JP4075441B2 - Manufacturing method of motor rotor - Google Patents

Manufacturing method of motor rotor Download PDF

Info

Publication number
JP4075441B2
JP4075441B2 JP2002116256A JP2002116256A JP4075441B2 JP 4075441 B2 JP4075441 B2 JP 4075441B2 JP 2002116256 A JP2002116256 A JP 2002116256A JP 2002116256 A JP2002116256 A JP 2002116256A JP 4075441 B2 JP4075441 B2 JP 4075441B2
Authority
JP
Japan
Prior art keywords
powder
rotor core
magnet
shape
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002116256A
Other languages
Japanese (ja)
Other versions
JP2003319620A (en
Inventor
靖治 竹綱
博 佐藤
靖 西隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002116256A priority Critical patent/JP4075441B2/en
Publication of JP2003319620A publication Critical patent/JP2003319620A/en
Application granted granted Critical
Publication of JP4075441B2 publication Critical patent/JP4075441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電動機ロータの製造方法に関し、特に、電気自動車などの電動機で用いられる電動機ロータの製造方法に関するものである。
【0002】
【従来の技術】
近年、電動機を駆動源とした電気自動車や、電動機とガソリンエンジンなど複数種類の駆動源を有する、いわゆるハイブリッドカーが実用化されてきている。このような電気自動車などには、駆動源としての機能と、発電機としての機能を有する電動機が搭載されている。
【0003】
電動機は回転可能な電動機ロータを有する。電動機ロータは、通常、磁性体からなるロータコアと、そのロータコアに接触する磁石とを有する構造とされる。
【0004】
電動機ロータの製造方法は、たとえば特開平7−177712号公報に開示されている。上記公報に開示された電動機ロータでは、ロータコアとしてのヨークと、永久磁石とが焼結により接合されている。
【0005】
【発明が解決しようとする課題】
上記公報に開示された製造方法では、永久磁石の粉末成形体と、ロータコア(ヨーク)の粉末成形体とをそれぞれ別々の工程で作製する。ロータコアの粉末成形体は孔を有する。このロータコアの粉末成形体の孔内に磁石の粉末成形体を挿入し、高温で焼結することにより、磁石をロータコアに接合させる。
【0006】
上述のような方法では、焼結して製造したロータコアと磁石の間に隙間が生じるという問題がある。このように、ロータコアと磁石との間に隙間が生じると、この隙間が磁気抵抗となり、モータの性能が低下する。具体的には、モータの効率が低下するとともに、モータのトルク変動が生じる。
【0007】
そこで、この発明は上述のような問題点を解決するためになされたものであり、ロータコアと磁石との間の隙間をなくし、優れた特性を発揮することが可能な電動機ロータを提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明に従った電動機ロータの製造方法は、ロータコアと、そのロータコアと接触する磁石とを備えた電動機ロータの製造方法であって、ロータコアとなる第1の粉末と、第1の粉末に接触し、磁石となる第2の粉末とを含み、第1の粉末と第2の粉末とが接触した状態で圧縮されて成形された圧粉体を準備する工程と、圧粉体を焼結する工程とを備える。
【0009】
このような工程を備えた電動機ロータの製造方法に従えば、成形体同士を接触させて焼結する製造方法に比べて、ロータコアとなる第1の粉末と、磁石となる第2の粉末とが接触した状態で圧縮されて圧粉体が成形される。そのため、接触面同士が噛み合うため、圧粉体を焼結して得られる電動機ロータでは、ロータコアと磁石との間の隙間がなくなる。その結果、磁気抵抗が低減すると同時に、均一な磁界が形成される。これにより、モータの効率が向上するとともに、トルク変動を減少させることができる。
【0010】
また、圧粉体を準備する工程は、前記円筒状のロータコアの内周形状を規定する外壁部を有する円柱状の第1部材と、前記円筒状のロータコアの外周形状を規定する内壁部を有する円筒状の第3部材と、前記第1部材の外壁部と前記第3部材の内壁部との間の円環状空間に配置される円環状部材であって、前記磁石の所定形状に対応する孔を有し、前記第1部材の外壁部と前記第3部材の内壁部とに接触して前記円環状の軸方向に移動可能な第2部材と、前記第2部材の前記孔に対応する外形形状を有し、前記孔に嵌め合わされ、前記孔の中で摺動可能な第4部材と、を準備する第1工程と、前記第1部材と前記第3部材とで囲まれた領域に前記円環状空間が生じるように、第4部材は移動させずそのままにして前記第2部材を前記円環状の軸方向に移動させ、前記円環状空間内に、前記ロータコアとなる前記第1の粉末を充填し、前記第1の粉末を、前記第1部材と前記第2部材との間で囲まれた前記円環状空間であって、かつ前記移動されていない前記第4部材を取り囲むように配置する第2工程と、前記円筒状のロータコアの外周形状と同じ形状の外壁部を有する円筒状の第5部材を準備し、前記第4部材を取り囲むようにして円環状に充填された前記第1の粉末の充填上面と、前記第1部材の上面とに、前記第5部材の底面を接触させ、前記第5部材の前記外壁部を前記第3部材の前記内壁部に接触させながら、前記第5部材をその円筒状の軸方向に移動させて前記第1の粉末を圧縮する工程であって、前記第1部材と前記第3部材との間の径方向の間隔距離を変えず、前記第5部材の前記底面で、前記充填上面と前記第1部材の上面と前記第4部材の上面とを、前記第5部材の円筒状の軸方向に押し下げ、前記第4部材は、前記第1部材、前記第2部材、前記第3部材および前記第5部材で囲まれた領域に残し、前記第1の粉末を圧縮して前記ロータコアを成形する第3工程と、前記第5部材を前記ロータコアから離して取り除き、続いて、前記第4部材を前記第2部材の前記孔の中で移動させて、前記第2部材と前記第4部材の頂面の高さを同一とするようにして、前記ロータコアから前記第4部材を引抜き、前記ロータコアに前記磁石の所定形状に対応する孔を形成する第4工程と、前記ロータコアに形成された孔内に前記第2の粉末を充填する第5工程と、再び前記第5部材を準備し、前記形成された孔に前記第2の粉末が充填された前記ロータコアの上面に、前記第5部材の底面を接触させ、前記第5部材の前記外壁部を前記第3部材の前記内壁部に接触させながら、前記第5部材をその円筒状の軸方向に移動させて、前記第2部材と前記第4部材の頂面の高さを同一としたまま、前記第1の粉末と前記第2の粉末とを圧縮し、前記圧粉体を得る第6工程と、を含む。この場合、ロータコア部の孔内に第2の粉末を充填した後、ロータコア部と第2の粉末とを圧縮することにより、ロータコア部内に磁石部が埋込まれ、実際の製品に即した形状の電動機ロータを製造することができる。
また、前記第2工程は、前記第1の粉末として、ニッケル−鉄粉末を用い、前記第5工程は、前記第2の粉末として、ネオジム−鉄−ホウ素粉末を用いることが好ましい。
【0011】
また好ましくは、前記圧粉体を準備する工程は、前記第1工程において、外周部に凹部と凸部とが形成された前記第4部材と、前記第4部材に接触して前記第4部材の凹部と凸部とに嵌り合う凹部と凸部が内周部に形成された前記第2部材を準備し、前記第2工程から前記第6工程を行うことで、前記第1の粉末を含み、前記磁石の所定形状に対応する孔であって内周部の表面に凹凸が形成された孔を有する前記ロータコアと、前記第2の粉末を含み、前記凹凸に嵌り合う外周部の形状を有する前記磁石とを含む前記圧粉体を準備する。この場合、ロータコア部と磁石部との接触面積が増加するため、第1および第2の粉末の絡まりが強固となり、ロータコア部と磁石部との間の隙間が減少する。
【0012】
【発明の実施の形態】
以下、この発明の実施の形態について、図面を参照して説明する。
【0013】
(実施の形態1)
図1は、この発明の実施の形態1に従って製造された電動機ロータの平面図である。図2は、図1中のII−II線に沿った断面図である。図1を参照して、電動機ロータ100は、ベース体としてのロータコア1と、ロータコア1に埋込まれた磁石2とを有する。図1で示す電動機ロータ100は、いわゆる、磁石式の駆動用電動機(モータ)で用いられるものであり、このような磁石式のモータは、燃費向上を目的とした電気自動車およびハイブリッド車などに搭載される。ロータコア1はリング状(環状)であり、軟磁性粒子を焼結することにより形成されている。ロータコア1および磁石2は、ロータコア1の中心を回転軸として所定方向に回転する。
【0014】
ロータコア1を構成する材料としては、たとえば、ニッケル−鉄合金が用いられる。これに、さまざまな添加物を添加することができる。
【0015】
磁石2は、永久磁石により構成される。この永久磁石として、たとえばネオジム−鉄−ボロン焼結型磁石、フェライト磁石または希土類ボンド磁石などを用いることができる。
【0016】
図2を参照して、ロータコア1は円筒状であり、その円筒の一部分に磁石2が埋込まれている。ロータコア1の長さと磁石2の長さは等しい。そのため、磁石2は、ロータコア1を貫通するように設けられる。ロータコア1で囲まれる空間内には、電動機の回転軸などが配置され、この回転軸を中心としてロータコア1および磁石2が回転する。
【0017】
次に、図1および図2で示す電動機ロータの製造方法を図3〜図8に従って説明する。なお、図3〜図8は、図1中のIII−III線に沿った断面図である。まず、図3を参照して、第1工程として、第1部材11、第2部材12、第3部材13および第4部材14を準備する。第1部材11と第2部材12とは接触している。第2部材12内に第4部材14が嵌め合わされている。第4部材14は、第2部材12に対して接触して摺動することが可能である。第2部材12に接触するように第3部材13が設けられている。
【0018】
図4を参照して、第2工程として、第2部材12を矢印で示す方向に移動させる。これにより、第1部材11と第3部材13とで囲まれた領域に空間が生じる。この空間内に、ロータコアとなる第1の粉末21を充填する。第1の粉末21としては、たとえばニッケル−鉄粉末を用いることができる。第1の粉末21は、第1部材11と第2部材13との間で囲まれた空間であって、かつ第4部材14を取り囲むように配置される。
【0019】
図5を参照して、第3工程として第1の粉末21を第5部材15で圧縮する。具体的には、第1部材11と第3部材13との間の距離を変えず、第5部材15を、第1部材11、第3部材13、および第4部材14と接触させながら第5部材15で第1粉末21を圧縮する。このとき、第4部材14は、第1部材11、第2部材12、第3部材13および第5部材15で囲まれた領域に残す。これにより、第1の粉末21が圧縮されてロータコア部25が成形される。ロータコア部25は、第1の粉末21の圧粉体である。
【0020】
図6を参照して、第4工程として、第5部材15をロータコア部25から離す。続いて、第4部材14を矢印で示す方向に移動させる。ロータコア部25から第4部材14が引抜かれることにより、ロータコア部25に孔21hが形成される。
【0021】
図7を参照して、第5工程として、ロータコア部25の孔21h内に第2の粉末22を充填する。第2の粉末22は、永久磁石となる粉末であり、たとえばネオジム−鉄−ホウ素粉末を用いることができる。また、フェライト粉末でもよい。
【0022】
図8を参照して、第6工程として、第1部材11、第2部材12、第3部材13および第5部材15を用いて、第1の粉末21と第2の粉末22とを圧縮する。このとき、第2部材12と第4部材14の頂面の高さを同一とする。このように、第1の粉末21と第2の粉末22を圧縮することにより、第1の粉末21により構成され、ロータコアとなるロータコア部25と、第1の粉末21に接触し、第2の粉末22を含み、磁石となる磁石部26とにより構成される圧粉体23を得ることができる。
【0023】
最後に、圧粉体23を温度800℃〜1300℃の条件で焼結することにより、図1および図2で示すロータコア1と磁石2により構成される電動機ロータ100を得ることができる。
【0024】
このような電動機ロータの製造方法に従えば、図3〜図8で示したように、第1の粉末21と第2の粉末22を接触させ、これらを圧縮することにより圧粉体23を成形する。この圧粉体23を焼結することでロータコア1と磁石2からなる電動機ロータ100を得ることができるため、第1の粉末21と第2の粉末22との界面では、第1の粉末21と第2の粉末22とが十分に噛み合う。
【0025】
すなわち、第1の粉末21により構成されるロータコア部25と、第2の粉末22により構成される磁石部26では、その界面で隙間がなくなり、ロータコア部25から磁石部26に近づくにつれて第1の粉末21の割合が減少し、第2の粉末22の割合が増加するようになる。そのため、ロータコアと磁石とが強固に結合するため、この部分での磁気抵抗が低減するとともに、均一な磁界を形成することができる。その結果、モータの効率が向上するとともに、トルク変動を減少させることができる。
【0026】
また、ロータコア1と磁石2との間の密着性を向上させるために金属箔を入れるような技術に比べて、製造工程を増加させることなくロータコア1と磁石2との間の隙間をなくすことができる。さらに、上述のような金属箔を入れる技術では、ロータコア1と磁石2との間の隙間をなくするために金属箔の厚み、ロータコアの磁石を挿入するための孔および磁石の厚みの寸法を精度よく管理する必要がある。これに対して、本発明では、上述のような金属箔を挿入しないため、寸法を厳密に管理する必要がなくなり、製造が容易となる。
【0027】
(実施の形態2)
図9は、この発明の実施の形態2に従った方法で製造された電動機ロータの平面図である。図10は、図9のXで囲んだ部分を拡大して示す平面図である。図9および図10を参照して、この発明の実施の形態2に従った電動機ロータ100では、ロータコア1の表面に凸部1aと凹部1bとが形成されている。この凸部1aと凹部1bで囲まれる領域に磁石2が埋込まれている。
【0028】
磁石2は凸部2aと凹部2bとを有し、ロータコア1の凸部1aが磁石2の凹部2bに嵌り合う。同様に、ロータコア1の凹部1bに磁石2の凸部2aが嵌り合う。なお、図10では、凸部1aおよび2aならびに凹部1bおよび2bの形状は円弧状としたが、これに限らず、三角形状、鋸状、四角形状の凸部1aおよび2aならびに凹部1bおよび2bを形成してもよい。
【0029】
図9および図10で示す電動機ロータ100の製造方法は、図3で示す第2および第4部材12および14の形状を実施の形態1と異ならせる。すなわち、第4部材14に図10で示すような凹部および凸部を形成する。これに対応して、第4部材14と接触する第2部材12の面にも、第4部材14の凹部および凸部と嵌り合う凹部および凸部を形成する。これにより、図4および図5で示す工程において所定の空間に第1の粉末21を充填し、この第1の粉末21を第5部材15で圧縮してロータコア部25を形成した場合に、このロータコア部25の表面に凸部および凹部が形成される。
【0030】
第4部材14をロータコア部25から引抜いて、孔21hを形成したときには、孔21hの表面には、凹部および凸部が形成されている。孔21h内に第2の粉末22を充填した後これらを圧縮することで、凸部および凹部を有する磁石部26と、ロータコア部25を備えた圧粉体23を得ることができる。
【0031】
その後、圧粉体23を焼結すれば図9および図10で示される電動機ロータを製造することができる。
【0032】
このように構成された、この発明の実施の形態2に従って電動機ロータでは、実施の形態1に従った電動機ロータと同様の効果がある。
【0033】
さらに、ロータコア1の凸部1aおよび凹部1bと、磁石2の凹部2bおよび凸部2aが互いに嵌り合っているため、磁石2の外周部とロータコア1の内周部との接触面積が増加する。そのため、圧粉体23を成形するときのロータコア部25と磁石部26との接触面積が大きくなってこれらの絡まりが強固になる。その結果、ロータコア部25と磁石部26の間の空間をさらに減少させることができる。
【0034】
以上、この発明の実施の形態について説明したが、ここで示した実施の形態はさまざまに変形することが可能である。まず、電動機ロータ100の形状として、実施の形態1および2では、円筒状のロータコアに磁石が円周上に配置されているものを示したが、これに限られるものではない。すなわち、磁石2がロータコア1の中心から放射線状に延びるように形成してもよい。この場合、磁石2はロータコア1の半径方向に延びるように形成される。
【0035】
さらに、磁石2の配置位置としては、実施の形態1および2ともロータコア1内に配置したが、これに限られるものではなく、ロータコア1の外周上に磁石2を配置して、磁石2の一部分をロータコア1の外側へ露出させてもよい。
【0036】
また、ロータコア1の表面に磁石2を接触させるように配置してもよい。また、ロータコア上の広い面積に磁石2を配置して、磁石2をパンケーキ型としてもよい。
【0037】
さらに、磁石2およびロータコア1の表面にさまざまな焼入れ、焼なましなどの熱処理を施してもよい。また、必要に応じて、ロータコア1および磁石2の表面にめっきなどの表面処理を施してもよい。
【0038】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0039】
【発明の効果】
この発明に従えば、ロータコア1と磁石2との間の隙間がほとんどない電動機ロータを提供することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1に従って製造された電動機ロータの平面図である。
【図2】 図1中のII−II線に沿った断面図である。
【図3】 図1および図2で示す電動機ロータの製造方法の第1工程を示す断面図である。
【図4】 図1および図2で示す電動機ロータの製造方法の第2工程を示す断面図である。
【図5】 図1および図2で示す電動機ロータの製造方法の第3工程を示す断面図である。
【図6】 図1および図2で示す電動機ロータの製造方法の第4工程を示す断面図である。
【図7】 図1および図2で示す電動機ロータの製造方法の第5工程を示す断面図である。
【図8】 図1および図2で示す電動機ロータの製造方法の第6工程を示す断面図である。
【図9】 この発明の実施の形態2に従って製造された電動機ロータの平面図である。
【図10】 図9中のXで囲んだ部分を拡大して示す平面図である。
【符号の説明】
1 ロータコア、2 磁石、11 第1部材、12 第2部材、13 第3部材、14 第4部材、15 第5部材、21 第1の粉末、21h 孔、22 第2の粉末、23 圧粉体、25 ロータコア部、26 磁石部、100 電動機ロータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an electric motor rotor, and more particularly to a method for manufacturing an electric motor rotor used in an electric motor such as an electric vehicle.
[0002]
[Prior art]
In recent years, an electric vehicle using an electric motor as a drive source and a so-called hybrid car having a plurality of types of drive sources such as an electric motor and a gasoline engine have been put into practical use. Such an electric vehicle or the like is equipped with an electric motor having a function as a drive source and a function as a generator.
[0003]
The electric motor has a rotatable motor rotor. An electric motor rotor is usually configured to have a rotor core made of a magnetic material and a magnet that contacts the rotor core.
[0004]
A method for manufacturing an electric motor rotor is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-177712. In the motor rotor disclosed in the above publication, a yoke as a rotor core and a permanent magnet are joined by sintering.
[0005]
[Problems to be solved by the invention]
In the manufacturing method disclosed in the above publication, a permanent magnet powder compact and a rotor core (yoke) powder compact are produced in separate steps. The powder compact of the rotor core has holes. The magnet powder compact is inserted into the hole of the rotor core powder compact and sintered at a high temperature to join the magnet to the rotor core.
[0006]
In the method as described above, there is a problem in that a gap is generated between the rotor core manufactured by sintering and the magnet. As described above, when a gap is generated between the rotor core and the magnet, the gap becomes a magnetic resistance, and the performance of the motor is deteriorated. Specifically, the motor efficiency decreases and the motor torque fluctuates.
[0007]
Accordingly, the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an electric motor rotor that can eliminate the gap between the rotor core and the magnet and exhibit excellent characteristics. Objective.
[0008]
[Means for Solving the Problems]
A method for manufacturing an electric motor rotor according to the present invention is an electric motor rotor manufacturing method including a rotor core and a magnet that contacts the rotor core, the first powder serving as the rotor core, and the first powder being in contact with the first powder. A step of preparing a green compact that is compressed and molded in a state where the first powder and the second powder are in contact with each other, and a step of sintering the green compact. With.
[0009]
According to the method for manufacturing an electric motor rotor including such a process, the first powder that becomes the rotor core and the second powder that becomes the magnet are compared with the manufacturing method in which the compacts are brought into contact with each other and sintered. The green compact is formed by compression in the contact state. For this reason, the contact surfaces mesh with each other, so that there is no gap between the rotor core and the magnet in the motor rotor obtained by sintering the green compact. As a result, the magnetic resistance is reduced and a uniform magnetic field is formed. As a result, the efficiency of the motor can be improved and the torque fluctuation can be reduced.
[0010]
The step of preparing the green compact has a columnar first member having an outer wall that defines the inner peripheral shape of the cylindrical rotor core, and an inner wall that defines the outer peripheral shape of the cylindrical rotor core. A cylindrical third member, and an annular member disposed in an annular space between the outer wall portion of the first member and the inner wall portion of the third member, the hole corresponding to a predetermined shape of the magnet A second member that contacts the outer wall portion of the first member and the inner wall portion of the third member and is movable in the annular axial direction, and an outer shape corresponding to the hole of the second member shaped, is fitted into the hole, the a region surrounded by a first step of preparing a fourth member slidable within said bore, said first member and said third member so that the annular space occurs, the leave to the second member of the annular fourth member is not moved Is moved in a direction, the annularly space, filled with the first powder of said rotor core, said first powder, the circle enclosed between said first member and said second member a in the annular space, and a second step of placing so as to surround the fourth member which is not the mobile, cylindrical fifth member having an outer wall portion of the same shape as the outer peripheral shape of the cylindrical rotor core The bottom surface of the fifth member is brought into contact with the top surface of the first powder filled in an annular shape so as to surround the fourth member and the top surface of the first member, A step of compressing the first powder by moving the fifth member in a cylindrical axial direction while bringing the outer wall portion of the five member into contact with the inner wall portion of the third member, without changing the first member a radial spacing distance between the third member, Serial in the bottom surface of the fifth member, wherein the filling upper surface and the upper surface of the first member and the upper surface of said fourth member, pushed axially cylindrical of the fifth member, said fourth member, said first 1 member, said second member, leaving the region surrounded by the third member and said fifth member, and a third step of forming the rotor core by compressing said first powder, the fifth member The first member is removed away from the rotor core, and then the fourth member is moved in the hole of the second member so that the top surfaces of the second member and the fourth member have the same height. A fourth step of drawing the fourth member from the rotor core and forming a hole corresponding to a predetermined shape of the magnet in the rotor core; and a second step of filling the second powder in the hole formed in the rotor core. 5 steps and preparing the fifth member again, the formed While the bottom surface of the fifth member is brought into contact with the upper surface of the rotor core filled with the second powder in the hole, the outer wall portion of the fifth member is brought into contact with the inner wall portion of the third member, by moving the fifth member in the axial direction of the cylindrical shape, the second member of the height of the top surface of the fourth member while the same compression and the second powder and the first powder And a sixth step of obtaining the green compact. In this case, after the second powder is filled in the hole of the rotor core portion, the rotor core portion and the second powder are compressed, so that the magnet portion is embedded in the rotor core portion, and the shape conforms to the actual product. An electric motor rotor can be manufactured.
The second step preferably uses nickel-iron powder as the first powder, and the fifth step uses neodymium-iron-boron powder as the second powder.
[0011]
Preferably, in the step of preparing the green compact, in the first step, the fourth member having a concave portion and a convex portion formed on an outer peripheral portion thereof, and the fourth member in contact with the fourth member. Preparing the concave member and the second member in which the convex portion is formed on the inner peripheral portion, and performing the sixth step to the sixth step, thereby preparing the first powder. A rotor core having a hole corresponding to a predetermined shape of the magnet and having a hole formed on the surface of the inner periphery, and a shape of the outer periphery including the second powder and fitting to the unevenness. wherein preparing a green compact comprising said magnet having. In this case, since the contact area between the rotor core portion and the magnet portion increases, the entanglement of the first and second powders becomes strong, and the gap between the rotor core portion and the magnet portion decreases.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0013]
(Embodiment 1)
FIG. 1 is a plan view of an electric motor rotor manufactured according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. Referring to FIG. 1, an electric motor rotor 100 includes a rotor core 1 as a base body and a magnet 2 embedded in the rotor core 1. The motor rotor 100 shown in FIG. 1 is used in a so-called magnet-type driving motor (motor), and such a magnet-type motor is mounted on an electric vehicle, a hybrid vehicle, or the like for the purpose of improving fuel efficiency. Is done. The rotor core 1 has a ring shape (annular shape) and is formed by sintering soft magnetic particles. The rotor core 1 and the magnet 2 rotate in a predetermined direction with the center of the rotor core 1 as a rotation axis.
[0014]
As a material constituting the rotor core 1, for example, a nickel-iron alloy is used. Various additives can be added to this.
[0015]
The magnet 2 is composed of a permanent magnet. As this permanent magnet, for example, a neodymium-iron-boron sintered magnet, a ferrite magnet, or a rare earth bonded magnet can be used.
[0016]
Referring to FIG. 2, the rotor core 1 is cylindrical, and a magnet 2 is embedded in a part of the cylinder. The length of the rotor core 1 and the length of the magnet 2 are equal. Therefore, the magnet 2 is provided so as to penetrate the rotor core 1. In the space surrounded by the rotor core 1, a rotating shaft of the electric motor is disposed, and the rotor core 1 and the magnet 2 rotate around the rotating shaft.
[0017]
Next, a method for manufacturing the motor rotor shown in FIGS. 1 and 2 will be described with reference to FIGS. 3 to 8 are sectional views taken along line III-III in FIG. First, with reference to FIG. 3, the 1st member 11, the 2nd member 12, the 3rd member 13, and the 4th member 14 are prepared as a 1st process. The first member 11 and the second member 12 are in contact with each other. A fourth member 14 is fitted in the second member 12. The fourth member 14 can slide in contact with the second member 12. A third member 13 is provided so as to contact the second member 12.
[0018]
Referring to FIG. 4, as the second step, second member 12 is moved in the direction indicated by the arrow. As a result, a space is generated in a region surrounded by the first member 11 and the third member 13. This space is filled with the first powder 21 to be the rotor core. As the first powder 21, for example, nickel-iron powder can be used. The first powder 21 is a space surrounded between the first member 11 and the second member 13 and is disposed so as to surround the fourth member 14.
[0019]
Referring to FIG. 5, the first powder 21 is compressed by the fifth member 15 as the third step. Specifically, the fifth member 15 is kept in contact with the first member 11, the third member 13, and the fourth member 14 without changing the distance between the first member 11 and the third member 13. The first powder 21 is compressed by the member 15. At this time, the fourth member 14 is left in a region surrounded by the first member 11, the second member 12, the third member 13, and the fifth member 15. Thereby, the 1st powder 21 is compressed and the rotor core part 25 is shape | molded. The rotor core portion 25 is a green compact of the first powder 21.
[0020]
With reference to FIG. 6, the fifth member 15 is separated from the rotor core portion 25 as the fourth step. Subsequently, the fourth member 14 is moved in the direction indicated by the arrow. By extracting the fourth member 14 from the rotor core portion 25, a hole 21 h is formed in the rotor core portion 25.
[0021]
Referring to FIG. 7, as the fifth step, the second powder 22 is filled into the hole 21 h of the rotor core portion 25. The second powder 22 is a powder that becomes a permanent magnet, and for example, a neodymium-iron-boron powder can be used. Ferrite powder may also be used.
[0022]
Referring to FIG. 8, as the sixth step, first powder 21 and second powder 22 are compressed using first member 11, second member 12, third member 13, and fifth member 15. . At this time, the heights of the top surfaces of the second member 12 and the fourth member 14 are the same. Thus, by compressing the first powder 21 and the second powder 22, the first powder 21 is brought into contact with the rotor core portion 25, which serves as the rotor core, and the first powder 21. It is possible to obtain a green compact 23 that includes the powder 22 and includes a magnet portion 26 that becomes a magnet.
[0023]
Finally, by sintering the green compact 23 at a temperature of 800 ° C. to 1300 ° C., the electric motor rotor 100 constituted by the rotor core 1 and the magnet 2 shown in FIGS. 1 and 2 can be obtained.
[0024]
According to such a method for manufacturing an electric motor rotor, as shown in FIGS. 3 to 8, the first powder 21 and the second powder 22 are brought into contact with each other and compressed to form the green compact 23. To do. By sintering the green compact 23, the electric motor rotor 100 composed of the rotor core 1 and the magnet 2 can be obtained, and therefore, at the interface between the first powder 21 and the second powder 22, The second powder 22 is sufficiently meshed.
[0025]
That is, in the rotor core portion 25 constituted by the first powder 21 and the magnet portion 26 constituted by the second powder 22, there is no gap at the interface, and the first as the rotor core portion 25 approaches the magnet portion 26. The proportion of the powder 21 decreases and the proportion of the second powder 22 increases. Therefore, since the rotor core and the magnet are firmly coupled, the magnetic resistance in this portion is reduced and a uniform magnetic field can be formed. As a result, the efficiency of the motor can be improved and torque fluctuation can be reduced.
[0026]
In addition, the gap between the rotor core 1 and the magnet 2 can be eliminated without increasing the number of manufacturing steps as compared with a technique in which a metal foil is inserted to improve the adhesion between the rotor core 1 and the magnet 2. it can. Further, in the technology for inserting the metal foil as described above, the thickness of the metal foil, the hole for inserting the magnet of the rotor core, and the size of the magnet thickness are accurately determined in order to eliminate the gap between the rotor core 1 and the magnet 2. It is necessary to manage well. On the other hand, in the present invention, since the metal foil as described above is not inserted, it is not necessary to strictly manage the dimensions, and the manufacture becomes easy.
[0027]
(Embodiment 2)
FIG. 9 is a plan view of an electric motor rotor manufactured by the method according to the second embodiment of the present invention. FIG. 10 is an enlarged plan view showing a portion surrounded by X in FIG. With reference to FIGS. 9 and 10, in motor rotor 100 according to the second embodiment of the present invention, convex portion 1 a and concave portion 1 b are formed on the surface of rotor core 1. A magnet 2 is embedded in a region surrounded by the convex portion 1a and the concave portion 1b.
[0028]
The magnet 2 has a convex part 2 a and a concave part 2 b, and the convex part 1 a of the rotor core 1 fits into the concave part 2 b of the magnet 2. Similarly, the convex part 2 a of the magnet 2 fits into the concave part 1 b of the rotor core 1. In FIG. 10, the shape of the convex portions 1a and 2a and the concave portions 1b and 2b is an arc shape. However, the shape is not limited to this, and the triangular, saw-shaped, and quadrangular convex portions 1a and 2a and the concave portions 1b and 2b are formed. It may be formed.
[0029]
The manufacturing method of the motor rotor 100 shown in FIGS. 9 and 10 makes the shapes of the second and fourth members 12 and 14 shown in FIG. 3 different from those of the first embodiment. That is, a concave portion and a convex portion as shown in FIG. 10 are formed in the fourth member 14. Correspondingly, the concave and convex portions that fit the concave and convex portions of the fourth member 14 are also formed on the surface of the second member 12 that contacts the fourth member 14. 4 and FIG. 5, when the first powder 21 is filled in a predetermined space and the first powder 21 is compressed by the fifth member 15 to form the rotor core portion 25, Convex portions and concave portions are formed on the surface of the rotor core portion 25.
[0030]
When the fourth member 14 is pulled out of the rotor core portion 25 to form the hole 21h, a concave portion and a convex portion are formed on the surface of the hole 21h. By filling the second powder 22 into the hole 21h and then compressing them, the green compact 23 including the magnet part 26 having the convex part and the concave part and the rotor core part 25 can be obtained.
[0031]
Thereafter, if the green compact 23 is sintered, the motor rotor shown in FIGS. 9 and 10 can be manufactured.
[0032]
The electric motor rotor configured as described above according to the second embodiment of the present invention has the same effect as the electric motor rotor according to the first embodiment.
[0033]
Furthermore, since the convex part 1a and the concave part 1b of the rotor core 1 and the concave part 2b and the convex part 2a of the magnet 2 are mutually fitted, the contact area of the outer peripheral part of the magnet 2 and the inner peripheral part of the rotor core 1 increases. For this reason, the contact area between the rotor core portion 25 and the magnet portion 26 when the green compact 23 is molded is increased, and these entanglements are strengthened. As a result, the space between the rotor core portion 25 and the magnet portion 26 can be further reduced.
[0034]
Although the embodiment of the present invention has been described above, the embodiment shown here can be variously modified. First, as the shape of the electric motor rotor 100, the first and second embodiments have shown that the magnet is arranged on the circumference of the cylindrical rotor core, but is not limited thereto. That is, the magnet 2 may be formed to extend radially from the center of the rotor core 1. In this case, the magnet 2 is formed so as to extend in the radial direction of the rotor core 1.
[0035]
Further, the arrangement position of the magnet 2 is arranged in the rotor core 1 in both of the first and second embodiments, but is not limited to this, and the magnet 2 is arranged on the outer periphery of the rotor core 1 and a part of the magnet 2 is arranged. May be exposed to the outside of the rotor core 1.
[0036]
Moreover, you may arrange | position so that the magnet 2 may contact the surface of the rotor core 1. FIG. Further, the magnet 2 may be arranged in a wide area on the rotor core so that the magnet 2 is a pancake type.
[0037]
Further, the surfaces of the magnet 2 and the rotor core 1 may be subjected to various heat treatments such as quenching and annealing. Moreover, you may perform surface treatments, such as plating, on the surface of the rotor core 1 and the magnet 2 as needed.
[0038]
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0039]
【The invention's effect】
According to the present invention, an electric motor rotor having almost no gap between the rotor core 1 and the magnet 2 can be provided.
[Brief description of the drawings]
FIG. 1 is a plan view of an electric motor rotor manufactured in accordance with Embodiment 1 of the present invention.
2 is a cross-sectional view taken along line II-II in FIG.
3 is a cross-sectional view showing a first step of the method for manufacturing the motor rotor shown in FIGS. 1 and 2. FIG.
4 is a cross-sectional view showing a second step of the method of manufacturing the motor rotor shown in FIGS. 1 and 2. FIG.
5 is a cross-sectional view showing a third step of the method of manufacturing the motor rotor shown in FIGS. 1 and 2. FIG.
6 is a cross-sectional view showing a fourth step of the method for manufacturing the motor rotor shown in FIGS. 1 and 2. FIG.
7 is a cross-sectional view showing a fifth step of the method for manufacturing the motor rotor shown in FIGS. 1 and 2. FIG.
8 is a cross-sectional view showing a sixth step of the method of manufacturing the motor rotor shown in FIGS. 1 and 2. FIG.
FIG. 9 is a plan view of an electric motor rotor manufactured in accordance with Embodiment 2 of the present invention.
10 is an enlarged plan view showing a portion surrounded by X in FIG. 9;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotor core, 2 magnet, 11 1st member, 12 2nd member, 13 3rd member, 14 4th member, 15 5th member, 21 1st powder, 21h hole, 22 2nd powder, 23 compact , 25 rotor core part, 26 magnet part, 100 motor rotor.

Claims (3)

円筒状のロータコアと、そのロータコアに埋め込まれて接触する所定形状の磁石とを備えた電動機ロータの製造方法であって、
前記ロータコアとなる第1の粉末と、前記第1の粉末に接触し、前記磁石となる第2の粉末とを含み、前記第1の粉末と前記第2の粉末とが接触した状態で圧縮されて成形された圧粉体を準備する工程と、前記圧粉体を焼結する工程とを備え、
前記圧粉体を準備する工程は、
前記円筒状のロータコアの内周形状を規定する外壁部を有する円柱状の第1部材と
前記円筒状のロータコアの外周形状を規定する内壁部を有する円筒状の第3部材と、
前記第1部材の外壁部と前記第3部材の内壁部との間の円環状空間に配置される円環状部材であって、前記磁石の所定形状に対応する孔を有し、前記第1部材の外壁部と前記第3部材の内壁部とに接触して前記円環状の軸方向に移動可能な第2部材と
前記第2部材の前記孔に対応する外形形状を有し、前記孔に嵌め合わされ、前記孔の中で摺動可能な第4部材と、を準備する第1工程と、
前記第1部材と前記第3部材とで囲まれた領域に前記円環状空間が生じるように、第4部材は移動させずそのままにして前記第2部材を前記円環状の軸方向に移動させ、前記円環状空間内に、前記ロータコアとなる前記第1の粉末を充填し、前記第1の粉末を、前記第1部材と前記第2部材との間で囲まれた前記円環状空間であって、かつ前記移動されていない前記第4部材を取り囲むように配置する第2工程と、
前記円筒状のロータコアの外周形状と同じ形状の外壁部を有する円筒状の第5部材を準備し、前記第4部材を取り囲むようにして円環状に充填された前記第1の粉末の充填上面と、前記第1部材の上面とに、前記第5部材の底面を接触させ、前記第5部材の前記外壁部を前記第3部材の前記内壁部に接触させながら、前記第5部材をその円筒状の軸方向に移動させて前記第1の粉末を圧縮する工程であって、前記第1部材と前記第3部材との間の径方向の間隔距離を変えず、前記第5部材の前記底面で、前記充填上面と前記第1部材の上面と前記第4部材の上面とを、前記第5部材の円筒状の軸方向に押し下げ、前記第4部材は、前記第1部材、前記第2部材、前記第3部材および前記第5部材で囲まれた領域に残し、前記第1の粉末を圧縮して前記ロータコアを成形する第3工程と、
前記第5部材を前記ロータコアから離して取り除き、続いて、前記第4部材を前記第2部材の前記孔の中で移動させて、前記第2部材と前記第4部材の頂面の高さを同一とするようにして、前記ロータコアから前記第4部材を引抜き、前記ロータコアに前記磁石の所定形状に対応する孔を形成する第4工程と、
前記ロータコアに形成された孔内に前記第2の粉末を充填する第5工程と、
再び前記第5部材を準備し、前記形成された孔に前記第2の粉末が充填された前記ロータコアの上面に、前記第5部材の底面を接触させ、前記第5部材の前記外壁部を前記第3部材の前記内壁部に接触させながら、前記第5部材をその円筒状の軸方向に移動させて、前記第2部材と前記第4部材の頂面の高さを同一としたまま、前記第1の粉末と前記第2の粉末とを圧縮し、前記圧粉体を得る第6工程と、
を含む電動機ロータの製造方法。
A method for manufacturing an electric motor rotor comprising a cylindrical rotor core and a magnet having a predetermined shape that is embedded in and contacts the rotor core,
The first powder to be the rotor core and the second powder to be in contact with the first powder and to be the magnet are compressed in a state in which the first powder and the second powder are in contact with each other. A step of preparing a green compact molded by the method, and a step of sintering the green compact,
The step of preparing the green compact includes
A columnar first member having an outer wall defining the inner circumferential shape of the cylindrical rotor core ;
A cylindrical third member having an inner wall defining the outer peripheral shape of the cylindrical rotor core;
An annular member disposed in an annular space between an outer wall portion of the first member and an inner wall portion of the third member, the hole having a hole corresponding to a predetermined shape of the magnet, and the first member A second member that is movable in the annular axial direction in contact with the outer wall of the third member and the inner wall of the third member ;
Has an outer shape corresponding to the hole of the second member, wherein is fitted into the hole, a first step of preparing a fourth member slidable within said bore,
Moving the second member in the axial direction of the ring without moving the fourth member so that the annular space is generated in the region surrounded by the first member and the third member; The annular space is filled with the first powder serving as the rotor core, and the first powder is contained in the annular space surrounded by the first member and the second member. And a second step of surrounding the fourth member that has not been moved ,
A cylindrical fifth member having an outer wall portion having the same shape as the outer peripheral shape of the cylindrical rotor core is prepared, and an upper filling surface of the first powder filled in an annular shape so as to surround the fourth member; The bottom surface of the fifth member is brought into contact with the upper surface of the first member, and the outer wall portion of the fifth member is brought into contact with the inner wall portion of the third member, while the fifth member is formed in a cylindrical shape. The first powder is compressed by moving in the axial direction of the first member and the bottom surface of the fifth member without changing the radial distance between the first member and the third member. The filling upper surface, the upper surface of the first member, and the upper surface of the fourth member are pushed down in the cylindrical axial direction of the fifth member, and the fourth member includes the first member, the second member, leaving a region surrounded by the third member and said fifth member, pressure of said first powder A third step of molding the rotor core and,
The fifth member is removed away from the rotor core, and then the fourth member is moved in the hole of the second member to increase the height of the top surfaces of the second member and the fourth member. A fourth step of pulling out the fourth member from the rotor core and forming a hole corresponding to a predetermined shape of the magnet in the rotor core in the same manner ;
A fifth step of filling the second powder in the holes formed in the rotor core;
The fifth member is prepared again, the bottom surface of the fifth member is brought into contact with the upper surface of the rotor core in which the formed powder is filled with the second powder, and the outer wall portion of the fifth member is While contacting the inner wall portion of the third member, the fifth member is moved in the cylindrical axial direction, and the heights of the top surfaces of the second member and the fourth member are kept the same. A sixth step of compressing the first powder and the second powder to obtain the green compact;
A method for manufacturing an electric motor rotor.
前記第2工程は、前記第1の粉末として、ニッケル−鉄粉末を用い、前記第5工程は、前記第2の粉末として、ネオジム−鉄−ホウ素粉末を用いる請求項1に記載の電動機ロータの製造方法。  The electric motor rotor according to claim 1, wherein the second step uses nickel-iron powder as the first powder, and the fifth step uses neodymium-iron-boron powder as the second powder. Production method. 前記圧粉体を準備する工程は、前記第1工程において、外周部に凹部と凸部とが形成された前記第4部材と、前記第4部材に接触して前記第4部材の凹部と凸部とに嵌り合う凹部と凸部が内周部に形成された前記第2部材を準備し、前記第2工程から前記第6工程を行うことで、前記第1の粉末を含み、前記磁石の所定形状に対応する孔であって内周部の表面に凹凸が形成された孔を有する前記ロータコアと、前記第2の粉末を含み、前記凹凸に嵌り合う外周部の形状を有する前記磁石とを含む前記圧粉体を準備する請求項1または2に記載の電動機ロータの製造方法。In the first step, the step of preparing the green compact includes the fourth member having a concave portion and a convex portion formed on an outer peripheral portion thereof, and the concave portion and the convex portion of the fourth member in contact with the fourth member. The magnet includes the first powder by preparing the second member having a concave portion and a convex portion formed on the inner peripheral portion, and performing the sixth step from the second step. The rotor core having a hole corresponding to the predetermined shape and having a hole formed on the surface of the inner periphery, and the magnet having the shape of the outer periphery including the second powder and fitting to the unevenness; The method for manufacturing an electric motor rotor according to claim 1, wherein the green compact containing the powder is prepared.
JP2002116256A 2002-04-18 2002-04-18 Manufacturing method of motor rotor Expired - Fee Related JP4075441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116256A JP4075441B2 (en) 2002-04-18 2002-04-18 Manufacturing method of motor rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116256A JP4075441B2 (en) 2002-04-18 2002-04-18 Manufacturing method of motor rotor

Publications (2)

Publication Number Publication Date
JP2003319620A JP2003319620A (en) 2003-11-07
JP4075441B2 true JP4075441B2 (en) 2008-04-16

Family

ID=29533947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116256A Expired - Fee Related JP4075441B2 (en) 2002-04-18 2002-04-18 Manufacturing method of motor rotor

Country Status (1)

Country Link
JP (1) JP4075441B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101614A1 (en) 2004-04-06 2005-10-27 Hitachi Metals, Ltd. Rotor and process for manufacturing the same
JP4900775B2 (en) * 2004-12-17 2012-03-21 日立金属株式会社 Rotor for motor and manufacturing method thereof
EP1830451A4 (en) * 2004-12-17 2016-03-23 Hitachi Metals Ltd Rotor for motor and method for producing the same
JP4655646B2 (en) * 2005-01-27 2011-03-23 パナソニック株式会社 Permanent magnet embedded motor
JP4796788B2 (en) 2005-05-10 2011-10-19 株式会社日立製作所 Coreless motor
JP2007159361A (en) * 2005-12-08 2007-06-21 Toshiba Corp Rotor and its manufacturing method
JP4853771B2 (en) 2006-03-01 2012-01-11 日立金属株式会社 Yoke-integrated bonded magnet and motor magnet rotor using the same
DE102006050166A1 (en) * 2006-10-25 2008-04-30 Robert Bosch Gmbh Stator for use in e.g. permanently excited direct current motor, of motor vehicle, has stator part produced as sintered component part and sectionally made of soft-magnetic sintered material
JP2015104243A (en) * 2013-11-26 2015-06-04 三菱電機株式会社 Manufacturing method for permanent magnet built-in type rotor
KR20220107277A (en) * 2020-01-09 2022-08-02 게이츠 코포레이션 Permanent Magnet Rotor for Axial Flux Motors

Also Published As

Publication number Publication date
JP2003319620A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
US6888270B2 (en) Manufacturing method and composite powder metal rotor assembly for circumferential type interior permanent magnet machine
US6675460B2 (en) Method of making a powder metal rotor for a synchronous reluctance machine
CN204118908U (en) Motor
JP4075441B2 (en) Manufacturing method of motor rotor
US7146708B2 (en) Method of making a composite electric machine rotor assembly
US20030062792A1 (en) Manufacturing method and composite powder metal rotor assembly for spoke type interior permanent magnet machine
US6655004B2 (en) Method of making a powder metal rotor for a surface
US20090066171A1 (en) Method for manufacturing armature core and armature
US7524453B2 (en) Apparatus for manufacturing ring-shaped powder compact and method of manufacturing sintered ring magnet
US20030062786A1 (en) Manufacturing method and composite powder metal rotor assembly for induction machine
JP4548788B2 (en) Mold for motor core
JP2009254109A (en) Stator and method of manufacturing the sator
CN104756367A (en) Rotor for an electric motor
KR101396284B1 (en) Manufacturing method of rotor for vehicual ac generator
JP2004112919A (en) Stator for rotary electric machine and manufacturing method thereof
JP5707831B2 (en) Powder core and method for producing the same
JP3428002B2 (en) Magnet rotor with metal ring and method of manufacturing the same
CN104160599A (en) Method for producing a machine element, and machine element for an electric machine
JP2000278919A (en) Magnet member and production thereof
WO2003013768A1 (en) Method and apparatus for manufacturing multi-material powder metal components
JP2009072018A (en) Stator and its manufacturing method
JP2005312103A (en) Process for producing dust core
JP2006060894A (en) Dust core component, manufacturing method therefor, dust core, manufacturing method therefor, and shaping die
JP2005348584A (en) Powder magnetic core component and manufacturing method therefor, and powder magnetic core and manufacturing method therefor
JP4069040B2 (en) Radially oriented ring magnet molding die and manufacturing method of radial oriented ring magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050426

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees