JP4075446B2 - Secondary air supply passage opening / closing valve and secondary air supply system failure diagnosis apparatus using the same - Google Patents

Secondary air supply passage opening / closing valve and secondary air supply system failure diagnosis apparatus using the same Download PDF

Info

Publication number
JP4075446B2
JP4075446B2 JP2002124419A JP2002124419A JP4075446B2 JP 4075446 B2 JP4075446 B2 JP 4075446B2 JP 2002124419 A JP2002124419 A JP 2002124419A JP 2002124419 A JP2002124419 A JP 2002124419A JP 4075446 B2 JP4075446 B2 JP 4075446B2
Authority
JP
Japan
Prior art keywords
secondary air
air supply
valve
supply passage
closing valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002124419A
Other languages
Japanese (ja)
Other versions
JP2003314262A (en
Inventor
重正 広岡
衛 ▼吉▲岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002124419A priority Critical patent/JP4075446B2/en
Publication of JP2003314262A publication Critical patent/JP2003314262A/en
Application granted granted Critical
Publication of JP4075446B2 publication Critical patent/JP4075446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気系に配置される排気浄化装置の上流側に2次空気を供給する2次空気供給システムで用いられる開閉弁とこれを用いた2次空気供給システムの故障診断装置に関する。
【0002】
【従来の技術】
内燃機関の排気浄化装置として、排気系に三元触媒を配置し、排気ガス中のCO、HC、NOx成分を低減して浄化を図る装置が知られている。さらに、排気管に接続された開閉弁を有する2次空気供給通路にエアポンプから空気を圧送することで、排気管内に2次空気を供給して酸素濃度を高くして、排気ガス中のHC、COを酸化させることにより排気ガスの浄化を促進する技術が知られている。
【0003】
このような2次空気供給システムにおいて、エアポンプや開閉弁といった構成部品に異常が生じると、排気ガスの浄化効率が低下してしまい、エミッションが悪化するため、その異常を早期に判定する必要がある。そこで、この種の異常を検出する技術として、特開平9−21312号公報や特開平9−125945号公報に開示されている技術が知られている。
【0004】
前者は、2次空気供給通路のエアポンプと開閉弁との間に圧力センサを配置し、検出した圧力値を基にして2次空気供給装置の異常を検出するものである。また、後者は、2次空気供給通路に圧力センサを配置し、検出した圧力脈動の最大値と最小値との差を基にして2次空気供給装置の異常を検出するものである。
【0005】
【発明が解決しようとする課題】
このようにエアポンプと開閉弁との間に圧力センサを配置する場合、開閉弁が全開のままで閉じなくなったような大開故障については、検出が容易であるが、開閉弁の弁体に比較的小さな異物が挟まったような小開故障の場合には、検出が困難である。なぜなら、小開故障においては、正常時(閉止時)との圧力差が小さいためであり、このような小開故障を判定するために閾値を小さくすると、エアポンプの吐出圧の変動によっては開閉弁が正常であるにもかかわらず、開閉弁を異常と誤判定してしまうおそれがあるからである。
【0006】
そこで本発明は、こうした小開故障についても正確な検出を可能とした構成の2次空気供給通路開閉弁およびそれを用いた2次空気供給システムの故障診断装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る2次空気供給通路開閉弁は、内燃機関の排気経路に配置される排気浄化装置より上流側に連なる2次空気供給通路を介して2次空気を供給する2次空気供給システムにおいて、2次空気供給通路内に配置される逆止弁より上流側でこの2次空気供給通路の開閉状態を切り替える2次空気供給通路開閉弁であって、開閉弁本体は、弁体の上流室内に開口して圧力センサへと連なる導通路を入口ポートとは別に備えているものである。
【0008】
本発明に係る2次空気供給システムの故障診断装置は、本発明に係る2次空気供給通路開閉弁と、その導通路に接続される圧力センサと、開閉弁の上流に配置されるエアポンプと、開閉弁の下流に配置される逆止弁からなる2次空気供給システムの故障診断装置であって、圧力センサによって検出したエアポンプ停止時の圧力脈動を基にして開閉弁の異常を検出する異常検出部を備えているものである。
【0009】
開閉弁の弁体に小異物を挟み込んだような小開異常の場合、弁体近傍の上流室部分内部の圧力は、上流側と下流側とが導通したことにより、下流側の排気脈動の影響を受けるが、この脈動は弁体から離れるにしたがって減衰するため、開閉弁の外部においては検出が困難であった。本発明に係る開閉弁は、上流室から圧力センサへと連なる導通路を入口ポートとは別に設けることで、この圧力脈動を検出することを可能としているので、従来検出が困難であった小開異常の場合も正確に検出することができる。さらに、脈動の大きさによって開弁の異常レベルの判定も可能となる。
【0010】
導通路は、上流室内で弁体をはさんで入口ポートとは略反対の位置に開口していることが好ましい。開閉弁の入口ポートから弁体に至る流路から離れた位置に導通路を開口させることで、上流室内の流動に左右されない圧力検出が可能となり、正確な判定が可能となる。
【0011】
導通路は、開閉弁の取付状態において開閉弁本体から水平よりも上向きに延びていることが好ましい。このように構成すると、導通路内への凝縮水の侵入を抑制するとともに、侵入した場合は排出しやすくなるため、寒冷時の機関停止時における凝縮水の導通路内での凍結を抑制して、誤判定を効果的に防止することができる。
【0012】
この導通路の先端は、弁体近傍へ突出して配置されていることが好ましい。これにより、より小さい脈動の検出を可能として、判定可能な異常レベルを拡大することができる。
【0013】
逆止弁をさらに一体化させると、システムの組み立てが容易になるほか、圧力脈動の個体差が少なくなるので検出精度を向上させることが可能となる。
【0014】
【発明の実施の形態】
以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の参照番号を附し、重複する説明は省略する。
【0015】
図1は、本発明に係る2次空気供給通路開閉弁を備える2次空気供給システムの概略構成図であり、図2は、本発明に係る2次空気供給通路開閉弁の第1の実施形態を示す断面図である。
【0016】
この2次空気供給装置(以下AI供給装置と呼ぶ。)1は、内燃機関である多気筒ガソリンエンジン(以下、単にエンジンと呼ぶ。)2に取り付けられるものである。ここで、エンジン2には吸気管20と排気管21とが接続されており、吸気管20上には、スロットル24が配置され、吸気フィルタ25へと接続されている。一方、排気管21下流には、三元触媒からなる排気浄化装置22が配置されてている。
【0017】
AI供給装置1は、吸気管20の吸気フィルタ25とスロットル24との間の位置と排気管21のエンジン2と排気浄化装置22との間を接続する2次空気(AI)供給通路11を備えており、このAI供給通路11上に電気モータ駆動式のエアポンプ(AP)12が配置され、その下流に本発明に係る2次空気供給通路開閉弁(以下、端に開閉弁と称する)13が配置される。この開閉弁13には圧力センサ15が接続されている。この開閉弁13には、吸気管20のスロットル24下流から延びる配管16が接続されており、この配管16にはさらに電磁式の三方弁17が配置されている(説明の便宜上、配管16を三方弁17部分で二分し、吸気管20側を符号16aで、開閉弁13側を符号16bで表す)。三方弁17は通路18、エアフィルタ19を介して外気へと接続される。
【0018】
ここで、開閉弁13は逆止弁を一体化させたもので、図2に示されるように、本体130内が4つの空気室130a〜130dに区分されている。空気室130aと空気室130bの間には、ダイヤフラム131が、空気室130bの空気室130cとの連結穴部分には弁体133が、空気室130dの空気室130cとの連結穴部分には逆止弁となるリード弁体134がそれぞれ配置されており、弁体133はロッド133aによってダイヤフラム131に直結されている。リード弁体134は、板バネ部134aと弁本体134bからなり、板バネ部134aが弁本体134bを所定の力で本体130の弁座部分に押しつけている。
【0019】
空気室130aは、接続ポート135を介して配管16bに接続され、その内部には、ダイヤフラム131を空気室130b側へと押しつけるスプリング132が配置されている。空気室130bの側面には入口ポート136が設けられ、AP12に繋がるAI供給通路11に接続される。そして、これと対向する側面には、導通路137が設けられ、チューブ138を介して圧力センサ15が取り付けられている。チューブ138は車両搭載時に水平から上向きに屈曲するよう配置される。空気室130dの下端には出口ポート139が設けられ、排気管21へ繋がるAI供給通路11に接続される。
【0020】
AI供給装置1の動作を制御する制御装置10は、エンジンを制御するエンジンECU23と相互に情報をやりとりできるよう電気的に接続されているほか、圧力センサ15の出力信号が入力されるとともに、AP12のモータ駆動と三方弁17の開閉を制御する。この制御装置は、本発明に係る2次空気供給システムの故障診断装置の異常検出部を兼ねる。なお、制御装置10は、エンジンECU23の一部をなしていてもよい。
【0021】
このAI供給装置1は、主として冷間始動時等の燃料濃度が高く、空燃比(A/F)が小さく、かつ、排気浄化装置22が充分に昇温しておらずその機能が充分に発揮されにくい状態において、制御装置10がエアポンプ12を駆動させるとともに、三方弁17により配管16aと配管16bを連通させて吸気管20内の負圧を開閉弁13の空気室130aへと導く。開閉弁13においては、空気室130b側の圧力が空気室130a側の圧力より高くなり、ダイヤフラム131が空気室130a側へ移動することで、これに接続された弁体133が図2の上方向へと移動し、空気室130bと130cとを連通させる。さらに、排気管21側も負圧となるため、空気室130c側の圧力が空気室130d側の圧力より高くなるため、リード弁体134が空気室130d側へと押し出され、空気室130cと130dも連通される。この結果、吸気フィルタ25を通過した空気の一部(2次空気)がAI供給通路11を介して排気管21内へと導かれる。これにより、排気中の酸素濃度を上昇させて、そのA/Fを上げ、排気中のHC、COの排気管21における2次燃焼を促して排気の浄化を図るとともに、排気温度を上昇させることで排気浄化装置(三元触媒)22の昇温を促進することによりエミッションの悪化を抑制する。
【0022】
AI供給停止時には、制御装置10は、AP12を停止させ、開閉弁13を閉弁する。具体的には、三方弁17が通路18と配管16bとを連通させるよう制御することで、エアフィルタ19、通路18、配管16bを介して開閉弁13の空気室130aに外気を導入し、空気室130a内の圧力を大気圧とし、スプリング132によって弁体133を本体130の弁座に押しつけて空気室130bと130cとの連通を遮断する。
【0023】
このAI供給装置1は、構成部品すなわち、AP12、開閉弁13等の異常を圧力センサ15で検出した圧力挙動を用いて検出する機能を備えている。具体的にはまず、AIシステム停止時、つまりAP12を停止させ、開閉弁13が閉じた状態で圧力センサ15で圧力値Pの脈動量を検出する。図3はこの脈動を示すグラフである。以下、AP12については制御した通りに作動しているものとする。
【0024】
開閉弁13の弁体133が空気室130bと130cとの連通を完全に遮断していれば、圧力センサ15で検出される圧力はほぼ大気圧になるはずである。これに対して、図2に示されるように異物14が弁体133と弁座との間に存在するいわゆる噛み込みが起こった場合には、空気室130bと空気室130cとが連通されるため、排気管21内の脈動が伝えられる。リード弁体134が正常に機能していれば、排気管21側、つまり空気室130dの圧力が空気室130cより高い場合には、空気室130cと130dの連通が遮断されるので、異物14の大きさによって圧力センサ15で検出される圧力値Pは図3(a)で示されるように脈動する。
【0025】
さらに、リード弁体134が故障して、空気室130cと130dが常時連通する開故障が起こった場合には、排気管21内の脈動が空気室130bへと伝えられるため、圧力センサ15で検出される圧力値Pは図3(b)で示されるように脈動する。このようにして圧力値Pの脈動の状態から弁体133およびリード弁体134の異常を判別することができる。特に、従来は判別しにくかった小さな異物の詰まりを正確に判定できるほか、脈動の大きさによって開異常の程度、つまり異物の大小まで推定することができる。
【0026】
排気管21内の脈動は排気管21から遠ざかるに連れて減衰する。本発明に係る開閉弁13は、空気室130b部分から導通路137を直接引き出して圧力センサ15で圧力を測定しているので、開閉弁13より上流側の配管11内の圧力を検出する場合に比べて、脈動幅の大きいまま圧力を測定することができ、高精度で脈動を検出することができる。特に、弁体133をはさんで入口ポート136に対向する側から圧力を取り出すことで正確な検出が可能となる。さらに、車両に搭載した際に、圧力センサ15に至る導通路137とチューブ138が水平から上向きになるよう配置することで排気管21側から凝縮水がこの導通路137およびチューブ138内に侵入した場合でも、その排出を容易にし、エンジン2停止時における凍結を予防して正確な測定が行える。
【0027】
図4〜図6は、本発明に係る開閉弁13の第2〜第4の実施形態をそれぞれ示す構成図である。いずれの実施形態も図2に示される第1の実施形態と基本構成は同一であって、導通路137およびチューブ138の構成のみが相違する。
【0028】
図4に示される第2の実施形態では、導通路137自体を、車両に搭載した際に水平ではなく斜め上向きに延びるよう形成するとともに、チューブ138への接続部分にテーパー部137aを設けることで、凝縮水の導通路137への侵入を抑制し、万一侵入した際でもその排出が容易な構成としている。
【0029】
図5に示される第3の実施形態では、導通路137を、L字型に形成し、上向きに延びる部分でチューブ138と接続している。この形態でも第2の実施形態と同様に、チューブ138への接続部分にテーパー部137aを設けている。これにより、導通路137とチューブ138のつなぎ目部分へ凝縮水がたまりにくくなり、万一侵入した際の排出が容易になる。
【0030】
図6に示される第4の実施形態では、第2の実施形態における導通路137を空気室130b内へ延ばし、その先端137bを弁体133の近傍に配置している。このように配置すると、弁体133の近傍付近の圧力脈動を把握することができるため、微小な異物の噛み込みでも検出することが可能となる。
【0031】
また、図7に示されるように、開閉弁13の上流側の弁をダイヤフラム式ではなく、電磁弁とする構成をとってもよい。この場合には、弁体133を空気室130b部分に配置して、図で上に移動するときに開く構成とするほか、弁体133を空気室130c部分に配置して、下に移動するときに開く構成としてもよい。さらに、逆止弁を一体化するのではなく、開閉弁13と別に設けてもよい。
【0032】
【発明の効果】
以上説明したように本発明によれば、2次空気供給システム中の開閉手段である開閉弁の弁体の上流側の空気室内の圧力をより正確に測定できるので、エアポンプ停止、開閉弁閉制御時におけるこの部分の圧力脈動を基にして、例えば弁体への異物の詰まりといった従来は判別しにくかった異常も正確に検出することができる。
【図面の簡単な説明】
【図1】本発明に係る2次空気供給通路開閉弁を備える2次空気供給システムの概略構成図である。
【図2】本発明に係る2次空気供給通路開閉弁の第1の実施形態を示す断面図である。
【図3】異常検出で用いる圧力脈動を示すグラフである。
【図4】本発明に係る2次空気供給通路開閉弁の第2の実施形態を示す断面図である。
【図5】本発明に係る2次空気供給通路開閉弁の第3の実施形態を示す断面図である。
【図6】本発明に係る2次空気供給通路開閉弁の第4の実施形態を示す断面図である。
【図7】本発明に係る2次空気供給通路開閉弁の第5の実施形態を示す断面図である。
【符号の説明】
1…2次空気供給装置、2…エンジン、10…制御装置、11…2次空気供給通路、12…エアポンプ、13…2次空気供給通路開閉弁、14…異物、15…圧力センサ、16…配管、17…三方弁、18…通路、19…エアフィルタ、20…吸気管、21…排気管、22…排気浄化装置、23…エンジンECU、24…スロットル、25…吸気フィルタ、130…本体、130a〜130d…空気室、131…ダイヤフラム、132…スプリング、133…弁体、134…リード弁体、135…接続ポート、136…入口ポート、137…導通路、138…チューブ、139…出口ポート。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an on-off valve used in a secondary air supply system for supplying secondary air to an upstream side of an exhaust purification device disposed in an exhaust system of an internal combustion engine, and a failure diagnosis device for a secondary air supply system using the same. About.
[0002]
[Prior art]
As an exhaust gas purification device for an internal combustion engine, a device is known in which a three-way catalyst is disposed in an exhaust system to purify the exhaust gas by reducing CO, HC, and NOx components. Further, by pumping air from the air pump to a secondary air supply passage having an on-off valve connected to the exhaust pipe, the secondary air is supplied into the exhaust pipe to increase the oxygen concentration, and HC in the exhaust gas, A technique for promoting the purification of exhaust gas by oxidizing CO is known.
[0003]
In such a secondary air supply system, if an abnormality occurs in a component such as an air pump or an on-off valve, the exhaust gas purification efficiency decreases, and the emission deteriorates. Therefore, it is necessary to determine the abnormality early. . Therefore, as techniques for detecting this type of abnormality, techniques disclosed in Japanese Patent Application Laid-Open Nos. 9-21312 and 9-125945 are known.
[0004]
In the former, a pressure sensor is disposed between the air pump and the on-off valve in the secondary air supply passage, and an abnormality of the secondary air supply device is detected based on the detected pressure value. In the latter, a pressure sensor is disposed in the secondary air supply passage, and an abnormality of the secondary air supply device is detected based on the difference between the detected maximum value and the minimum value of the pressure pulsation.
[0005]
[Problems to be solved by the invention]
When the pressure sensor is arranged between the air pump and the open / close valve in this way, it is easy to detect a large open failure in which the open / close valve cannot be closed while being fully opened. In the case of a small open failure such as a small foreign object being caught, it is difficult to detect. This is because a small open failure has a small pressure difference from the normal time (closed), and if the threshold is reduced to determine such a small open failure, depending on fluctuations in the discharge pressure of the air pump, the open / close valve This is because there is a risk that the on-off valve may be erroneously determined to be abnormal even though is normal.
[0006]
Therefore, an object of the present invention is to provide a secondary air supply passage opening / closing valve having a configuration capable of accurately detecting even such a small open failure and a failure diagnosis device for a secondary air supply system using the secondary air supply passage on / off valve.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, a secondary air supply passage opening / closing valve according to the present invention supplies secondary air via a secondary air supply passage connected upstream of an exhaust purification device disposed in an exhaust passage of an internal combustion engine. The secondary air supply system is a secondary air supply passage on / off valve that switches the open / close state of the secondary air supply passage upstream of a check valve disposed in the secondary air supply passage, Is provided separately from the inlet port with a conduction path that opens into the upstream chamber of the valve body and communicates with the pressure sensor.
[0008]
A failure diagnosis device for a secondary air supply system according to the present invention includes a secondary air supply passage on-off valve according to the present invention, a pressure sensor connected to the conduction path, an air pump arranged upstream of the on-off valve, An abnormality detection device for a failure diagnosis of a secondary air supply system comprising a check valve arranged downstream of an on-off valve, which detects an on-off valve abnormality based on a pressure pulsation detected by a pressure sensor when the air pump is stopped Part.
[0009]
In the case of a small opening abnormality such as a small foreign object caught in the valve body of the on-off valve, the pressure inside the upstream chamber near the valve body is affected by the exhaust pulsation on the downstream side due to the conduction between the upstream side and the downstream side. However, since this pulsation attenuates as the distance from the valve body increases, it is difficult to detect outside the on-off valve. The on-off valve according to the present invention is capable of detecting this pressure pulsation by providing a conduction path from the upstream chamber to the pressure sensor separately from the inlet port. Even abnormalities can be detected accurately. Furthermore, it is possible to determine an abnormal level of valve opening according to the magnitude of pulsation.
[0010]
The conduction path is preferably opened at a position substantially opposite to the inlet port across the valve body in the upstream chamber. By opening the conduction path at a position away from the flow path from the inlet port of the on-off valve to the valve body, pressure detection independent of the flow in the upstream chamber can be performed, and accurate determination can be made.
[0011]
It is preferable that the conducting path extends upward from the horizontal direction from the on-off valve body in the attached state of the on-off valve. With this configuration, condensate water can be prevented from entering into the conduction path, and if it enters, it is easy to discharge, so freezing of the condensed water in the conduction path when the engine is stopped in cold weather is suppressed. Incorrect determination can be effectively prevented.
[0012]
It is preferable that the leading end of the conduction path is disposed so as to protrude to the vicinity of the valve body. As a result, it is possible to detect smaller pulsations, and it is possible to expand the abnormality level that can be determined.
[0013]
If the check valve is further integrated, the system can be easily assembled and the individual difference in pressure pulsation can be reduced, so that the detection accuracy can be improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same reference numerals are given to the same components in the drawings as much as possible, and duplicate descriptions are omitted.
[0015]
FIG. 1 is a schematic configuration diagram of a secondary air supply system including a secondary air supply passage opening / closing valve according to the present invention, and FIG. 2 is a first embodiment of a secondary air supply passage opening / closing valve according to the present invention. FIG.
[0016]
The secondary air supply device (hereinafter referred to as AI supply device) 1 is attached to a multi-cylinder gasoline engine (hereinafter simply referred to as engine) 2 that is an internal combustion engine. Here, an intake pipe 20 and an exhaust pipe 21 are connected to the engine 2, and a throttle 24 is disposed on the intake pipe 20 and connected to an intake filter 25. On the other hand, an exhaust purification device 22 made of a three-way catalyst is disposed downstream of the exhaust pipe 21.
[0017]
The AI supply device 1 includes a secondary air (AI) supply passage 11 that connects a position between the intake filter 25 and the throttle 24 of the intake pipe 20 and the engine 2 and the exhaust purification device 22 of the exhaust pipe 21. An air pump (AP) 12 driven by an electric motor is disposed on the AI supply passage 11, and a secondary air supply passage opening / closing valve (hereinafter referred to as an opening / closing valve at the end) 13 according to the present invention is provided downstream thereof. Be placed. A pressure sensor 15 is connected to the on-off valve 13. A pipe 16 extending from the downstream side of the throttle 24 of the intake pipe 20 is connected to the on-off valve 13, and an electromagnetic three-way valve 17 is further disposed on the pipe 16 (for convenience of explanation, the pipe 16 is connected to the three-way valve 13. The valve 17 is divided into two parts, and the intake pipe 20 side is represented by reference numeral 16a and the on-off valve 13 side is represented by reference numeral 16b). The three-way valve 17 is connected to the outside air via a passage 18 and an air filter 19.
[0018]
Here, the on-off valve 13 is an integrated check valve. As shown in FIG. 2, the main body 130 is divided into four air chambers 130a to 130d. Between the air chamber 130a and the air chamber 130b, there is a diaphragm 131, a valve body 133 in the connecting hole portion of the air chamber 130b with the air chamber 130c, and a connecting hole portion of the air chamber 130d in the connecting hole portion with the air chamber 130c. Reed valve bodies 134 serving as stop valves are respectively disposed, and the valve body 133 is directly connected to the diaphragm 131 by a rod 133a. The reed valve body 134 includes a leaf spring portion 134a and a valve body 134b, and the leaf spring portion 134a presses the valve body 134b against the valve seat portion of the body 130 with a predetermined force.
[0019]
The air chamber 130a is connected to the pipe 16b via the connection port 135, and a spring 132 that presses the diaphragm 131 toward the air chamber 130b is disposed therein. An inlet port 136 is provided on a side surface of the air chamber 130b and is connected to the AI supply passage 11 connected to the AP 12. And the conduction path 137 is provided in the side surface facing this, and the pressure sensor 15 is attached through the tube 138. The tube 138 is arranged to bend upward from the horizontal when the vehicle is mounted. An outlet port 139 is provided at the lower end of the air chamber 130 d and is connected to the AI supply passage 11 connected to the exhaust pipe 21.
[0020]
The control device 10 that controls the operation of the AI supply device 1 is electrically connected so as to be able to exchange information with the engine ECU 23 that controls the engine, and also receives an output signal of the pressure sensor 15 and AP 12 The motor drive and the opening / closing of the three-way valve 17 are controlled. This control device also serves as an abnormality detection unit of the failure diagnosis device for the secondary air supply system according to the present invention. Note that the control device 10 may form part of the engine ECU 23.
[0021]
This AI supply device 1 has a high fuel concentration mainly during cold start, an air-fuel ratio (A / F) is small, and the exhaust purification device 22 has not sufficiently raised its temperature to fully perform its function. In a state where it is difficult to do so, the control device 10 drives the air pump 12 and causes the pipe 16 a and the pipe 16 b to communicate with each other by the three-way valve 17 to guide the negative pressure in the intake pipe 20 to the air chamber 130 a of the on-off valve 13. In the on-off valve 13, the pressure on the air chamber 130b side becomes higher than the pressure on the air chamber 130a side, and the diaphragm 131 moves to the air chamber 130a side, so that the valve body 133 connected thereto moves upward in FIG. To make the air chambers 130b and 130c communicate with each other. Further, since the exhaust pipe 21 side also has a negative pressure, the pressure on the air chamber 130c side becomes higher than the pressure on the air chamber 130d side, so that the reed valve body 134 is pushed out to the air chamber 130d side, and the air chambers 130c and 130d. Is also communicated. As a result, part of the air (secondary air) that has passed through the intake filter 25 is guided into the exhaust pipe 21 via the AI supply passage 11. As a result, the oxygen concentration in the exhaust gas is increased, the A / F is increased, the secondary combustion of the HC and CO in the exhaust gas in the exhaust pipe 21 is promoted to purify the exhaust gas, and the exhaust gas temperature is increased. In this way, the exhaust emission control device (three-way catalyst) 22 is accelerated in temperature to suppress the deterioration of the emission.
[0022]
When the AI supply is stopped, the control device 10 stops the AP 12 and closes the on-off valve 13. Specifically, by controlling the three-way valve 17 to connect the passage 18 and the pipe 16b, outside air is introduced into the air chamber 130a of the on-off valve 13 via the air filter 19, the passage 18, and the pipe 16b. The pressure in the chamber 130a is set to atmospheric pressure, and the valve body 133 is pressed against the valve seat of the main body 130 by the spring 132 to block communication between the air chambers 130b and 130c.
[0023]
The AI supply device 1 has a function of detecting abnormalities in the component parts, that is, the AP 12 and the on-off valve 13 using the pressure behavior detected by the pressure sensor 15. Specifically, first, when the AI system is stopped, that is, the AP 12 is stopped, and the on-off valve 13 is closed, the pressure sensor 15 detects the pulsation amount of the pressure value P. FIG. 3 is a graph showing this pulsation. Hereinafter, it is assumed that the AP 12 is operating as controlled.
[0024]
If the valve body 133 of the on-off valve 13 completely shuts off the communication between the air chambers 130b and 130c, the pressure detected by the pressure sensor 15 should be almost atmospheric pressure. On the other hand, as shown in FIG. 2, when so-called biting occurs in which the foreign matter 14 exists between the valve body 133 and the valve seat, the air chamber 130b and the air chamber 130c are communicated with each other. The pulsation in the exhaust pipe 21 is transmitted. If the reed valve body 134 functions normally, the communication between the air chambers 130c and 130d is blocked when the pressure on the exhaust pipe 21 side, that is, the air chamber 130d is higher than that of the air chamber 130c. The pressure value P detected by the pressure sensor 15 according to the magnitude pulsates as shown in FIG.
[0025]
Further, if the reed valve body 134 fails and an open failure occurs in which the air chambers 130c and 130d are always in communication, the pulsation in the exhaust pipe 21 is transmitted to the air chamber 130b, and is detected by the pressure sensor 15. The pressure value P to be pulsated as shown in FIG. In this way, the abnormality of the valve body 133 and the reed valve body 134 can be determined from the pulsation state of the pressure value P. In particular, it is possible to accurately determine the clogging of a small foreign object that has been difficult to determine in the past, and it is possible to estimate the degree of abnormal opening, that is, the size of a foreign object based on the magnitude of pulsation.
[0026]
The pulsation in the exhaust pipe 21 attenuates as the distance from the exhaust pipe 21 increases. The on-off valve 13 according to the present invention directly pulls out the conduction path 137 from the air chamber 130b and measures the pressure with the pressure sensor 15, so when detecting the pressure in the pipe 11 upstream of the on-off valve 13. In comparison, the pressure can be measured with a large pulsation width, and the pulsation can be detected with high accuracy. In particular, accurate detection is possible by taking out pressure from the side facing the inlet port 136 across the valve body 133. Further, when mounted on the vehicle, the condensate enters the conducting path 137 and the tube 138 from the exhaust pipe 21 side by arranging the conducting path 137 and the tube 138 leading to the pressure sensor 15 so as to face upward from the horizontal. Even in such a case, it is possible to facilitate the discharge and prevent freezing when the engine 2 is stopped to perform accurate measurement.
[0027]
4-6 is a block diagram which shows the 2nd-4th embodiment of the on-off valve 13 based on this invention, respectively. In any embodiment, the basic configuration is the same as that of the first embodiment shown in FIG. 2, and only the configurations of the conduction path 137 and the tube 138 are different.
[0028]
In the second embodiment shown in FIG. 4, the conduction path 137 itself is formed so as to extend obliquely upward rather than horizontally when mounted on a vehicle, and a tapered portion 137 a is provided at a connection portion to the tube 138. The intrusion of the condensed water into the conduction path 137 is suppressed, and even when it enters, the discharge is easy.
[0029]
In the third embodiment shown in FIG. 5, the conduction path 137 is formed in an L shape and is connected to the tube 138 at a portion extending upward. Also in this embodiment, a tapered portion 137a is provided at the connection portion to the tube 138, as in the second embodiment. As a result, the condensed water does not easily accumulate at the joint portion between the conduction path 137 and the tube 138, and can easily be discharged when it enters.
[0030]
In the fourth embodiment shown in FIG. 6, the conduction path 137 in the second embodiment is extended into the air chamber 130 b, and the tip 137 b is disposed in the vicinity of the valve body 133. With this arrangement, the pressure pulsation in the vicinity of the valve body 133 can be grasped, so that even a minute foreign object can be detected.
[0031]
Further, as shown in FIG. 7, the upstream valve of the on-off valve 13 may be a solenoid valve instead of a diaphragm type. In this case, when the valve body 133 is disposed in the air chamber 130b and opened when moving upward in the figure, the valve body 133 is disposed in the air chamber 130c and moved downward. It is good also as a structure which opens to. Further, the check valve may be provided separately from the on-off valve 13 instead of being integrated.
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to more accurately measure the pressure in the air chamber upstream of the valve body of the on-off valve, which is an on-off means in the secondary air supply system. Based on the pressure pulsation of this portion at the time, it is possible to accurately detect abnormalities that have been difficult to distinguish in the past, such as, for example, clogging of foreign matter in the valve body.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a secondary air supply system including a secondary air supply passage opening / closing valve according to the present invention.
FIG. 2 is a cross-sectional view showing a first embodiment of a secondary air supply passage opening / closing valve according to the present invention.
FIG. 3 is a graph showing pressure pulsation used in abnormality detection.
FIG. 4 is a cross-sectional view showing a second embodiment of the secondary air supply passage opening / closing valve according to the present invention.
FIG. 5 is a cross-sectional view showing a third embodiment of the secondary air supply passage opening / closing valve according to the present invention.
FIG. 6 is a cross-sectional view showing a fourth embodiment of the secondary air supply passage opening / closing valve according to the present invention.
FIG. 7 is a cross-sectional view showing a fifth embodiment of the secondary air supply passage opening / closing valve according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Secondary air supply device, 2 ... Engine, 10 ... Control device, 11 ... Secondary air supply passage, 12 ... Air pump, 13 ... Secondary air supply passage on-off valve, 14 ... Foreign matter, 15 ... Pressure sensor, 16 ... Piping, 17 ... three-way valve, 18 ... passage, 19 ... air filter, 20 ... intake pipe, 21 ... exhaust pipe, 22 ... exhaust purification device, 23 ... engine ECU, 24 ... throttle, 25 ... intake filter, 130 ... main body, 130a to 130d ... air chamber, 131 ... diaphragm, 132 ... spring, 133 ... valve body, 134 ... reed valve body, 135 ... connection port, 136 ... inlet port, 137 ... conduction path, 138 ... tube, 139 ... outlet port.

Claims (6)

内燃機関の排気経路に配置される排気浄化装置より上流側に連なる2次空気供給通路を介して2次空気を供給する2次空気供給システムにおいて、前記2次空気供給通路内に配置される逆止弁より上流側で該2次空気供給通路の開閉状態を切り替える2次空気供給通路開閉弁であって、
開閉弁本体は、弁体の上流室内に開口して圧力センサへと連なる導通路を入口ポートとは別に備えている2次空気供給通路開閉弁。
In a secondary air supply system that supplies secondary air via a secondary air supply passage that is connected to an upstream side of an exhaust purification device that is disposed in an exhaust path of an internal combustion engine, a reverse arrangement that is disposed in the secondary air supply passage. A secondary air supply passage opening / closing valve for switching the open / close state of the secondary air supply passage upstream from the stop valve,
The on-off valve body is a secondary air supply passage on-off valve that is provided in the upstream chamber of the valve body and has a conduction path that communicates with the pressure sensor separately from the inlet port.
前記導通路は、前記上流室内で前記弁体をはさんで前記入口ポートとは略反対の位置に開口している請求項1記載の2次空気供給通路開閉弁。2. The secondary air supply passage opening / closing valve according to claim 1, wherein the conduction path opens at a position substantially opposite to the inlet port across the valve body in the upstream chamber. 前記導通路は、前記開閉弁の取付状態において前記開閉弁本体から水平よりも上向きに延びている請求項1または2に記載の2次空気供給通路開閉弁。3. The secondary air supply passage opening / closing valve according to claim 1, wherein the conduction path extends upward from the opening / closing valve main body in a mounted state of the opening / closing valve. 前記導通路の先端が前記弁体近傍へ突出して配置されている請求項2または3に記載の2次空気供給通路開閉弁。4. The secondary air supply passage opening / closing valve according to claim 2, wherein a leading end of the conduction path protrudes toward the vicinity of the valve body. 5. 前記逆止弁がさらに一体化されている請求項1〜4のいずれかに記載の2次空気供給通路開閉弁。The secondary air supply passage opening / closing valve according to any one of claims 1 to 4, wherein the check valve is further integrated. 請求項1〜5のいずれかに記載の2次空気供給通路開閉弁と、前記導通路に接続される圧力センサと、前記開閉弁の上流に配置されるエアポンプと、前記開閉弁の下流に配置される逆止弁からなる2次空気供給システムの故障診断装置であって、
前記エアポンプ停止かつ前記開閉弁の閉止制御時において前記圧力センサによって検出した圧力脈動を基にして前記開閉弁の異常を検出する異常検出部を備えている2次空気供給システムの故障診断装置。
The secondary air supply passage opening / closing valve according to any one of claims 1 to 5, a pressure sensor connected to the conduction path, an air pump disposed upstream of the opening / closing valve, and disposed downstream of the opening / closing valve. A failure diagnosis device for a secondary air supply system comprising a check valve,
A failure diagnosis device for a secondary air supply system, comprising: an abnormality detection unit that detects an abnormality of the on-off valve based on a pressure pulsation detected by the pressure sensor when the air pump is stopped and the on-off valve is closed.
JP2002124419A 2002-04-25 2002-04-25 Secondary air supply passage opening / closing valve and secondary air supply system failure diagnosis apparatus using the same Expired - Fee Related JP4075446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124419A JP4075446B2 (en) 2002-04-25 2002-04-25 Secondary air supply passage opening / closing valve and secondary air supply system failure diagnosis apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002124419A JP4075446B2 (en) 2002-04-25 2002-04-25 Secondary air supply passage opening / closing valve and secondary air supply system failure diagnosis apparatus using the same

Publications (2)

Publication Number Publication Date
JP2003314262A JP2003314262A (en) 2003-11-06
JP4075446B2 true JP4075446B2 (en) 2008-04-16

Family

ID=29539467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124419A Expired - Fee Related JP4075446B2 (en) 2002-04-25 2002-04-25 Secondary air supply passage opening / closing valve and secondary air supply system failure diagnosis apparatus using the same

Country Status (1)

Country Link
JP (1) JP4075446B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4650834B2 (en) * 2006-03-28 2011-03-16 富士重工業株式会社 Abnormality detection device for reed valve of secondary air supply device
JP4967611B2 (en) 2006-11-15 2012-07-04 株式会社デンソー Valve device
JP5782328B2 (en) * 2011-08-04 2015-09-24 株式会社ケーヒン Air-fuel ratio control device

Also Published As

Publication number Publication date
JP2003314262A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP4269982B2 (en) Failure diagnosis device for exhaust gas recirculation device
US6918245B2 (en) Secondary air feeding apparatus and method of detecting abnormality in the apparatus
US7043972B2 (en) Evaporated fuel treatment device of internal combustion engine
US20030061805A1 (en) Secondary air supply apparatus and method for detecting abnormality thereof
US7107758B2 (en) Failure diagnosis apparatus for secondary air supplier
KR20070093872A (en) A diagnosis apparatus for an exhaust gas purifier of an internal combustion engine
JP4967611B2 (en) Valve device
US5337725A (en) Self-diagnostic apparatus for exhaust gas recirculating apparatus
JP2005256784A (en) Failure diagnostic device for exhaust gas recirculation device
JPH0357811A (en) Exhaust gas clarification system diagnostic device of internal combustion engine
JPH08246856A (en) Secondary air supply device for internal combustion engine
JP4075446B2 (en) Secondary air supply passage opening / closing valve and secondary air supply system failure diagnosis apparatus using the same
JP4122825B2 (en) Secondary air supply system
JP4337689B2 (en) Control device for internal combustion engine
JP3038865B2 (en) Exhaust gas recirculation device failure diagnosis device
JPH0921359A (en) Failure diagnostic method of evaporative emission purge system
JP2008031968A (en) Failure diagnosis device for engine
JPS62214261A (en) Failure diagnosing device for exhaust gas reflex device
JPH0315619A (en) Failure diagnosing device for secondary air induction system for internal combustion engine
JP4554107B2 (en) Evaporative purge system failure diagnosis device
JP3815474B2 (en) Secondary air supply device
JP2007016606A (en) Troubleshooting device for secondary air supply device
JP4650834B2 (en) Abnormality detection device for reed valve of secondary air supply device
JP2007285142A (en) Secondary air supply device of internal combustion engine
JPH0617645A (en) Secondary air supplying device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees