JP4074123B2 - Magnetic spring damping device - Google Patents

Magnetic spring damping device Download PDF

Info

Publication number
JP4074123B2
JP4074123B2 JP2002112246A JP2002112246A JP4074123B2 JP 4074123 B2 JP4074123 B2 JP 4074123B2 JP 2002112246 A JP2002112246 A JP 2002112246A JP 2002112246 A JP2002112246 A JP 2002112246A JP 4074123 B2 JP4074123 B2 JP 4074123B2
Authority
JP
Japan
Prior art keywords
damping device
magnetic
magnetic spring
vibration
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002112246A
Other languages
Japanese (ja)
Other versions
JP2003307255A (en
Inventor
安彦 相田
祐治 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002112246A priority Critical patent/JP4074123B2/en
Publication of JP2003307255A publication Critical patent/JP2003307255A/en
Application granted granted Critical
Publication of JP4074123B2 publication Critical patent/JP4074123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は構造物や回転機械などの振動を抑制する磁気ばね制振装置に係り、特に、制振対象の振動変化に追従して、好適な制振性能が得られる磁気ばね制振装置に関する。
【0002】
【従来の技術】
従来、付加質量をばね要素と減衰要素を介して構造物や回転機械などの制振対象物に取り付けた種々の磁気ばね制振装置(動吸振器)が提案されている(たとえば特開平9−287633号公報参照)。この動吸振器は、たとえば図9および図10に示すように、制振対象物1に取り付けられた固定部磁石列2と、制振対象物1に対して水平方向に相対運動可能な可動質量3と、この可動質量3に取り付けられ、固定部磁石列2に対向して設けられた可動部磁石列4とを有する。
【0003】
この動吸振器の可動部磁石列4では、厚さ方向(鉛直方向)に磁化した多数の可動部磁石5が所定の間隔で水平面内に縦横に2次元的に配列されており、バックヨーク6を介して可動質量3に固定されている。これらの可動部磁石5の隣接する磁石同士は互いに異なる磁極を持っている。
【0004】
一方、これと対向する制振対象物1には、固定部磁石7とバックヨーク8からなる固定部磁石列2が固定されている。固定部磁石列2は、可動部磁石列4と同一形状、同一位置とした上で、対向する部分が異なる磁極を持つように構成されている。
【0005】
ここで可動部磁石列4と固定部磁石列2の間の隙間9は、受け座41、42を介して剛球43を挟み込むことにより一定に保たれている。この隙間9には導体板10が配置されている。
【0006】
このような構成で、可動質量3が平衡状態から動き、対向している可動部磁石5と固定部磁石7が水平方向にずれた場合、互いに異なる磁極を持つため、吸引力が働くとともに、隣接する同一磁極に近づくことにより反発力が働く。これらはいずれも2次元方向の移動に対して可動質量3の移動量を元に戻す復元力として作用する。
【0007】
さらに導体板10を通過する磁束は、可動質量3の移動、すなわち可動部磁石5の移動に伴い、導体板10と相対運動することとなり、導体板10に発生する渦電流損による磁気減衰力として作用する。
【0008】
このように磁気力を利用して復元力と減衰力が同時に得られる磁気ばね・ダンパ要素を構成して動吸振器に適用することにより、動吸振器の小型化が可能となっている。
【0009】
【発明が解決しようとする課題】
しかしながら、従来例の磁気ばね・ダンパ要素を用いた動吸振器では、磁気ばね定数(復元力と変位の比)が一定に保たれているため、制振対象物に動吸振器を設置した後に、温度などの環境条件の変化、あるいは機械などでは運転条件の変化に伴い、制振対象物の固有振動数が変化した場合、動吸振器の最適調整状態が崩れることによる制振効果の低下を防ぐことが困難であった。
【0010】
また回転機械など振動源を持つ対象物の定常振動を抑制するために、磁気ばね要素と可動質量からなる付加質量系の固有振動数を、制振対象物の振動数に一致させることにより、反共振を利用して対象物の振動を抑制する制振装置においても、制振装置を設置した後、振動源の振動数変化があると追従できないため、制振効果の低下を防ぐことが困難であった。
【0011】
本発明はかかる従来の事情に対処してなされたものであり、制振装置を設置した後でも制振対象物の振動特性変化に追従して、制振装置のばね定数を調整できる磁気ばね制振装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は上記目的を達成するものであって、請求項1に記載の発明は、制振対象物に固定されて所定方向に配列され永久磁石からなる固定部磁石列と、前記制振対象物に対して前記所定方向に相対的に運動可能に配置された可動質量と、前記可動質量に固定され、隙間を介して前記固定部磁石列に対向して前記所定方向に配列され永久磁石からなる可動部磁石列と、を有し、前記可動部磁石列と前記固定部磁石列が一定の隙間を保持して前記所定方向に相対移動するときに前記所定方向に磁気復元力が作用する磁気ばね制振装置において、前記固定部磁石列又は可動部磁石列の外側に隣接し磁極が異なるように配列された複数の電磁石により構成されており、前記電磁石に供給される電流を制御することによって前記磁気復元力特性を代表するばね定数を制御する制御手段を有すること、を特徴とする。
【0013】
また、請求項2に記載の発明は、請求項1に記載の磁気ばね制振装置において、前記制振対象物および可動質量の前記所定方向の振動を検出する振動検出センサと、前記振動検出センサの出力を比較して、前記磁気復元力特性を代表するばね定数が最適に近づくような前記電磁石に供給する電磁石電流の目標値を求め、電磁石電流を前記目標値に近づけるべく制御する手段と、を有することを特徴とする。
【0014】
また、請求項3に記載の発明は、請求項1に記載の磁気ばね制振装置において、前記振動検出センサの出力信号から、前記制振対象物および可動質量の各振動の位相差および振動数差を抽出する抽出手段と、前記位相差および振動数差と前記磁気ばね定数の関係から、前記電磁石電流の目標値を求める演算手段と、を有すること、を特徴とする。
【0015】
また、請求項4に記載の発明は、請求項1に記載の磁気ばね制振装置において、前記制振対象物は回転機械であって、前記回転機械の回転数を検出する検出手段を有し、前記制御手段は、前記磁気ばね定数および前記可動質量とから決定される付加質量系の固有振動数を前記回転数に近づけるように、前記電磁石に供給される電流を制御するものであること、を特徴とする。
【0016】
また、請求項5に記載の発明は、請求項1に記載の磁気ばね制振装置において、前記固定部磁石列と前記可動部磁石列との間に挟まれ、前記制振対象物に支持された導体板と、この導体板と前記可動部磁石列との間の距離を調節する導体板位置調節手段と、を有すること、を特徴とする。
【0017】
また、請求項6に記載の発明は、請求項5に記載の磁気ばね制振装置において、前記導体板距離調節手段は、前記磁気復元力のばね定数に対応して決められる適当な磁気減衰比に近い磁気減衰比が得られるように制御されること、を特徴とする。
【0018】
また、請求項7に記載の発明は、請求項5に記載の磁気ばね制振装置において、前記導体板位置調節手段は、モータによって回転駆動されるボールねじにより前記導体板を直動するものであること、を特徴とする。
【0019】
また、請求項8に記載の発明は、請求項7に記載の磁気ばね制振装置において、前記固定部磁石列は前記可動質量を反対側から挟む2箇所に配置され、前記可動部磁石列は、前記固定部磁石列に対向する2箇所に配置され、前記導体板は前記2箇所の固定部磁石列と可動部磁石列に挟まれた2箇所に配置され、前記ボールねじは、軸方向に互いに結合された右ねじ部と左ねじ部とを有し、前記ボールねじを回転することによって、前記2箇所の導体板を同時に駆動できるように構成されていること、を特徴とする。
【0020】
【発明の実施の形態】
以下に本発明に係る磁気ばね制振装置の実施の形態を図1ないし図8を参照しながら説明する。ここで、従来技術と、または相互に同一または類似の部分には同じ符号を付して、重複説明は省略する。
【0021】
[第1の実施の形態]
本発明に係る磁気ばね制振装置の第1の実施の形態を図1ないし図4を参照して説明する。図1に示すように、この磁気ばね制振装置は、制振対象物1に対して強固に固定された制振装置本体50と、制振対象物1および可動質量3におのおの取り付けられた振動検出センサ12および13と、可動質量3に設置された電磁石14に制御電流を供給する制御装置15とを有する。制振装置本体50は、制振対象物1に剛に結合された外容器11に固定される2対の固定部磁石列2および可動質量3に固定される可動部磁石列4とその一部を成す電磁石14を有する。
【0022】
二つの可動部磁石列4は、可動質量3の上面と下面に、厚さ方向に磁化した可動部磁石5を所定の間隔をおいて隣接する磁石同士が互いに異なる磁極を持つように縦横に多数配列し、バックヨーク6を介して固定したものと、可動部磁石5に隣接して電磁石14を所定の間隔をおいて隣接する磁極が異なるように多数配列したことにより構成している。
【0023】
制振対象物1に剛に結合された外容器11には、固定部磁石7とバックヨーク8からなる固定部磁石列2が、可動質量3の上面と下面に配置された可動部磁石列4と同一形状、同一位置とした上、対向する部分が異なる磁極を持つように固定されており、一定の隙間9を介して対向することにより磁気ばね要素を構成している。本実施の形態では可動質量3の上下両側に2組の磁気ばね要素が配置されていることになる。
【0024】
制御装置15は、制振対象物1および可動質量3におのおの取り付けられた振動検出センサ12および13からの信号を受けて、可動部磁石列4の一部をなす電磁石14に供給する制御電流を決定する演算部を備えている。制御装置15での演算内容等については、図3等を参照して後述する。
【0025】
このように構成された本実施の形態の磁気ばね制振装置においては、制振対象物1の振動特性変化に応じて、磁気ばね要素を構成する可動部磁石列5と固定部磁石列9の間に作用する磁気力が自動調整できることとなる。すなわち、磁気復元力特性を代表するばね定数を制御することができる。したがって、制振装置を設置した後でも制振対象物1の振動特性変化に追従して、制振装置本体50の磁気ばね定数が自動調整でき、制振対象物1の振動を常に効果的に抑制することができる。
【0026】
図2は、本発明の磁気ばね制振装置において、永久磁石と電磁石の組合せにより磁気ばね定数を自動調整する概念を説明するものであり、可動質量3の変位(横軸)と磁気復元力(縦軸)の関係を示している。従来の永久磁石同士の異磁極が対向した磁気ばね要素による磁気ばね定数(PP)に対して、永久磁石と電磁石が対向する部位を付加することで、電磁石に印加する電流を調整することにより、永久磁石と電磁石で異磁極が対向する場合(PE+)には(PP)を大きくする方向に作用し、永久磁石と電磁石で同磁極が対向する場合(PE−)には(PP)を小さくする方向に作用することになる。
【0027】
電磁石に供給する制御電流の向きと大きさを、制振対象物1の振動特性変化に応じて調整することで、磁気復元力特性を代表するばね定数が自動調整でき、制振対象物1の振動を常に効果的に抑制することができる。
【0028】
図3は、制御装置15(図1)を具体化して示すものである。制振対象物1に取り付けられた振動検出センサ12と可動質量3に取り付けられた振動検出センサ13からの検出信号を受けて、位相差検出部17において制振対象物1と可動質量3の位相差を検出するとともに、振動数差検出部18において制振対象物1と可動質量3の振動数および振動数差を検出する。その上で、制御量演算部19においてこの位相差および振動数差を基に磁気ばね定数の最適ばね定数からのずれ量を算出するとともに、磁気ばね定数と電磁石14に印加する電流の関係から制御量を決定し、制御量演算部19から電磁石14の電源部に制御信号を送る構成となっている。
なお、図示されていないが、制御装置15は、A/D変換器、D/A変換器および周波数フィルタも備えている。
【0029】
この構成によれば、制振対象物1と可動質量3の位相差および振動数差に応じて、磁気ばね要素を構成する可動部磁石列2と固定部磁石列4の間に作用する磁気復元力すなわち磁気ばね定数が自動調整できることとなる。したがって、制振装置を設置した後でも制振対象物1の振動特性変化に追従して、制振装置の磁気復元力特性を代表するばね定数が自動調整でき、制振対象物1の振動を常に効果的に抑制することができる。
【0030】
図4は、可動質量3の支持構造を具体的に示す。すなわち、可動質量3にベアリング33を固定し、外容器11に固定された受け座34を設け、ベアリング33は受け座34に転がり接触する構成としている。前述のように、外容器11は制振対象物1に固定されている。このような構成により、可動質量3の上下移動は拘束され、2次元平面(水平面)内での自由な移動が可能である。
【0031】
なお、図4の構成とは逆に、外容器11にベアリングを固定し、可動質量3に受け座を固定して、それらベアリングと受け座の間で転がり接触する構成とすることも可能である(図示せず)。
【0032】
また、図4の支持構造は、可動質量3の可動方向を水平面内にするものであるが、本発明としては、可動質量3の移動方向すなわち磁石の配列の方向は、水平に限定されるものではなく、任意の方向とすることができる。
また、磁石5、7、14の配列は、1次元的でもよいし、図10に示すように2次元的でもよい。
【0033】
[第2の実施の形態]
図5は、本発明に係る磁気ばね制振装置の第2の実施の形態の磁気ばね制振装置を示す。この磁気ばね制振装置では、外容器11の上下に固定された固定部磁石列2の一部が電磁石16で構成され、可動部3に固定された可動部磁石列4はすべて永久磁石で構成されている。
【0034】
この実施の形態でも、制御装置15によって電磁石16に供給される電流を制御することにより、第1の実施の形態と同様に、制振対象物1の振動特性変化に応じて、磁気ばね要素を構成する可動部磁石列4と固定部磁石列2の間に作用する磁気力を自動調整することができる。
【0035】
なお、変形例として、固定部磁石列2と可動部磁石列4の両方のそれぞれ一部として電磁石を採用すること(第1の実施の形態と第2の実施の形態の組合せ)も可能である(図示せず)。さらに、固定部磁石列2と可動部磁石列4のすべての磁石を電磁石として、その一部あるいはすべてに対する供給電流を制御装置15で制御することも可能である。
【0036】
[第3の実施の形態]
図6は、本発明に係る磁気ばね制振装置の第3の実施の形態の磁気ばね制振装置を示す。この実施の形態は、第1の実施の形態(図1等)の変形例であって、制振対象物1が回転機械の場合に適用できるものである。この場合は、制振対象物(回転機械)1の回転数を検出するための回転数検出器20が設けられている。そして、磁気ばね要素と可動質量からなる付加質量系の固有振動数を、回転機器の回転数に一致させるように電磁石14の電流を制御する。
【0037】
これにより、反共振を利用して回転機器の振動を抑制することができる。すなわち、回転数検出器20の信号を受けて、制御量演算部21において回転数と同期する磁気ばね定数を算出するとともに、磁気ばね定数と電磁石14に印加する電流の関係から制御量を決定し、制御量演算部21から電磁石14の電源部に制御信号を送る構成となっている。
【0038】
この構成によれば、回転機器の回転振動を抑制する場合、回転数変動に追従して、制振装置の磁気ばね定数を自動調整することができ、回転機械の振動を常に効果的に抑制することができる。
【0039】
なお、ここでは第1の実施の形態の変形例として説明したが、第2の実施の形態(図5等)の変形例として、制振対象物1が回転機械の場合に適用することも、同様に可能である。
【0040】
[第4の実施の形態]
図7は、本発明に係る磁気ばね制振装置の第4の実施の形態の磁気ばね制振装置を示す。この実施の形態は、第1の実施の形態(図1等)の変形例であって、導体板10の配置・駆動機構等を加えたものである。可動部磁石5と固定部磁石7の間の隙間9に配置された導体板10は、右ねじ部22と左ねじ部23を連結して一体構造としたボールねじ軸24と、各々ボール保持器25を介して結合しており、ボールねじ軸24は制御信号を受けて回転するモータ26より減速器27を介して駆動される構成となっている。
【0041】
ボールねじ軸24は、外容器11に設置された回転軸受28において支持されている。さらに導体板11は支持部材29に固定されたスライド軸受30を介して、外容器11に固定されたレール31と連結している。制御装置32では、磁気ばね定数を自動調整するために電磁石14に送る制御信号とともに、最適ばね定数に対応した最適減衰比を算出し、隙間9における導体板10の隙間厚さ方向の設置位置と磁気減衰比の関係から、導体板10の最適位置を決定し、ボールねじ軸24を駆動するモータ26に制御信号を送るものである。
【0042】
この実施の形態によれば、制振対象物1の振動特性変化に追従して、制振装置の磁気ばね定数を自動調整した上で、導体板10の円滑な上下移動を可能としたことで磁気減衰比も最適状態に自動調整でき、制振対象物1の振動をさらに効果的に抑制することができる。
【0043】
図8は、可動部磁石5と固定部磁石7の間の隙間9を一定とし、隙間9に配置した導体板10と可動部磁石5との距離dをパラメータとして種々に変えた場合の減衰比を、横軸を入力加速度として示す。隙間9を9.8mmで一定として、実験および解析により求めた値を示す。ここでは、dが小さくなるに従い、磁気減衰比が大きくなるようすが確認できる。
【0044】
以上説明した第4の実施の形態では、第1の実施の形態(図1)の変形例として、これに導体板の配置・駆動機構を適用する構成を示した。第2の実施の形態(図5)、第3の実施の形態(図6)についても同様に、これらの変形例として、導体板の配置・駆動機構を適用することが可能である。
【0045】
【発明の効果】
以上説明したように、本発明の磁気ばね制振装置によれば、制振装置を設置した後に制振対象物の振動特性が変化しても、その変化に追従して制振対象物の振動を効果的に抑制することができる。
【図面の簡単な説明】
【図1】本発明に係る磁気ばね制振装置の第1の実施の形態の模式的縦断面図。
【図2】本発明により磁気ばね定数を自動調整する概念の説明図であって、磁気ばね制振装置の復元力と変位の関係を表すグラフ。
【図3】図1に示す磁気ばね制振装置における制御装置をより詳細に示す模式的縦断面図。
【図4】図1に示す磁気ばね制振装置におけるベアリングと受け座の具体例の模式的縦断面図。
【図5】本発明に係る磁気ばね制振装置の第2の実施の形態の模式的縦断面図。
【図6】本発明に係る磁気ばね制振装置の第3の実施の形態の模式的縦断面図。
【図7】本発明に係る磁気ばね制振装置の第4の実施の形態の模式的縦断面図。
【図8】導体板の位置をパラメータとして磁気減衰比と入力加速度の関係を表すグラフ。
【図9】従来の磁気ばね・ダンパ要素を用いた制振装置の模式的縦断面図。
【図10】図9のA−A線矢視水平断面図。
【符号の説明】
1…制振対象物、2…固定部磁石列、3…可動質量、4…可動部磁石列、5…可動部磁石、6…バックヨーク、7…固定部磁石、8…バックヨーク、9…隙間、10…導体板、11…外容器、12…振動検出センサ、13…振動検出センサ、14…電磁石、15…制御装置、16…電磁石、17…位相差検出部、18…振動数差検出部、19…制御量演算部、20…回転数検出器、21…制御量演算部、22…右ねじ部、23…左ねじ部、24…ボールねじ軸、25…ボール保持器、26…モータ、27…減速器、28…回転軸受、29…支持部材、30…スライド軸受、31…レール、32…制御装置、33…ベアリング、34…受け座、41…受け座、42…受け座、43…剛球、50…制振装置本体。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic spring vibration damping device that suppresses vibration of a structure, a rotating machine, and the like, and more particularly, to a magnetic spring vibration damping device that can obtain suitable vibration damping performance by following a vibration change of a vibration damping object.
[0002]
[Prior art]
Conventionally, various magnetic spring damping devices (dynamic vibration absorbers) have been proposed in which an additional mass is attached to a damping object such as a structure or a rotary machine via a spring element and a damping element (for example, Japanese Patent Laid-Open No. Hei 9-1990). No. 287633). For example, as shown in FIG. 9 and FIG. 10, this dynamic vibration absorber includes a stationary magnet array 2 attached to the vibration control object 1 and a movable mass that can move relative to the vibration control object 1 in the horizontal direction. 3 and a movable part magnet row 4 attached to the movable mass 3 and provided to face the fixed portion magnet row 2.
[0003]
In the movable part magnet row 4 of this dynamic vibration absorber, a large number of movable part magnets 5 magnetized in the thickness direction (vertical direction) are two-dimensionally arranged in a horizontal plane at predetermined intervals in a back yoke 6. It is fixed to the movable mass 3 via. The adjacent magnets of these movable part magnets 5 have different magnetic poles.
[0004]
On the other hand, a fixed portion magnet row 2 composed of a fixed portion magnet 7 and a back yoke 8 is fixed to the vibration control object 1 facing this. The fixed portion magnet row 2 is configured to have the same shape and the same position as the movable portion magnet row 4, and the opposing portions have different magnetic poles.
[0005]
Here, the gap 9 between the movable portion magnet row 4 and the fixed portion magnet row 2 is kept constant by sandwiching the hard sphere 43 via the receiving seats 41 and 42. A conductor plate 10 is disposed in the gap 9.
[0006]
With such a configuration, when the movable mass 3 moves from an equilibrium state and the movable magnet 5 and the stationary magnet 7 facing each other are displaced in the horizontal direction, they have different magnetic poles, so that the attractive force acts and is adjacent The repulsive force works by approaching the same magnetic pole. Both of these act as a restoring force that restores the amount of movement of the movable mass 3 to the movement in the two-dimensional direction.
[0007]
Further, the magnetic flux passing through the conductor plate 10 moves relative to the conductor plate 10 with the movement of the movable mass 3, that is, the movement of the movable part magnet 5, and as a magnetic damping force due to the eddy current loss generated in the conductor plate 10. Works.
[0008]
In this way, the dynamic vibration absorber can be miniaturized by configuring the magnetic spring / damper element that can simultaneously obtain the restoring force and the damping force by using the magnetic force and applying it to the dynamic vibration absorber.
[0009]
[Problems to be solved by the invention]
However, in the conventional dynamic damper using the magnetic spring / damper element, the magnetic spring constant (ratio of restoring force and displacement) is kept constant, so after installing the dynamic damper on the object to be controlled If the natural frequency of the object to be controlled changes due to changes in environmental conditions such as temperature or operating conditions on machinery, etc., the vibration damping effect will be reduced due to the loss of the optimal adjustment state of the dynamic vibration absorber. It was difficult to prevent.
[0010]
In addition, in order to suppress steady vibration of an object having a vibration source such as a rotating machine, the natural frequency of the additional mass system consisting of the magnetic spring element and the movable mass is made to match the frequency of the object to be controlled. Even in a vibration suppression device that suppresses vibration of an object using resonance, it is difficult to prevent a decrease in the vibration suppression effect because it cannot follow if there is a change in the frequency of the vibration source after the vibration suppression device is installed. there were.
[0011]
The present invention has been made in response to such a conventional situation, and is capable of adjusting the spring constant of the vibration damping device by following the vibration characteristic change of the vibration damping object even after the vibration damping device is installed. An object is to provide a vibration device.
[0012]
[Means for Solving the Problems]
The present invention achieves the above-mentioned object, and the invention according to claim 1 is a fixed part magnet row fixed to a vibration damping object and arranged in a predetermined direction and made of permanent magnets, and the vibration damping object. The movable mass is arranged to be relatively movable in the predetermined direction, and is fixed to the movable mass, and is arranged in the predetermined direction so as to be opposed to the fixed portion magnet row through a gap, and is made of a permanent magnet. A magnetic spring having a movable portion magnet row, and a magnetic restoring force acting in the predetermined direction when the movable portion magnet row and the fixed portion magnet row move relative to each other in the predetermined direction while maintaining a certain gap. In the vibration damping device, the vibration control device includes a plurality of electromagnets arranged adjacent to the outside of the fixed portion magnet row or the movable portion magnet row so that the magnetic poles are different , and by controlling a current supplied to the electromagnet, Represents magnetic restoring force characteristics Having a control means for controlling the spring constant, characterized.
[0013]
According to a second aspect of the present invention, in the magnetic spring vibration damping device according to the first aspect, a vibration detection sensor that detects vibrations in the predetermined direction of the vibration suppression object and the movable mass, and the vibration detection sensor. Means for obtaining a target value of an electromagnet current to be supplied to the electromagnet so that a spring constant representing the magnetic restoring force characteristic approaches optimally, and controlling the electromagnet current to approach the target value; It is characterized by having.
[0014]
According to a third aspect of the present invention, in the magnetic spring vibration damping device according to the first aspect, from the output signal of the vibration detection sensor, the phase difference and the frequency of each vibration of the vibration damping object and the movable mass. And extracting means for extracting a difference, and calculating means for obtaining a target value of the electromagnet current from the relationship between the phase difference and the frequency difference and the magnetic spring constant.
[0015]
According to a fourth aspect of the present invention, in the magnetic spring vibration damping device according to the first aspect, the object to be damped is a rotating machine, and has a detecting means for detecting the number of rotations of the rotating machine. The control means controls the current supplied to the electromagnet so as to bring the natural frequency of the additional mass system determined from the magnetic spring constant and the movable mass close to the rotation number; It is characterized by.
[0016]
According to a fifth aspect of the present invention, in the magnetic spring vibration damping device according to the first aspect, the magnetic spring damping device is sandwiched between the fixed portion magnet row and the movable portion magnet row, and is supported by the damping object. And a conductive plate position adjusting means for adjusting a distance between the conductive plate and the movable part magnet row.
[0017]
According to a sixth aspect of the present invention, there is provided the magnetic spring damping device according to the fifth aspect, wherein the conductor plate distance adjusting means is an appropriate magnetic damping ratio determined corresponding to a spring constant of the magnetic restoring force. It is controlled to obtain a magnetic damping ratio close to.
[0018]
According to a seventh aspect of the present invention, in the magnetic spring damping device according to the fifth aspect, the conductor plate position adjusting means linearly moves the conductor plate by a ball screw that is rotationally driven by a motor. It is characterized by being.
[0019]
According to an eighth aspect of the present invention, in the magnetic spring damping device according to the seventh aspect, the fixed portion magnet row is disposed at two positions sandwiching the movable mass from the opposite side, and the movable portion magnet row is The conductive plate is disposed at two positions sandwiched between the two fixed portion magnet rows and the movable portion magnet row, and the ball screw is disposed in the axial direction. It has a right screw portion and a left screw portion that are coupled to each other, and is configured such that the two conductor plates can be driven simultaneously by rotating the ball screw.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a magnetic spring damping device according to the present invention will be described below with reference to FIGS. Here, parts that are the same as or similar to those in the prior art are given the same reference numerals, and redundant descriptions are omitted.
[0021]
[First Embodiment]
A first embodiment of a magnetic spring damping device according to the present invention will be described with reference to FIGS. As shown in FIG. 1, the magnetic spring damping device includes a damping device main body 50 that is firmly fixed to the damping object 1, and vibrations attached to the damping object 1 and the movable mass 3. It has detection sensors 12 and 13 and a control device 15 for supplying a control current to an electromagnet 14 installed on the movable mass 3. The vibration damping device main body 50 includes two pairs of fixed magnet rows 2 fixed to the outer container 11 rigidly coupled to the vibration control object 1 and a movable magnet row 4 fixed to the movable mass 3 and a part thereof. The electromagnet 14 is formed.
[0022]
The two movable part magnet arrays 4 are arranged vertically and horizontally so that the movable part magnets 5 magnetized in the thickness direction on the upper and lower surfaces of the movable mass 3 have different magnetic poles adjacent to each other at a predetermined interval. It is configured by arranging a large number of electromagnets 14 adjacent to the movable part magnet 5 at a predetermined interval so that adjacent magnetic poles are different from those arranged and fixed via the back yoke 6.
[0023]
In the outer container 11 that is rigidly coupled to the object 1 to be damped, a fixed part magnet array 2 including a fixed part magnet 7 and a back yoke 8 is disposed on the upper and lower surfaces of the movable mass 3. The magnetic spring element is configured by facing the same part through a certain gap 9 and having the same shape and the same position as each other, and the opposing parts having different magnetic poles. In the present embodiment, two sets of magnetic spring elements are arranged on both the upper and lower sides of the movable mass 3.
[0024]
The control device 15 receives signals from the vibration detection sensors 12 and 13 attached to the vibration control object 1 and the movable mass 3 and supplies a control current to be supplied to the electromagnet 14 forming a part of the movable part magnet row 4. An operation unit for determining is provided. The contents of calculation in the control device 15 will be described later with reference to FIG.
[0025]
In the magnetic spring damping device of the present embodiment configured as described above, the movable portion magnet row 5 and the fixed portion magnet row 9 that constitute the magnetic spring element according to the change in vibration characteristics of the damping object 1. The magnetic force acting between them can be automatically adjusted. In other words, the spring constant representing the magnetic restoring force characteristic can be controlled. Accordingly, the magnetic spring constant of the damping device main body 50 can be automatically adjusted following the change in the vibration characteristics of the damping object 1 even after the damping device is installed, and the vibration of the damping object 1 is always effectively controlled. Can be suppressed.
[0026]
FIG. 2 explains the concept of automatically adjusting the magnetic spring constant by a combination of a permanent magnet and an electromagnet in the magnetic spring damping device of the present invention. The displacement (horizontal axis) of the movable mass 3 and the magnetic restoring force ( The vertical axis). By adjusting the current applied to the electromagnet by adding a portion where the permanent magnet and the electromagnet are opposed to the magnetic spring constant (PP) by the magnetic spring element in which the different magnetic poles of the conventional permanent magnets are opposed to each other, When different magnetic poles face each other between the permanent magnet and the electromagnet (PE +), it acts in the direction of increasing (PP), and when the same magnetic pole faces between the permanent magnet and the electromagnet (PE-), (PP) is reduced. Will act in the direction.
[0027]
By adjusting the direction and magnitude of the control current supplied to the electromagnet according to the vibration characteristic change of the vibration control object 1, the spring constant representing the magnetic restoring force characteristic can be automatically adjusted. Vibration can always be effectively suppressed.
[0028]
FIG. 3 shows the control device 15 (FIG. 1) in detail. In response to detection signals from the vibration detection sensor 12 attached to the vibration suppression object 1 and the vibration detection sensor 13 attached to the movable mass 3, the phase difference detection unit 17 determines the position of the vibration suppression object 1 and the movable mass 3. While detecting the phase difference, the frequency difference detection unit 18 detects the frequency and the frequency difference between the vibration control object 1 and the movable mass 3. Then, the control amount calculation unit 19 calculates a deviation amount of the magnetic spring constant from the optimum spring constant based on the phase difference and the frequency difference, and controls from the relationship between the magnetic spring constant and the current applied to the electromagnet 14. The amount is determined, and a control signal is sent from the control amount calculation unit 19 to the power supply unit of the electromagnet 14.
Although not shown, the control device 15 also includes an A / D converter, a D / A converter, and a frequency filter.
[0029]
According to this configuration, the magnetic restoration acting between the movable part magnet array 2 and the fixed part magnet array 4 constituting the magnetic spring element in accordance with the phase difference and the frequency difference between the damping object 1 and the movable mass 3. The force, that is, the magnetic spring constant can be automatically adjusted. Therefore, even after the vibration damping device is installed, the spring constant representing the magnetic restoring force characteristic of the vibration damping device can be automatically adjusted following the vibration characteristic change of the vibration damping object 1, and the vibration of the vibration damping object 1 can be reduced. It can always be effectively suppressed.
[0030]
FIG. 4 specifically shows the support structure of the movable mass 3. That is, the bearing 33 is fixed to the movable mass 3 and the receiving seat 34 fixed to the outer container 11 is provided, and the bearing 33 is configured to be in rolling contact with the receiving seat 34. As described above, the outer container 11 is fixed to the vibration control object 1. With such a configuration, the vertical movement of the movable mass 3 is restricted, and free movement within a two-dimensional plane (horizontal plane) is possible.
[0031]
In contrast to the configuration of FIG. 4, it is also possible to fix the bearing to the outer container 11 and fix the receiving seat to the movable mass 3 so as to make rolling contact between the bearing and the receiving seat. (Not shown).
[0032]
The support structure of FIG. 4 is such that the movable direction of the movable mass 3 is in the horizontal plane. However, according to the present invention, the moving direction of the movable mass 3, that is, the direction of the magnet arrangement is limited to the horizontal. Rather, it can be in any direction.
The arrangement of the magnets 5, 7, and 14 may be one-dimensional, or may be two-dimensional as shown in FIG.
[0033]
[Second Embodiment]
FIG. 5 shows a magnetic spring damping device according to a second embodiment of the magnetic spring damping device according to the present invention. In this magnetic spring damping device, a part of the fixed part magnet row 2 fixed above and below the outer container 11 is constituted by the electromagnet 16, and all the movable part magnet rows 4 fixed to the movable part 3 are constituted by permanent magnets. Has been.
[0034]
Also in this embodiment, by controlling the current supplied to the electromagnet 16 by the control device 15, the magnetic spring element is changed according to the vibration characteristic change of the vibration control object 1, as in the first embodiment. The magnetic force acting between the movable part magnet row 4 and the fixed part magnet row 2 can be automatically adjusted.
[0035]
As a modification, it is also possible to employ electromagnets as a part of both the fixed portion magnet row 2 and the movable portion magnet row 4 (combination of the first embodiment and the second embodiment). (Not shown). Furthermore, all the magnets of the fixed part magnet row 2 and the movable part magnet row 4 can be electromagnets, and the supply current for a part or all of them can be controlled by the control device 15.
[0036]
[Third Embodiment]
FIG. 6 shows a magnetic spring damping device according to a third embodiment of the magnetic spring damping device according to the present invention. This embodiment is a modification of the first embodiment (FIG. 1 and the like), and can be applied to the case where the vibration control object 1 is a rotary machine. In this case, a rotational speed detector 20 for detecting the rotational speed of the vibration control object (rotary machine) 1 is provided. Then, the current of the electromagnet 14 is controlled so that the natural frequency of the additional mass system composed of the magnetic spring element and the movable mass matches the rotational speed of the rotating device.
[0037]
Thereby, the vibration of the rotating device can be suppressed using anti-resonance. That is, in response to a signal from the rotational speed detector 20, the control amount calculation unit 21 calculates a magnetic spring constant synchronized with the rotational speed, and determines a control amount from the relationship between the magnetic spring constant and the current applied to the electromagnet 14. The control amount calculation unit 21 is configured to send a control signal to the power supply unit of the electromagnet 14.
[0038]
According to this configuration, when the rotational vibration of the rotating device is suppressed, the magnetic spring constant of the vibration damping device can be automatically adjusted following the rotational speed fluctuation, and the vibration of the rotating machine is always effectively suppressed. be able to.
[0039]
In addition, although demonstrated as a modification of 1st Embodiment here, as a modification of 2nd Embodiment (FIG. 5 etc.), applying to the case where the damping target 1 is a rotary machine, It is possible as well.
[0040]
[Fourth Embodiment]
FIG. 7 shows a magnetic spring vibration damping device according to a fourth embodiment of the magnetic spring vibration damping device of the present invention. This embodiment is a modification of the first embodiment (FIG. 1 and the like), and includes an arrangement / drive mechanism of the conductor plate 10 and the like. The conductor plate 10 disposed in the gap 9 between the movable part magnet 5 and the fixed part magnet 7 is composed of a ball screw shaft 24 in which a right screw part 22 and a left screw part 23 are connected to each other, and a ball cage. The ball screw shaft 24 is driven through a speed reducer 27 from a motor 26 that rotates in response to a control signal.
[0041]
The ball screw shaft 24 is supported by a rotary bearing 28 installed in the outer container 11. Further, the conductor plate 11 is connected to a rail 31 fixed to the outer container 11 via a slide bearing 30 fixed to the support member 29. The control device 32 calculates the optimum damping ratio corresponding to the optimum spring constant together with the control signal sent to the electromagnet 14 to automatically adjust the magnetic spring constant, and sets the installation position of the conductor plate 10 in the gap thickness direction in the gap 9. The optimum position of the conductor plate 10 is determined from the relationship of the magnetic damping ratio, and a control signal is sent to the motor 26 that drives the ball screw shaft 24.
[0042]
According to this embodiment, the conductor plate 10 can be smoothly moved up and down after automatically adjusting the magnetic spring constant of the vibration damping device following the vibration characteristic change of the vibration damping object 1. The magnetic damping ratio can also be automatically adjusted to the optimum state, and the vibration of the damping object 1 can be further effectively suppressed.
[0043]
FIG. 8 shows a damping ratio when the gap 9 between the movable part magnet 5 and the fixed part magnet 7 is constant and the distance d between the conductor plate 10 and the movable part magnet 5 arranged in the gap 9 is variously changed as a parameter. Is shown as the input acceleration on the horizontal axis. The value calculated | required by experiment and analysis by making the clearance gap 9 constant with 9.8 mm is shown. Here, it can be confirmed that the magnetic damping ratio increases as d decreases.
[0044]
In the fourth embodiment described above, as a modification of the first embodiment (FIG. 1), the configuration in which the conductor plate arrangement / drive mechanism is applied is shown. Similarly, for the second embodiment (FIG. 5) and the third embodiment (FIG. 6), the arrangement / driving mechanism of the conductor plate can be applied as a modification of these.
[0045]
【The invention's effect】
As described above, according to the magnetic spring vibration damping device of the present invention, even if the vibration characteristic of the vibration damping object changes after the vibration damping device is installed, the vibration of the vibration damping object follows the change. Can be effectively suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a first embodiment of a magnetic spring vibration damping device according to the present invention.
FIG. 2 is an explanatory diagram of a concept of automatically adjusting a magnetic spring constant according to the present invention, and is a graph showing a relationship between a restoring force and a displacement of a magnetic spring damping device.
3 is a schematic longitudinal sectional view showing a control device in the magnetic spring vibration damping device shown in FIG. 1 in more detail. FIG.
4 is a schematic longitudinal sectional view of a specific example of a bearing and a receiving seat in the magnetic spring damping device shown in FIG.
FIG. 5 is a schematic longitudinal sectional view of a second embodiment of the magnetic spring damping device according to the present invention.
FIG. 6 is a schematic longitudinal sectional view of a third embodiment of a magnetic spring vibration damping device according to the present invention.
FIG. 7 is a schematic longitudinal sectional view of a fourth embodiment of a magnetic spring damping device according to the present invention.
FIG. 8 is a graph showing the relationship between the magnetic damping ratio and input acceleration with the position of the conductor plate as a parameter.
FIG. 9 is a schematic longitudinal sectional view of a vibration damping device using a conventional magnetic spring / damper element.
10 is a horizontal sectional view taken along line AA in FIG. 9;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Damping target object, 2 ... Fixed part magnet row, 3 ... Movable mass, 4 ... Movable part magnet row, 5 ... Movable part magnet, 6 ... Back yoke, 7 ... Fixed part magnet, 8 ... Back yoke, 9 ... Gap, 10 ... Conductor plate, 11 ... Outer container, 12 ... Vibration detection sensor, 13 ... Vibration detection sensor, 14 ... Electromagnet, 15 ... Control device, 16 ... Electromagnet, 17 ... Phase difference detection unit, 18 ... Frequency difference detection , 19 ... control amount calculation unit, 20 ... rotational speed detector, 21 ... control amount calculation unit, 22 ... right screw part, 23 ... left screw part, 24 ... ball screw shaft, 25 ... ball holder, 26 ... motor , 27 ... reducer, 28 ... rotary bearing, 29 ... support member, 30 ... slide bearing, 31 ... rail, 32 ... control device, 33 ... bearing, 34 ... receiving seat, 41 ... receiving seat, 42 ... receiving seat, 43 ... Hard sphere, 50 ... Damper body.

Claims (8)

制振対象物に固定されて所定方向に配列され永久磁石からなる固定部磁石列と、前記制振対象物に対して前記所定方向に相対的に運動可能に配置された可動質量と、前記可動質量に固定され、隙間を介して前記固定部磁石列に対向して前記所定方向に配列され永久磁石からなる可動部磁石列と、を有し、前記可動部磁石列と前記固定部磁石列が一定の隙間を保持して前記所定方向に相対移動するときに前記所定方向に磁気復元力が作用する磁気ばね制振装置において、
前記固定部磁石列又は可動部磁石列の外側に隣接し磁極が異なるように配列された複数の電磁石により構成されており、
前記電磁石に供給される電流を制御することによって前記磁気復元力特性を代表するばね定数を制御する制御手段を有すること、
を特徴とする磁気ばね制振装置。
A fixed part magnet array which is fixed to the vibration control object and is arranged in a predetermined direction and made of permanent magnets, a movable mass which is arranged to be movable relative to the vibration control object in the predetermined direction, and the movable A movable portion magnet row made of permanent magnets arranged in the predetermined direction so as to be opposed to the fixed portion magnet row via a gap, and the movable portion magnet row and the fixed portion magnet row are In the magnetic spring vibration damping device in which a magnetic restoring force acts in the predetermined direction when the relative movement is performed in the predetermined direction while maintaining a certain gap,
It is composed of a plurality of electromagnets arranged adjacent to the outside of the fixed part magnet row or the movable part magnet row so that the magnetic poles are different ,
Having control means for controlling a spring constant representing the magnetic restoring force characteristic by controlling a current supplied to the electromagnet;
Magnetic spring damping device characterized by
請求項1に記載の磁気ばね制振装置において、
前記制振対象物および可動質量の前記所定方向の振動を検出する振動検出センサと、
前記振動検出センサの出力を比較して、前記磁気復元力特性を代表するばね定数が最適に近づくような前記電磁石に供給する電磁石電流の目標値を求め、電磁石電流を前記目標値に近づけるべく制御する手段と、
を有することを特徴とする磁気ばね制振装置。
The magnetic spring damping device according to claim 1,
A vibration detection sensor for detecting the vibration in the predetermined direction of the vibration suppression object and the movable mass;
By comparing the outputs of the vibration detection sensors, a target value of the electromagnet current to be supplied to the electromagnet so that a spring constant representing the magnetic restoring force characteristic approaches optimally is obtained, and the electromagnet current is controlled to approach the target value Means to
A magnetic spring damping device characterized by comprising:
請求項1に記載の磁気ばね制振装置において、
前記振動検出センサの出力信号から、前記制振対象物および可動質量の各振動の位相差および振動数差を抽出する抽出手段と、
前記位相差および振動数差と前記磁気ばね定数の関係から、前記電磁石電流の目標値を求める演算手段と、
を有すること、を特徴とする磁気ばね制振装置。
The magnetic spring damping device according to claim 1,
Extraction means for extracting a phase difference and a frequency difference of each vibration of the object to be controlled and the movable mass from an output signal of the vibration detection sensor;
Calculation means for obtaining a target value of the electromagnet current from the relationship between the phase difference and frequency difference and the magnetic spring constant;
A magnetic spring damping device characterized by comprising:
請求項1に記載の磁気ばね制振装置において、前記制振対象物は回転機械であって、
前記回転機械の回転数を検出する検出手段を有し、
前記制御手段は、前記磁気ばね定数および前記可動質量とから決定される付加質量系の固有振動数を前記回転数に近づけるように、前記電磁石に供給される電流を制御するものであること、
を特徴とする磁気ばね制振装置。
2. The magnetic spring damping device according to claim 1, wherein the damping object is a rotating machine,
Detecting means for detecting the number of rotations of the rotating machine;
The control means controls the current supplied to the electromagnet so that the natural frequency of the additional mass system determined from the magnetic spring constant and the movable mass is close to the rotational speed;
Magnetic spring damping device characterized by
請求項1に記載の磁気ばね制振装置において、
前記固定部磁石列と前記可動部磁石列との間に挟まれ、前記制振対象物に支持された導体板と、
この導体板と前記可動部磁石列との間の距離を調節する導体板位置調節手段と、
を有すること、を特徴とする磁気ばね制振装置。
The magnetic spring damping device according to claim 1,
A conductor plate sandwiched between the fixed portion magnet row and the movable portion magnet row and supported by the object to be damped;
Conductor plate position adjusting means for adjusting the distance between the conductor plate and the movable part magnet row;
A magnetic spring damping device characterized by comprising:
請求項5に記載の磁気ばね制振装置において、
前記導体板距離調節手段は、前記磁気復元力のばね定数に対応して決められる適当な磁気減衰比に近い磁気減衰比が得られるように制御されること、
を特徴とする磁気ばね制振装置。
The magnetic spring damping device according to claim 5,
The conductor plate distance adjusting means is controlled so as to obtain a magnetic damping ratio close to an appropriate magnetic damping ratio determined corresponding to a spring constant of the magnetic restoring force;
Magnetic spring damping device characterized by
請求項5に記載の磁気ばね制振装置において、
前記導体板位置調節手段は、モータによって回転駆動されるボールねじにより前記導体板を直動するものであること、
を特徴とする磁気ばね制振装置。
The magnetic spring damping device according to claim 5,
The conductor plate position adjusting means is a unit that linearly moves the conductor plate by a ball screw that is rotationally driven by a motor;
Magnetic spring damping device characterized by
請求項7に記載の磁気ばね制振装置において、
前記固定部磁石列は前記可動質量を反対側から挟む2箇所に配置され、前記可動部磁石列は、前記固定部磁石列に対向する2箇所に配置され、
前記導体板は前記2箇所の固定部磁石列と可動部磁石列に挟まれた2箇所に配置され、
前記ボールねじは、軸方向に互いに結合された右ねじ部と左ねじ部とを有し、前記ボールねじを回転することによって、前記2箇所の導体板を同時に駆動できるように構成されていること、
を特徴とする磁気ばね制振装置。
The magnetic spring damping device according to claim 7,
The fixed part magnet row is arranged at two places sandwiching the movable mass from the opposite side, and the movable part magnet row is arranged at two places facing the fixed part magnet row,
The conductor plate is disposed at two locations sandwiched between the two fixed portion magnet rows and the movable portion magnet row,
The ball screw has a right screw portion and a left screw portion that are coupled to each other in the axial direction, and is configured to be able to drive the two conductor plates simultaneously by rotating the ball screw. ,
Magnetic spring damping device characterized by
JP2002112246A 2002-04-15 2002-04-15 Magnetic spring damping device Expired - Fee Related JP4074123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112246A JP4074123B2 (en) 2002-04-15 2002-04-15 Magnetic spring damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112246A JP4074123B2 (en) 2002-04-15 2002-04-15 Magnetic spring damping device

Publications (2)

Publication Number Publication Date
JP2003307255A JP2003307255A (en) 2003-10-31
JP4074123B2 true JP4074123B2 (en) 2008-04-09

Family

ID=29394805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112246A Expired - Fee Related JP4074123B2 (en) 2002-04-15 2002-04-15 Magnetic spring damping device

Country Status (1)

Country Link
JP (1) JP4074123B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006180601A (en) * 2004-12-21 2006-07-06 Tokai Rubber Ind Ltd Electromagnetic actuator, and active damper and active vibrationproof mount each using this electromagnetic actuator
DE102005017483B4 (en) * 2005-04-15 2007-04-05 Compact Dynamics Gmbh Linear actuator in an electric impact tool
CN110219921B (en) * 2019-07-09 2024-03-08 海南大学 Semi-active and quasi-zero stiffness adjustable vibration isolator
CN113883222A (en) * 2021-09-16 2022-01-04 苏州东菱智能减振降噪技术有限公司 Multi-line spectrum frequency vibration reduction device with adjustable parameters

Also Published As

Publication number Publication date
JP2003307255A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
US8136426B2 (en) Rotary table mounting and drive device
EP2618468B1 (en) Linear actuator
EP3608605B1 (en) A single axis solar tracker with a torsional vibration damping device
US4935838A (en) Structural magnetic vibration controller and method for actively controlling vibrations on stationary components of rotary machinery
JP3058452B2 (en) Magnetically mounted position stabilizing flywheel
JP3068834B2 (en) Radial and axial bearings for rotors with large radii
JP4409742B2 (en) Variable spring type damping device
JPH09105413A (en) Bearing unit
US5248133A (en) Multidimensional damping apparatus
JPH0436278B2 (en)
JP4074123B2 (en) Magnetic spring damping device
JP4528974B2 (en) Vibration suppression device
US6057620A (en) Geometrical structure configuration of maglev forces in a maglev rotational bearing apparatus
JP2541371B2 (en) Magnetic bearing structure of high speed rotary vacuum pump
JP2013100882A (en) Variable spring type dynamic vibration absorber
JP2005169523A (en) Table positioning device
JP2011144879A (en) Vibration isolating device
KR100699346B1 (en) Non-contact revolving stage
JP2020526166A (en) Electromechanical system
Mizuno et al. Repulsive magnetic bearing using a piezoelectric actuator for stabilization
CN107966995A (en) A kind of the angular adjustment platform and adjusting method of the driving of normal direction electromagnetic stress
JP3402900B2 (en) Magnetic spring type vibration damping device
JP3727795B2 (en) Floor damping device
KR20120066875A (en) Pre-load device for spindle bearing using active magnetic actuator
JP2005226799A (en) Magnetic type damping device and magnetic type attenuating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4074123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees