020G” manufactured by Denki Kagaku Kogyo Co., Ltd.) was prepared as a silicone cured product filled with a thermally conductive filler. This has a thermal conductivity (TO-3 shape: measurement at 6 cm 2) of 16 W / m · K, an Asker C hardness of 35, and dimensions of 15 mm × 15 mm × 0.2 mm. Paraffin wax layers shown in Table 1 were formed on the upper and lower surfaces of the heat dissipation spacer.
[0020]
The paraffin wax layer was formed by placing a solid paraffin wax (trade name “WAX115” manufactured by Nippon Seiki Co., Ltd.) on top and bottom of a cured silicone product and sandwiching it between PET films and passing through a roller heated to 100 ° C. In Examples 2 to 5, silicone oil (trade name “KF-96-100CS” manufactured by Shin-Etsu Chemical Co., Ltd.) or liquid paraffin (trade name “Moresco White P-500” manufactured by Matsumura Oil Research Co., Ltd.) is used as the paraffin wax layer. A predetermined amount of was mixed.
[0021]
Assuming that the obtained heat dissipating member 1 is incorporated into an electronic device, a thermal resistance measuring machine comprising a copper block 2 (heat transfer surface 1 cm square) with a built-in heater and a copper cooling plate 3 (8 cm square) shown in FIG. Set between. Cover the copper block with the fluororesin holding case 5, apply a load of 9.8N using the weight 4 to the copper block side, use a hot plate from the copper cooling plate side, and the temperature on the copper block side will be 60 ° C The heat radiating member was heated and compressed until it became. Next, the thermal resistance measuring machine was cooled to room temperature, and the thermal resistance was measured.
[0022]
The thermal resistance is obtained by applying an applied power of 15 W to the heater for 4 minutes and measuring the temperature difference between the copper block and the copper cooling plate, the formula, thermal resistance (° C./W)=temperature difference (° C.) / Applied power (W), Calculated by The results are shown in Table 1.
[Table 1]
Figure 0004076368
[0023]
From Table 1, it can be seen that the heat dissipating member of the present invention exhibits extremely excellent heat dissipating characteristics, and its repeated use is comparable to the conventional material (Comparative Example 1).
[0024]
【The invention's effect】
According to the present invention, a heat dissipating member that is easy to handle, has an extremely low interfacial thermal resistance, and has excellent heat dissipating characteristics, and an electronic device incorporating the heat dissipating member are provided.
[Brief description of the drawings]
1 is a schematic diagram of a thermal resistance measuring machine.
1 Heat Dissipation Member 2 Copper Block 3 Copper Cooling Plate 4 Weight 5 Holding Case

Claims (4)

熱伝導性フィラーの充填されたシリコーン硬化物の少なくとも一面の全部又は部分に、パラフィンワックス層を形成させてなることを特徴とする放熱部材。A heat dissipating member, wherein a paraffin wax layer is formed on all or part of at least one surface of a silicone cured product filled with a heat conductive filler. パラフィンワックス層が、10質量%以下(0を含まず)のシリコーンオイル及び/又は流動パラフィンを含有してなり、熱伝導性フィラーを含まないことを特徴とする請求項1記載の放熱部材。The heat radiating member according to claim 1, wherein the paraffin wax layer contains 10% by mass or less (not including 0) of silicone oil and / or liquid paraffin, and does not include a thermally conductive filler. シリコーン硬化物が、付加反応型液状シリコーンと熱伝導性フィラーを含む配合物の固化物であり、熱伝導率1W/m・K以上、アスカーC硬度40以下の放熱スペーサーであることを特徴とする請求項1又は2記載の放熱部材。The silicone cured product is a solidified product of a composition containing an addition reaction type liquid silicone and a heat conductive filler, and is a heat dissipation spacer having a thermal conductivity of 1 W / m · K or more and an Asker C hardness of 40 or less. The heat radiating member according to claim 1 or 2. 請求項1〜3に記載のいずれかの放熱部材が組み込まれた電子機器。An electronic device in which any of the heat dissipating members according to claim 1 is incorporated.
JP2002115991A 2002-04-18 2002-04-18 Heat dissipation member and electronic device Expired - Fee Related JP4076368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002115991A JP4076368B2 (en) 2002-04-18 2002-04-18 Heat dissipation member and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002115991A JP4076368B2 (en) 2002-04-18 2002-04-18 Heat dissipation member and electronic device

Publications (2)

Publication Number Publication Date
JP2003309386A JP2003309386A (en) 2003-10-31
JP4076368B2 true JP4076368B2 (en) 2008-04-16

Family

ID=29397024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002115991A Expired - Fee Related JP4076368B2 (en) 2002-04-18 2002-04-18 Heat dissipation member and electronic device

Country Status (1)

Country Link
JP (1) JP4076368B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225945B2 (en) * 2004-05-17 2009-02-18 富士高分子工業株式会社 Thermally conductive sheet
JP4964042B2 (en) * 2007-01-30 2012-06-27 三菱電機株式会社 Electronic equipment and duct plug type lighting equipment

Also Published As

Publication number Publication date
JP2003309386A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP5084987B2 (en) Heat dissipation from circuit boards with bare silicon chips
JP4459470B2 (en) Electronic component heat dissipation structure and heat dissipation sheet used therefor
US20060238984A1 (en) Thermal dissipation device with thermal compound recesses
TWI298527B (en) Semiconductor package, fabrication method thereof, and dissipating heat method therefrom
JP5405890B2 (en) Thermally conductive moldings and their applications
US20030203181A1 (en) Interstitial material with enhanced thermal conductance for semiconductor device packaging
US20070131913A1 (en) Thermal interface material and semiconductor device incorporating the same
JP5134693B2 (en) Thermally conductive and conductive interconnect structure
JPH1126661A (en) Radiation spacer
US6531771B1 (en) Dissipation of heat from a circuit board having bare silicon chips mounted thereon
CN107920452A (en) Composite heat-conducting component
JP4076368B2 (en) Heat dissipation member and electronic device
JP3178805B2 (en) Heat radiation spacer
JP4749631B2 (en) Heat dissipation member
JP4101391B2 (en) Heat dissipation member for electronic parts
JP2021038366A (en) Thermally conductive silicone composition and thermally conductive silicone material
JP5495429B2 (en) Heat dissipation composite sheet
US20070131055A1 (en) Thermal interface material and semiconductor device incorporating the same
JP3092699B2 (en) Heat radiation spacer, its use and silicone composition
JP3640524B2 (en) Heat dissipation spacer
JP3563590B2 (en) Heat radiation spacer
JP3183502B2 (en) Heat radiation spacer
JP2017212254A (en) Semiconductor device
JPH1187580A (en) Heat-dissipating spacer
JPH1167992A (en) Heat-radiation spacer and heat-radiation component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4076368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees