JP4075166B2 - X-ray board inspection equipment - Google Patents

X-ray board inspection equipment Download PDF

Info

Publication number
JP4075166B2
JP4075166B2 JP33871898A JP33871898A JP4075166B2 JP 4075166 B2 JP4075166 B2 JP 4075166B2 JP 33871898 A JP33871898 A JP 33871898A JP 33871898 A JP33871898 A JP 33871898A JP 4075166 B2 JP4075166 B2 JP 4075166B2
Authority
JP
Japan
Prior art keywords
ray
tube current
value
tube
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33871898A
Other languages
Japanese (ja)
Other versions
JP2000162160A (en
Inventor
英男 本郷
広門 鳥羽
勲 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP33871898A priority Critical patent/JP4075166B2/en
Publication of JP2000162160A publication Critical patent/JP2000162160A/en
Application granted granted Critical
Publication of JP4075166B2 publication Critical patent/JP4075166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • X-Ray Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、本発明はX線を利用しプリント基板の検査・計測時にX線の間歇照射を継続的に行った場合のX線照射量を制御してX線撮像画質を安定させるX線基板検査装置に関するものである。
【0002】
【従来の技術】
従来、X線の間歇照射を利用した基板検査装置は、X線発生器のヒートアップ状態等の条件より、X線管の管電流の立ち上がり等の差異が発生し、照射開始時は照射線量が不安定である。そこで、照射線量が安定した状態になるまで一定時間経過させた後、検査対象物のX線透過像の撮像を始めることにより、照射線量を一定化させ、X線撮像画質を安定させている。
【0003】
また、X線を利用したX線基板検査装置において、X線撮像画質を安定させる手段として、特開平6−331571号公報に記載された発明がある。図11を用いて従来のX線基板検査装置の構成と動作を説明する。X線基板検査装置は、X線撮像画質を安定させる手段として、被検査物33へX線を照射するX線源34からのX線照射領域内にX線の線量を測定する線量計35を設け、線量計の出力信号をもとにX線撮像部36の利得を調整し、表示器37に表示する画像の濃淡を常に一定とする手段38と、画像濃度校正用の試料39を設け、試料に対応する画像の濃度が一定となるよう補償することでX線撮像画質を安定させている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような従来の技術においては、X線の間歇照射を利用した基板検査装置にみられる、照射線量が安定した状態になるまで時間経過させた後、検査対象物のX線透過像の撮像を始めるという手段は、検査タクトが長くなることになり、また、検査に不要なX線を発生させているため、X線撮像部の劣化を早めることにもなる。また、線量計や画像濃度校正用の試料を設ける必要や、X線照射線量をX線カメラコントローラで監視・制御する必要があり、設備コストを増大させることにもなる。また、X線撮像部の利得やガンマ値を調整するのみで、試料に対するX線照射線量を一定にする手段は備えていない。
本発明は、上記従来の問題を解決するもので、X線発生器及びX線制御部のX線発生装置側のみで、X線照射線量の定量化制御を実現し、X線撮像部のコントローラにおいて監視・制御する必要もなく、設備の簡素化が実現できる。また、照射線量が安定した状態になるまで時間経過させ、検査対象物のX線透過像の撮像開始を待たせる必要もなく、検査タクトを短縮でき、また、検査に不要なX線の発生を抑制でき、焼き付きなどによるX線撮像部の劣化を防ぎ、X線撮像部の寿命を伸ばすことができる。また、検査対象物に照射するX線線量を一定にすることができ、安定なX線透過撮像画像を得ることができるX線基板検査装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記問題を解決するために、請求項1の発明に係るX線基板検査装置は、動作状態に相関してX線を発生するX線発生器と、前記動作状態を測定した管電圧値と、予め設定した管電圧設定値とを比較し、比較の結果に応じて予め設定した管電流設定値と管電流値との比較を行う比較制御部と、前記比較制御部による比較の結果に応じて前記X線発生器からX線照射をする時間を制御し、一定量のX線を照射させるX線制御部とを設けたものである。
【0013】
請求項の発明に係るX線基板検査装置は、請求項の構成に加えて予め設定した管電圧設定値と管電圧値とを比較し、比較の結果に応じて予め設定した管電流設定値と管電流値との比較を行い、前記管電流設定値と前記管電流値とが近接した時刻から予め設定した期間、X線照射対象物に照射されたX線による撮像を行うX線撮像部とを設けたものである。
【0017】
【発明の実施の形態】
本発明の請求項1に記載の発明は、動作状態に相関してX線を発生するX線発生器と、この動作状態を測定した測定値と、予め設定した設定値とを比較する比較制御部と、比較制御部による比較の結果に応じてX線発生器からX線照射をする時間を制御し、一定量のX線を照射させる制御を行うX線制御部とを備えたものであり、検査試料に対するX線照射線量を一定にすることができるという作用を有する。
【0018】
また、請求項2に記載の発明は、X線発生器の管電流値と予め設定した管電流設定値とを比較する比較制御部と、管電流設定値と管電流値とが近接した時刻から予め設定した時間が経過した後、X線発生器への電源供給を制御するX線制御部とを備えたものであり、X線発生器の管電流値を測定することで検査試料に対するX線照射線量を一定にすることができるという作用を有する。
【0019】
また、請求項3に記載の発明は、予め設定した管電圧設定値と管電圧値とを比較し、比較の結果に応じて予め設定した管電流設定値と管電流値との比較を行う比較制御部とを備えたものであり、X線発生器の電源投入直後における管電流値のオーバーシュートの影響を除去できるという作用を有する。
【0020】
また、請求項4に記載の発明は、X線発生器の管電圧値に応じたX線照射時間を設定する照射時間電圧補正部を備えたものであり、管電圧値の違いによるX線照射の時間を調整することができるという作用を有する。
【0021】
また、請求項5に記載の発明は、X線発生器を冷却させる冷却媒質と、冷却媒質の温度に応じたX線照射時間を設定する照射時間温度補正部とを備えたものであり、冷却媒質の温度の違いによるX線照射の時間を調整することができるという作用を有する。
【0022】
また、請求項6に記載の発明は、管電流値を時間経過に伴って累積加算し、予め設定した累積管電流設定値と累積加算した管電流値とを比較する比較制御部と、累積管電流設定値と累積加算した管電流値との近接を検出してX線発生器への電源供給を制御するX線制御部とを備えたものであり、X線発生器の累積加算した管電流値を測定することで検査試料に対するX線照射線量を一定にすることができるという作用を有する。
【0023】
また、請求項7に記載の発明は、比較制御部による比較の結果に応じてX線発生器からX線照射をする時間を制御し、一定量のX線量を照射させる制御を行うX線制御部と、X線照射対象物に照射されたX線による撮像を行うX線撮像部とを備えたものであり、X線間歇照射時のX線透過撮像画像を安定させるという作用を有する。
【0024】
また、請求項8に記載の発明は、管電流設定値と管電流値とが近接した時刻から予め設定した期間、X線照射対象物に照射されたX線による撮像を行うX線撮像部とを備えたものであり、X管電流値を測定することによってX線間歇照射時のX線透過撮像画像を安定させるという作用を有する。
【0025】
また、請求項9に記載の発明は、予め設定した管電圧設定値と管電圧値とを比較し、比較の結果に応じて予め設定した管電流設定値と管電流値との比較を行い、管電流設定値と管電流値とが近接した時刻から予め設定した期間、X線照射対象物に照射されたX線による撮像を行うX線撮像部とを備えたものであり、X線発生器の電源投入直後における管電流値のオーバーシュートの影響を除去し、X線間歇照射時のX線透過撮像画像を安定させるという作用を有する。
【0026】
また、請求項10に記載の発明は、X線発生器の管電圧値に応じたX線照射時間を設定する照射時間電圧補正部と、管電流設定値と管電流値とが近接した時刻から予め設定した期間、X線照射対象物に照射されたX線による撮像を行うX線撮像部とを備えたものであり、管電圧値の違いによるX線照射の時間を調整し、X線間歇照射時のX線透過撮像画像を安定させるという作用を有する。
【0027】
また、請求項11に記載の発明は、X線発生器を冷却させる冷却媒質と、前記冷却媒質の温度に応じたX線照射時間を設定する照射時間温度補正部と、管電流設定値と管電流値とが近接した時刻から予め設定した期間、X線照射対象物に照射されたX線による撮像を行うX線撮像部とを備えたものであり、冷却媒質の温度の違いによるX線照射の時間を調整し、X線間歇照射時のX線透過撮像画像を安定させるという作用を有する。
【0028】
また、請求項12に記載の発明は、管電流値を時間経過に伴って累積加算し、予め設定した累積管電流設定値と累積加算した管電流値とを比較する比較制御部と、累積管電流設定値と累積加算した管電流値との近接を検出してX線照射対象物に照射されたX線による撮像を停止するX線撮像部とを備えたものであり、検査試料に対するX線照射線量を一定にし、X線間歇照射時のX線透過撮像画像を安定させるという作用を有する。
【0029】
(実施の形態1)
図1は本発明の実施の形態1の構成を示すブロック図である。
【0030】
X線発生器1はX線を照射するものであり、X線制御部2はX線発生器1への電源供給を制御する。比較制御部3はX線発生器1によって発生させるX線の照射量と相関のあるX線発生器1の動作状態、たとえばX線発生器1を流れる電流値である管電流値を測定し、予め定めた基準電流値と比較し、比較結果に応じてX線発生器1の電源供給制御の指示をX線制御部2に対して行う。また、X線撮像をする構成としては、X線発生器1から基板位置決めテーブル4上に配置された検査対象物5へ照射されたX線透過量を撮像するCCDカメラであるX線撮像部6と、X線撮像部6からの取り込み画像を撮像された1フレーム毎の画像を蓄積・合成処理するコントローラ7と、撮像された画像を表示するモニタ8とで構成される。
【0031】
次に、比較制御部3によってX線発生器1を制御する動作フロー図を図2に示す。
【0032】
X線発生器1への電源投入(S1)後、X線の発生と相関関係のあるX線発生器1の動作状態の1つである管電流を測定し(S2)、測定した管電流値を予め定めた管電流設定値と比較する(S3)。管電流と管電流設定値が等しくなった場合にはX線撮像部7における撮像を開始する(S4)。また、この時から照射時間の監視を開始する(S5)。予め定めた照射時間が経過した後(S6のYes)、X線照射を停止させる(S7)。予め定めた照射時間に達していない場合は再度、撮像と照射時間監視を継続する(S6のNo)。そしてX線撮像部7での最後の画像フレームの取り込みが終了した時点で撮像を停止する(S8)。なお、ここで示す管電流設定値および照射時間の設定値は、比較制御部3でもまたコントローラ9からでも設定可能であり、この構成を限定しない。
【0033】
また、X線撮像部7における撮像の開始タイミングについては電源投入直後とする構成も可能であり、これを限定しない。
【0034】
また、管電流値と管電流設定値の比較(S3)の条件としては一致した場合だけでなく、例えば管電流設定値に範囲を設け、その範囲内に管電流値が入った場合、あるいは管電流値が管電流設定値以上になった場合を一致の条件とする構成も可能であり、これを限定しない。
【0035】
図3においては、X線発生器1に流れる管電流値と時間の関係を示している。電源投入時刻から比較制御部3において管電流値9の測定を開始し、管電流値9が管電流設定値10に近接した時刻11から照射時間を測定し、予め設定した時間を経過した後、X線発生器1への電源供給を停止する(点12)。また、X線撮像部7での画像取り込みのタイミングについては、管電流値9が管電流設定値10に近接した時刻11から第1の撮像フレーム13の取り込みを開始し、順次第2の撮像フレーム14、第3の撮像フレーム15と撮像を行っていく。ここで第3の撮像フレーム15の画像の取り込み期間中にX線発生器1への電源供給を停止(点12)した場合には、第3の撮像フレーム15の取り込み終了まで撮像は続けるものとする。
【0036】
次に、図4に一定間隔で基板位置決めテーブル4上に配置され搬送されてくる検査対象物5である基板に対してX線を間歇照射したとき、1回目の電流値16、50回目の電流値17および200回目の電流値18のX線照射時の管電流値の時間変化を示す。
【0037】
図4(a)は上記実施例を施さなかった場合であり、X線照射開始(X線発生器1の管電圧ON)から一定時間で照射線量を決定している。また図4(b)は上記実施例を施した場合の例で、管電流設定値10に達してからの照射時間を一定に制御することにより照射線量を決定するよう施したものである。
【0038】
図4(a)の波形に示される様に、X線の照射線量と相関関係にある管電流の立ち上がり状態にばらつきが生じ、照射停止時間は同一であるため、X線照射開始よりX線透過像をX線撮像部7で積算取り込みをすると、X線開始から停止までの時間は一定であるにも関わらず、照射線量の総量の違いが発生し、間歇照射毎にX線撮像画質の濃淡のばらつきが起こることとなり検査が不安定となる。しかし、図4(b)の波形に示される様に、本実施例を施した場合おいては、管電流の立ち上がり状態にばらつきが生じた場合においても、管電流設定値10に達してからの照射時間を一定に制御することにより、X線開始から停止までの時間を可変し、照射線量の総量の違いを抑制し、常に対象検査物内の一定のはんだ量を持った部分のX線撮像画質の濃淡を一定にでき、検査の安定化が図れる。
【0039】
また同時に、照射線量が安定した状態である管電流が安定するまで十分な時間を経過させ、その間検査対象物のX線透過像の撮像開始を待つ必要もなく、X線の発生を最小限に抑制でき、X線撮像部の劣化を防ぎ、X線撮像部の寿命を延ばすことができる。
【0040】
更に、管電流設定値10に達した信号をコントローラ7に与え、この時点よりX線撮像部6によるX線透過像の撮像開始の同期をとれば、対象検査物内の一定はんだ量を持った部分のX線撮像画質の濃淡をより一定にでき検査の安定化を図ることができる。
【0041】
(実施の形態2)
図5は本発明の実施の形態2の動作を示す特性図である。
【0042】
実施の形態1で説明した比較制御部3において、管電流値に加え管電圧をも測定し、予め定めた管電圧設定値と管電圧の測定値を比較し、測定の結果、管電圧設定値の方が電圧値が高い場合には管電流の管電流設定値との比較を行わない構成としている。図5に示すように管電流設定値10を0.5[mA]とした場合、X線発生器1への電源供給直後においては電流値9がオーバーシュートを起こし、管電流設定値10を超えることがある。そこで管電圧19を比較制御部3で測定し、予め設定した管電圧設定値20を管電圧が超えた後(点21)、管電流値9を監視する構成とする。
【0043】
このような構成としたことにより、管電流のオーバーシュートの影響を除去することができる。
【0044】
(実施の形態3)
図6は本発明の実施の形態3の構成を示すブロック図である。
【0045】
図1と同様の符号を付した部分は実施の形態1で説明したものと同様の動作をするので説明は省略する。管電圧が変化するとX線発生器1から発生するX線照射量は変化する。そこで管電圧が変化した時にはX線照射時間を変更する必要がある。そこで管電圧補正部22を設ける。管電圧補正部22は内部に(表1)に示す、管電圧の変化の前後の電圧値から導かれる、管電圧の変化に応じたX線照射時間を補正する数値を設定したマトリックスを保持している。
【0046】
【表1】

Figure 0004075166
【0047】
例えば変化前の管電圧が90[keV]で変化後の管電圧が80[keV]の場合、補正値は0.68となるので、変化前の管電圧が90[keV]のときに設定したX線照射時間が200[msec]であった場合はこの時間を補正値で割り、約294[msec]を新たな照射時間とする。なお、対応する管電圧値が表にない場合は最も近い値を採用したり、比例配分によって求めることができ、この手段を限定しない。
【0048】
このような構成にしたことにより、管電圧値が変化したときにも適切なX線照射時間を求めることができる。
【0049】
(実施の形態4)
図7(a)は本発明の実施の形態4の構成を示すX線発生器1の断面図である。X線管23はX線の照射源であり、陽極導線24はX線管23の陽極へ接続され、陰極導線25はX線管23の陰極へ接続される。冷却媒質である高圧油26はX線管23を冷却する。温度センサー27は高圧油26の温度を検出する。
【0050】
図7(b)は本発明の実施の形態4の構成を示すブロック図である。
図1または図6と同様の符号を付した部分は実施の形態1または実施の形態3で説明したものと同様の動作をするので説明は省略する。照射時間温度補正部28は温度センサー27で検出した高圧油26の温度によって、X線発生器1のX線照射時間を補正する。
【0051】
図8では高圧油26の温度とX線照射時間の補正の関係を示す。高圧油26の温度が高いときの管電流29は温度が低いときの管電流30に比べて立ち上がりが早くなり、さらに定常状態になるまでの時間も短くなる傾向がある。よって管電流設定値10の値が低い場合は特にX線照射時間のばらつきが大きくなる。そこで照射時間温度補正部28内に温度に対する照射時間の補正数値を設定し、高圧油26の温度を測定し、照射時間を補正する。
【0052】
このような構成にしたことにより、高圧油の温度によるX線照射時間のばらつきを抑制することができる。
【0053】
(実施の形態5)
本発明の実施の形態5は実施の形態1のX線制御部2において管電流値と管電流設定値とを比較し、両者の値の近接を検出した時刻から一定の期間、X線照射を行う構成に代えて、管電流値をサンプリングし、累積加算した値と予め設定した累積管電流設定値とを比較し、両者の値の近接を検出時にX線照射を停止する構成としたものである。
【0054】
次に、比較制御部3によってX線発生器1を制御する動作フロー図を図9に示す。
【0055】
X線発生器1への電源投入(S9)後、X線撮像部7における撮像を開始する(S10)。X線の発生と相関関係のあるX線発生器1の動作状態の1つである管電流を測定して累積加算する(S11)。測定した累積管電流値と予め定めた累積管電流設定値とを比較する(S12)。累積管電流と累積管電流設定値が等しくなった場合(S12のYes)、X線照射を停止させ(S13)、X線撮像部7での最後の撮像フレームの取り込みが終了した時点で撮像を停止する(S14)。累積管電流と累積管電流設定値が等しない場合(S12のNo)、管電流の蓄積を継続する(S11)。なお、ここで示す累積管電流設定値および照射時間の設定値は、比較制御部3でもまたコントローラ9からでも設定可能であり、この構成を限定しない。
【0056】
また、累積管電流値と累積管電流設定値の比較(S12)の条件としては一致した場合だけでなく、例えば累積管電流設定値に範囲を設け、その範囲内に累積管電流値が入った場合、あるいは累積管電流値が累積管電流設定値以上になった場合を一致の条件とする構成も可能であり、これを限定しない。
【0057】
また、X線撮像部7における撮像の開始タイミングについては電源投入直後の他、管電流値が予め設定した値に近接した時、あるいは累積管電流値が予め設定した値に近接した時とする構成も可能であり、これを限定しない。
【0058】
図10においては、X線発生器1に流れる管電流値と時間の関係を示している。
電源投入時刻から比較制御部3において管電流値9の測定と加算を周期Tで開始し(黒丸点31)、累積管電流値が累積管電流設定値に近接した時刻(白丸店32)X線発生器1への電源供給を停止する。
【0059】
なお、ここで示す累積管電流値の設定は、比較制御部3でもまたコントローラ9からでも設定可能であり、この構成を限定しない。
【0060】
また、サンプリング周期を2つ以上設け、サンプリング周期変更電流値を設定することによって、例えば、サンプリング周期変更電流値以下の管電流値の時にはサンプリング周期を大きくとり、サンプリング周期変更電流値を越えた時にはサンプリング周期を小さくとる構成も可能であり、この構成を限定しない。
【0061】
このような構成としたことによって、管電流値の測定におけるノイズによる変動の影響を抑制することができる。
【0062】
【発明の効果】
以上にように本発明は、検査試料に対するX線照射線量を一定にすることができる。また、X線発生器の電源投入直後の管電流値のオーバーシュートの影響を除去でき、X線照射時間の測定誤りを防ぐことができる。また、管電圧値の違いによるX線照射量の違いを補正でき、管電圧変動時における適切な照射時間を得ることができる。また、冷却媒質の温度の違いによるX線照射時間を補正することによって、冷却媒質の温度の違いによるX線照射量の誤差を抑制することができる。また、累積加算した管電流値によって照射時間監視の開始を検出することによって、管電流値の測定におけるノイズによる変動の影響を抑制することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1におけるX線基板検査装置のブロック図
【図2】本発明の実施の形態1におけるX線基板検査装置の動作フロー図
【図3】本発明の実施の形態1のX線基板検査装置の管電流の時間変化の特性と撮像フレーム制御の説明図
【図4】(a)従来のX線基板検査装置の間歇照射時の管電流の時間変化の特性図
(b)本発明の実施の形態1のX線基板検査装置の間歇照射時の管電流の時間変化の特性図
【図5】本発明の実施の形態2におけるX線基板検査装置の管電流および管電圧の時間変化の特性図
【図6】本発明の実施の形態3におけるX線基板検査装置のブロック図
【図7】(a)本発明の実施の形態4におけるX線基板検査装置のX線発生器の断面図
(b)本発明の実施の形態4におけるX線基板検査装置のブロック図
【図8】本発明の実施の形態4におけるX線基板検査装置の管電流値の温度特性図
【図9】本発明の実施の形態5におけるX線基板検査装置の動作フロー図
【図10】本発明の実施の形態5におけるX線基板検査装置の管電流の時間変化の特性図
【図11】従来のX線基板検査装置のブロック図
【符号の説明】
1 X線発生器
2 X線制御部
3 比較制御部
6 X線撮像部
22 管電圧補正部
28 照射時間温度補正部[0001]
BACKGROUND OF THE INVENTION
The present invention uses an X-ray to stabilize the image quality of X-ray imaging by controlling the amount of X-ray irradiation when intermittent irradiation of X-rays is continuously performed during inspection / measurement of a printed circuit board. The present invention relates to an inspection device.
[0002]
[Prior art]
Conventionally, a substrate inspection apparatus using intermittent X-ray irradiation causes a difference in the rise of the tube current of the X-ray tube due to conditions such as the heat-up state of the X-ray generator, and the irradiation dose at the start of irradiation It is unstable. Therefore, after a certain period of time has elapsed until the irradiation dose becomes stable, the X-ray imaging quality of the X-ray imaging is stabilized by starting the imaging of the X-ray transmission image of the inspection object to make the irradiation dose constant.
[0003]
Further, in an X-ray board inspection apparatus using X-rays, there is an invention described in Japanese Patent Application Laid-Open No. 6-331571 as means for stabilizing X-ray imaging image quality. The configuration and operation of a conventional X-ray substrate inspection apparatus will be described with reference to FIG. The X-ray board inspection apparatus includes a dosimeter 35 that measures the X-ray dose in the X-ray irradiation region from the X-ray source 34 that irradiates the X-ray image to the object 33 as a means for stabilizing the X-ray imaging quality. Provided, means 38 for adjusting the gain of the X-ray imaging unit 36 based on the output signal of the dosimeter and making the density of the image displayed on the display 37 constant, and a sample 39 for image density calibration, The X-ray imaging quality is stabilized by compensating so that the density of the image corresponding to the sample is constant.
[0004]
[Problems to be solved by the invention]
However, in the conventional technology as described above, an X-ray transmission image of an inspection object is observed after a time has elapsed until the irradiation dose becomes stable, as seen in a substrate inspection apparatus using intermittent X-ray irradiation. The means for starting the imaging of the image will increase the inspection tact, and also generate X-rays unnecessary for the inspection, so that the deterioration of the X-ray imaging unit is accelerated. In addition, it is necessary to provide a dosimeter and a sample for image density calibration, and it is necessary to monitor and control the X-ray irradiation dose with an X-ray camera controller, which increases equipment costs. Further, there is no means for making the X-ray irradiation dose to the sample constant by adjusting only the gain and gamma value of the X-ray imaging unit.
The present invention solves the above-mentioned conventional problems, realizes quantification control of the X-ray irradiation dose only on the X-ray generator side of the X-ray generator and the X-ray controller, and controls the X-ray imaging unit The equipment can be simplified without the need for monitoring and control. In addition, it is not necessary to allow time to elapse until the irradiation dose becomes stable, and to wait for the X-ray transmission image of the inspection object to start, so that inspection tact time can be shortened, and generation of X-rays unnecessary for inspection is prevented. It is possible to suppress the deterioration of the X-ray imaging unit due to burn-in or the like and extend the life of the X-ray imaging unit. It is another object of the present invention to provide an X-ray board inspection apparatus capable of making the X-ray dose irradiated to the inspection object constant and obtaining a stable X-ray transmission captured image.
[0005]
[Means for Solving the Problems]
In order to solve the above problem, an X-ray board inspection apparatus according to the invention of claim 1 includes an X-ray generator that generates X-rays in correlation with an operating state, a tube voltage value obtained by measuring the operating state, Comparing the preset tube voltage setting value and comparing the preset tube current set value and the tube current value according to the comparison result, and according to the comparison result by the comparison control unit An X-ray control unit is provided that controls the time of X-ray irradiation from the X-ray generator and emits a certain amount of X-rays.
[0013]
An X-ray board inspection apparatus according to a second aspect of the invention compares a tube voltage set value set in advance with a tube voltage value in addition to the configuration of claim 1 , and sets a tube current set in advance according to the comparison result. X-ray imaging that compares the tube current value with the tube current value and performs imaging with the X-rays irradiated to the X-ray irradiation object for a preset period from the time when the tube current set value and the tube current value are close to each other Are provided.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, an X-ray generator that generates X-rays in correlation with an operating state, and a comparison control that compares a measured value obtained by measuring the operating state with a preset set value. And an X-ray control unit that controls the time of X-ray irradiation from the X-ray generator according to the comparison result by the comparison control unit and performs control to irradiate a certain amount of X-rays. The X-ray irradiation dose for the inspection sample can be made constant.
[0018]
According to the second aspect of the present invention, the comparison control unit for comparing the tube current value of the X-ray generator and the preset tube current set value, and the time when the tube current set value and the tube current value are close to each other. An X-ray control unit for controlling power supply to the X-ray generator after a preset time has elapsed, and measuring the tube current value of the X-ray generator to thereby provide an X-ray for the test sample. The irradiation dose can be made constant.
[0019]
Further, the invention described in claim 3 compares the tube voltage set value set in advance with the tube voltage value, and compares the tube current set value set in advance with the tube current value according to the comparison result. And a controller, and has the effect of eliminating the influence of tube current value overshoot immediately after the X-ray generator is powered on.
[0020]
The invention described in claim 4 is provided with an irradiation time voltage correction unit for setting an X-ray irradiation time according to a tube voltage value of the X-ray generator, and X-ray irradiation due to a difference in tube voltage value. It has the effect that the time of the time can be adjusted.
[0021]
The invention described in claim 5 includes a cooling medium that cools the X-ray generator, and an irradiation time temperature correction unit that sets an X-ray irradiation time according to the temperature of the cooling medium. It has the effect that the time of X-ray irradiation depending on the temperature of the medium can be adjusted.
[0022]
According to a sixth aspect of the present invention, there is provided a comparison control unit that cumulatively adds tube current values over time and compares a preset cumulative tube current set value with the cumulatively added tube current value; An X-ray control unit that controls the power supply to the X-ray generator by detecting the proximity between the current set value and the cumulatively added tube current value, and the X-ray generator cumulatively added tube current By measuring the value, the X-ray irradiation dose for the inspection sample can be made constant.
[0023]
The invention according to claim 7 is an X-ray control for controlling a time for irradiating an X-ray from the X-ray generator according to a result of comparison by the comparison control unit and performing a control for irradiating a fixed amount of X-ray. And an X-ray imaging unit that performs imaging with X-rays irradiated to an X-ray irradiation target, and has an effect of stabilizing an X-ray transmission captured image during X-ray intermittent irradiation.
[0024]
According to an eighth aspect of the present invention, there is provided an X-ray imaging unit that performs imaging with X-rays irradiated to an X-ray irradiation object for a preset period from a time when the tube current set value and the tube current value are close to each other. And has the effect of stabilizing the X-ray transmission captured image at the time of X-ray intermittent irradiation by measuring the X-tube current value.
[0025]
The invention according to claim 9 compares a preset tube voltage setting value and a tube voltage value, performs a comparison between a preset tube current set value and a tube current value according to the result of the comparison, An X-ray generator comprising an X-ray imaging unit that performs imaging with X-rays irradiated to an X-ray irradiation target for a preset period from a time when the tube current set value and the tube current value are close to each other The effect of overshooting the tube current value immediately after turning on the power is removed, and the X-ray transmission captured image at the time of X-ray intermittent irradiation is stabilized.
[0026]
In the invention according to claim 10, the irradiation time voltage correction unit for setting the X-ray irradiation time according to the tube voltage value of the X-ray generator, and the time when the tube current set value and the tube current value are close to each other. An X-ray imaging unit that performs imaging with X-rays irradiated to an X-ray irradiation target for a preset period, adjusts the time of X-ray irradiation due to a difference in tube voltage value, It has the effect of stabilizing the X-ray transmission captured image at the time of irradiation.
[0027]
The invention according to claim 11 is a cooling medium for cooling the X-ray generator, an irradiation time temperature correction unit for setting an X-ray irradiation time according to the temperature of the cooling medium, a tube current set value and a tube. An X-ray irradiation unit that includes an X-ray imaging unit that performs imaging with X-rays irradiated on an X-ray irradiation target for a preset period from a time when the current value is close to the current value. And adjusting the time to stabilize the X-ray transmission captured image during X-ray intermittent irradiation.
[0028]
According to a twelfth aspect of the present invention, there is provided a comparison control unit that cumulatively adds tube current values over time and compares a preset cumulative tube current set value with the cumulatively added tube current value; An X-ray imaging unit that detects the proximity of the current set value and the cumulatively added tube current value and stops imaging with the X-rays irradiated to the X-ray irradiation target, It has the effect of stabilizing the radiation dose and stabilizing the X-ray transmission captured image at the time of X-ray intermittent irradiation.
[0029]
(Embodiment 1)
FIG. 1 is a block diagram showing the configuration of the first embodiment of the present invention.
[0030]
The X-ray generator 1 emits X-rays, and the X-ray control unit 2 controls power supply to the X-ray generator 1. The comparison control unit 3 measures the operation state of the X-ray generator 1 correlated with the X-ray irradiation amount generated by the X-ray generator 1, for example, the tube current value that is the current value flowing through the X-ray generator 1, The X-ray generator 1 is instructed to control the power supply of the X-ray generator 1 according to the comparison result with a reference current value determined in advance. In addition, as a configuration for performing X-ray imaging, an X-ray imaging unit 6 that is a CCD camera that images an X-ray transmission amount irradiated from the X-ray generator 1 to the inspection object 5 disposed on the substrate positioning table 4. And a controller 7 for accumulating and synthesizing an image for each frame in which an image captured from the X-ray imaging unit 6 is captured, and a monitor 8 for displaying the captured image.
[0031]
Next, an operation flowchart for controlling the X-ray generator 1 by the comparison control unit 3 is shown in FIG.
[0032]
After turning on the power to the X-ray generator 1 (S1), the tube current which is one of the operating states of the X-ray generator 1 correlated with the generation of X-rays is measured (S2), and the measured tube current value Is compared with a predetermined tube current set value (S3). When the tube current and the tube current set value are equal, imaging in the X-ray imaging unit 7 is started (S4). Also, monitoring of the irradiation time is started from this time (S5). After a predetermined irradiation time has elapsed (Yes in S6), X-ray irradiation is stopped (S7). If the predetermined irradiation time has not been reached, imaging and irradiation time monitoring are continued again (No in S6). Then, the imaging is stopped when the last image frame has been captured by the X-ray imaging unit 7 (S8). The tube current setting value and the irradiation time setting value shown here can be set from either the comparison control unit 3 or the controller 9, and this configuration is not limited.
[0033]
In addition, the imaging start timing in the X-ray imaging unit 7 may be configured immediately after the power is turned on, and is not limited thereto.
[0034]
In addition, the tube current value and the tube current set value are compared not only when the conditions match (S3), but, for example, when a range is set for the tube current set value and the tube current value falls within that range, or A configuration in which a case where the current value is equal to or greater than the set value of the tube current is also possible and is not limited.
[0035]
In FIG. 3, the relationship between the tube current value flowing through the X-ray generator 1 and time is shown. The tube controller 9 starts measuring the tube current value 9 from the power-on time, measures the irradiation time from the time 11 when the tube current value 9 is close to the tube current set value 10, and passes a preset time. The power supply to the X-ray generator 1 is stopped (point 12). As for the timing of image capture in the X-ray imaging unit 7, the capture of the first imaging frame 13 is started from time 11 when the tube current value 9 is close to the tube current set value 10, and the second imaging frame is sequentially added. 14. Perform imaging with the third imaging frame 15. Here, when the power supply to the X-ray generator 1 is stopped (point 12) during the image capturing period of the third imaging frame 15, the imaging continues until the capturing of the third imaging frame 15 is completed. To do.
[0036]
Next, when X-rays are intermittently irradiated to the substrate which is the inspection object 5 which is arranged and transported on the substrate positioning table 4 at regular intervals in FIG. 4, the first current value 16 and the 50th current. The time change of the tube current value at the time of X-ray irradiation of the value 17 and the 200th current value 18 is shown.
[0037]
FIG. 4A shows a case where the above embodiment is not performed, and the irradiation dose is determined in a certain time from the start of X-ray irradiation (the tube voltage of the X-ray generator 1 is turned on). FIG. 4B shows an example in which the above-described embodiment is applied. The irradiation dose is determined by controlling the irradiation time after reaching the tube current set value 10 to be constant.
[0038]
As shown in the waveform of FIG. 4 (a), the rise state of the tube current correlated with the X-ray irradiation dose varies and the irradiation stop time is the same. When the image is integrated and captured by the X-ray imaging unit 7, although the time from the start to the end of the X-ray is constant, a difference in the total amount of irradiation dose occurs, and the density of the X-ray imaging quality varies with each intermittent irradiation. As a result, the inspection becomes unstable. However, as shown in the waveform of FIG. 4B, in the case where the present embodiment is applied, even when the rising state of the tube current varies, the tube current set value 10 is reached. By controlling the irradiation time to be constant, the time from the start to the end of X-ray can be varied, the difference in the total amount of irradiation dose can be suppressed, and X-ray imaging of a part with a constant amount of solder in the target inspection object at all times The density of the image quality can be kept constant, and the inspection can be stabilized.
[0039]
At the same time, a sufficient amount of time is allowed to elapse until the tube current in a stable irradiation dose is stabilized, and there is no need to wait for the X-ray transmission image of the inspection object to start, minimizing the generation of X-rays. It is possible to suppress the deterioration of the X-ray imaging unit and extend the life of the X-ray imaging unit.
[0040]
Furthermore, if a signal reaching the tube current set value 10 is given to the controller 7 and the start of X-ray transmission image capturing by the X-ray imaging unit 6 is synchronized from this point, a certain amount of solder in the target inspection object is obtained. The density of the X-ray imaging quality of the portion can be made more constant, and the inspection can be stabilized.
[0041]
(Embodiment 2)
FIG. 5 is a characteristic diagram showing the operation of the second embodiment of the present invention.
[0042]
In the comparison control unit 3 described in the first embodiment, the tube voltage is measured in addition to the tube current value, the predetermined tube voltage setting value is compared with the measured value of the tube voltage, and the result of the measurement is the tube voltage setting value. When the voltage value is higher, the tube current is not compared with the tube current set value. As shown in FIG. 5, when the tube current set value 10 is set to 0.5 [mA], the current value 9 causes an overshoot immediately after the power supply to the X-ray generator 1 and exceeds the tube current set value 10. Sometimes. Therefore, the tube voltage 19 is measured by the comparison control unit 3, and the tube current value 9 is monitored after the tube voltage exceeds the preset tube voltage set value 20 (point 21).
[0043]
By adopting such a configuration, the influence of tube current overshoot can be eliminated.
[0044]
(Embodiment 3)
FIG. 6 is a block diagram showing the configuration of the third embodiment of the present invention.
[0045]
The portions denoted by the same reference numerals as those in FIG. 1 operate in the same manner as those described in the first embodiment, and thus description thereof is omitted. When the tube voltage changes, the X-ray irradiation amount generated from the X-ray generator 1 changes. Therefore, it is necessary to change the X-ray irradiation time when the tube voltage changes. Therefore, a tube voltage correction unit 22 is provided. The tube voltage correction unit 22 holds a matrix in which numerical values for correcting the X-ray irradiation time according to the change in the tube voltage, which are derived from the voltage values before and after the change in the tube voltage, shown in (Table 1) are set. ing.
[0046]
[Table 1]
Figure 0004075166
[0047]
For example, when the tube voltage before the change is 90 [keV] and the tube voltage after the change is 80 [keV], the correction value is 0.68. Therefore, the tube voltage before the change is set to 90 [keV]. When the X-ray irradiation time is 200 [msec], this time is divided by the correction value, and about 294 [msec] is set as a new irradiation time. In addition, when the corresponding tube voltage value is not in the table, the closest value can be adopted or obtained by proportional distribution, and this means is not limited.
[0048]
By adopting such a configuration, an appropriate X-ray irradiation time can be obtained even when the tube voltage value changes.
[0049]
(Embodiment 4)
FIG. 7A is a cross-sectional view of the X-ray generator 1 showing the configuration of the fourth embodiment of the present invention. The X-ray tube 23 is an X-ray irradiation source, the anode conducting wire 24 is connected to the anode of the X-ray tube 23, and the cathode conducting wire 25 is connected to the cathode of the X-ray tube 23. The high-pressure oil 26 that is a cooling medium cools the X-ray tube 23. The temperature sensor 27 detects the temperature of the high-pressure oil 26.
[0050]
FIG.7 (b) is a block diagram which shows the structure of Embodiment 4 of this invention.
Parts denoted by the same reference numerals as those in FIG. 1 or FIG. 6 operate in the same manner as those described in the first or third embodiment, and thus description thereof is omitted. The irradiation time temperature correction unit 28 corrects the X-ray irradiation time of the X-ray generator 1 based on the temperature of the high pressure oil 26 detected by the temperature sensor 27.
[0051]
FIG. 8 shows the relationship between the temperature of the high-pressure oil 26 and the correction of the X-ray irradiation time. The tube current 29 when the temperature of the high-pressure oil 26 is high tends to rise faster than the tube current 30 when the temperature is low, and the time to reach a steady state tends to be shorter. Therefore, when the tube current set value 10 is low, the variation in the X-ray irradiation time is particularly large. Therefore, a correction value of the irradiation time with respect to the temperature is set in the irradiation time temperature correction unit 28, the temperature of the high-pressure oil 26 is measured, and the irradiation time is corrected.
[0052]
By adopting such a configuration, variation in X-ray irradiation time due to the temperature of the high-pressure oil can be suppressed.
[0053]
(Embodiment 5)
In the fifth embodiment of the present invention, the X-ray control unit 2 of the first embodiment compares the tube current value with the tube current set value, and performs X-ray irradiation for a certain period from the time when the proximity of both values is detected. Instead of the configuration to be performed, the tube current value is sampled, the cumulative addition value is compared with the preset cumulative tube current setting value, and X-ray irradiation is stopped when the proximity of both values is detected. is there.
[0054]
Next, FIG. 9 shows an operation flowchart for controlling the X-ray generator 1 by the comparison control unit 3.
[0055]
After turning on the power to the X-ray generator 1 (S9), imaging in the X-ray imaging unit 7 is started (S10). The tube current, which is one of the operating states of the X-ray generator 1 correlated with the generation of X-rays, is measured and cumulatively added (S11). The measured cumulative tube current value is compared with a predetermined cumulative tube current set value (S12). When the accumulated tube current and the accumulated tube current set value are equal (Yes in S12), the X-ray irradiation is stopped (S13), and imaging is performed at the time when the capturing of the last imaging frame in the X-ray imaging unit 7 is completed. Stop (S14). When the accumulated tube current and the accumulated tube current set value are not equal (No in S12), the accumulation of the tube current is continued (S11). Note that the cumulative tube current set value and the set value of the irradiation time shown here can be set from either the comparison control unit 3 or the controller 9, and this configuration is not limited.
[0056]
In addition, not only when the conditions of comparison (S12) of the cumulative tube current value and the cumulative tube current set value match, for example, a range is provided for the cumulative tube current set value, and the cumulative tube current value falls within that range. In this case, it is possible to adopt a configuration in which the condition for matching is when the cumulative tube current value becomes equal to or greater than the cumulative tube current set value, and this is not limited.
[0057]
The imaging start timing in the X-ray imaging unit 7 is set immediately after the power is turned on, when the tube current value is close to a preset value, or when the cumulative tube current value is close to a preset value. However, this is not limited.
[0058]
In FIG. 10, the relationship between the tube current value flowing through the X-ray generator 1 and time is shown.
Measurement and addition of the tube current value 9 is started at the period T in the comparison control unit 3 from the power-on time (black circle point 31), and the time when the accumulated tube current value is close to the accumulated tube current set value (Shiramaru store 32) X-ray The power supply to the generator 1 is stopped.
[0059]
The cumulative tube current value shown here can be set from either the comparison control unit 3 or the controller 9, and this configuration is not limited.
[0060]
Also, by setting two or more sampling cycles and setting the sampling cycle change current value, for example, when the tube current value is less than or equal to the sampling cycle change current value, the sampling cycle is increased, and when the sampling cycle change current value is exceeded A configuration with a small sampling period is also possible, and this configuration is not limited.
[0061]
By adopting such a configuration, it is possible to suppress the influence of fluctuation due to noise in the measurement of the tube current value.
[0062]
【The invention's effect】
As described above, the present invention can make the X-ray irradiation dose to the inspection sample constant. Moreover, the influence of the overshoot of the tube current value immediately after the X-ray generator is turned on can be removed, and measurement errors in the X-ray irradiation time can be prevented. Moreover, the difference in the X-ray irradiation amount due to the difference in the tube voltage value can be corrected, and an appropriate irradiation time when the tube voltage fluctuates can be obtained. Further, by correcting the X-ray irradiation time due to the difference in the temperature of the cooling medium, it is possible to suppress an error in the X-ray irradiation amount due to the difference in the temperature of the cooling medium. Further, by detecting the start of the irradiation time monitoring based on the cumulatively added tube current value, it is possible to suppress the influence of fluctuation due to noise in the measurement of the tube current value.
[Brief description of the drawings]
FIG. 1 is a block diagram of an X-ray board inspection apparatus according to a first embodiment of the present invention. FIG. 2 is an operation flowchart of the X-ray board inspection apparatus according to the first embodiment of the present invention. FIG. 4 is an explanatory diagram of tube current time change characteristics and imaging frame control of the X-ray board inspection apparatus of embodiment 1. FIG. 4A is a characteristic diagram of tube current time change during intermittent irradiation of a conventional X-ray board inspection apparatus. (B) Characteristic diagram of the time variation of the tube current during intermittent irradiation of the X-ray substrate inspection apparatus of Embodiment 1 of the present invention. FIG. 5 shows the tube current and the X-ray substrate inspection apparatus of Embodiment 2 of the present invention. FIG. 6 is a block diagram of the X-ray board inspection apparatus according to the third embodiment of the present invention. FIG. 7A is a block diagram of the X-ray board inspection apparatus according to the fourth embodiment of the present invention. Sectional drawing of a ray generator (b) X-ray board inspection apparatus in Embodiment 4 of the present invention FIG. 8 is a temperature characteristic diagram of the tube current value of the X-ray board inspection apparatus according to the fourth embodiment of the present invention. FIG. 9 is an operation flowchart of the X-ray board inspection apparatus according to the fifth embodiment of the present invention. 10 is a characteristic diagram of the time variation of the tube current of the X-ray board inspection apparatus according to the fifth embodiment of the present invention. FIG. 11 is a block diagram of a conventional X-ray board inspection apparatus.
DESCRIPTION OF SYMBOLS 1 X-ray generator 2 X-ray control part 3 Comparison control part 6 X-ray imaging part 22 Tube voltage correction part 28 Irradiation time temperature correction part

Claims (2)

動作状態に相関してX線を発生するX線発生器と、前記動作状態を測定した管電圧値と、予め設定した管電圧設定値とを比較し、比較の結果に応じて予め設定した管電流設定値と管電流値との比較を行う比較制御部と、前記比較制御部による比較の結果に応じて前記X線発生器からX線照射をする時間を制御し、一定量のX線を照射させるX線制御部とを備えたX線基板検査装置。An X-ray generator that generates X-rays in correlation with an operating state, a tube voltage value obtained by measuring the operating state, and a preset tube voltage setting value are compared, and a preset tube is set according to the comparison result. A comparison control unit that compares the current setting value and the tube current value, and controls the time of X-ray irradiation from the X-ray generator according to the result of the comparison by the comparison control unit. An X-ray substrate inspection apparatus comprising an X-ray control unit to be irradiated. 予め設定した管電圧設定値と管電圧値とを比較し、比較の結果に応じて予め設定した管電流設定値と管電流値との比較を行い、前記管電流設定値と前記管電流値が近接した時刻から予め設定した期間、X線照射対象物に照射されたX線による撮像を行うX線撮像部とを備えた請求項1記載のX線基板検査装置。The tube voltage setting value set in advance and the tube voltage value are compared, the tube current setting value set in advance is compared with the tube current value according to the comparison result, and the tube current setting value and the tube current value are The X-ray board | substrate inspection apparatus of Claim 1 provided with the X-ray imaging part which images with the X-ray irradiated to the X-ray irradiation target object for the preset period from the time which adjoined.
JP33871898A 1998-11-30 1998-11-30 X-ray board inspection equipment Expired - Fee Related JP4075166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33871898A JP4075166B2 (en) 1998-11-30 1998-11-30 X-ray board inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33871898A JP4075166B2 (en) 1998-11-30 1998-11-30 X-ray board inspection equipment

Publications (2)

Publication Number Publication Date
JP2000162160A JP2000162160A (en) 2000-06-16
JP4075166B2 true JP4075166B2 (en) 2008-04-16

Family

ID=18320814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33871898A Expired - Fee Related JP4075166B2 (en) 1998-11-30 1998-11-30 X-ray board inspection equipment

Country Status (1)

Country Link
JP (1) JP4075166B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103239252A (en) * 2012-02-09 2013-08-14 株式会社东芝 X-ray diagnostic system and X-ray diagnostic method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087274B2 (en) * 2003-04-01 2008-05-21 株式会社東芝 X-ray thickness measuring device
AU2003304359A1 (en) * 2003-07-22 2005-02-04 Pony Industry Co., Ltd. Transmission imager
JP4341473B2 (en) * 2004-06-01 2009-10-07 株式会社島津製作所 X-ray equipment
JP5220995B2 (en) * 2006-02-01 2013-06-26 株式会社東芝 X-ray irradiation apparatus and X-ray irradiation time control method
JP5303911B2 (en) * 2007-11-20 2013-10-02 オムロン株式会社 Method for adjusting imaging control in automatic inspection apparatus using X-ray and automatic inspection apparatus using X-ray
JP6122796B2 (en) * 2014-02-24 2017-04-26 株式会社東芝 X-ray thickness gauge
JP6775818B2 (en) * 2016-08-19 2020-10-28 株式会社イシダ X-ray inspection equipment
CN106841242B (en) * 2017-01-23 2019-02-22 刘智慧 Detection method and device
CN109471155B (en) * 2018-12-26 2024-07-19 中国原子能科学研究院 Pulse X-ray irradiation device for active ionizing radiation dosimeter test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103239252A (en) * 2012-02-09 2013-08-14 株式会社东芝 X-ray diagnostic system and X-ray diagnostic method
CN103239252B (en) * 2012-02-09 2015-08-12 株式会社东芝 The method of radiographic apparatus and control radiographic apparatus

Also Published As

Publication number Publication date
JP2000162160A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
FI90183C (en) PROCEDURE FOR ANALYZING AND AUTOMATIC EXPOSURE WITH RENTAL DIAGNOSTICS, SPECIFIC MAMMOGRAPHES
JP4075166B2 (en) X-ray board inspection equipment
EP1420618B1 (en) X-Ray imaging apparatus
EP0857983B1 (en) Radiographic apparatus
JPH02273499A (en) Dose calibration of x-ray imaging device
US9125619B2 (en) Radiographic examination apparatus and method for the same
JP2007082729A (en) X-ray diagnostic imaging apparatus
WO2007125691A1 (en) X-ray image diagnostic device
US10413269B2 (en) Radiographic image photographing system
US7366283B2 (en) Method to control anodic current in an x-ray source
JP4258832B2 (en) X-ray diagnostic imaging equipment
JPS639358B2 (en)
JP3510682B2 (en) Device for sensing voltage
JP2011124107A (en) X-ray radiographic device and method of controlling filament heating current in x-ray radiographic device
JP4237301B2 (en) X-ray tube device
JP3267548B2 (en) X-ray equipment
JP2002159481A (en) X-ray imaging apparatus
JP2776241B2 (en) X-ray television equipment
JP2004342360A (en) X-ray generator
JP4746808B2 (en) X-ray diagnostic equipment with exposure control
JP5220995B2 (en) X-ray irradiation apparatus and X-ray irradiation time control method
JP7380749B2 (en) Radiographic imaging device
KR102020836B1 (en) A method for determining optimal scanning conditions of an X-ray scanning system
JP2010183944A (en) X-ray equipment
US10117633B2 (en) Method and apparatus for characterization of X-ray energy outputs of medical X-ray generators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees