JP4072289B2 - Exterior materials for buildings with carbon dioxide decomposition function - Google Patents

Exterior materials for buildings with carbon dioxide decomposition function Download PDF

Info

Publication number
JP4072289B2
JP4072289B2 JP12644399A JP12644399A JP4072289B2 JP 4072289 B2 JP4072289 B2 JP 4072289B2 JP 12644399 A JP12644399 A JP 12644399A JP 12644399 A JP12644399 A JP 12644399A JP 4072289 B2 JP4072289 B2 JP 4072289B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
culture layer
exterior material
photosynthetic
cyanobacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12644399A
Other languages
Japanese (ja)
Other versions
JP2000320041A (en
Inventor
巨充 曽根
憲美 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeda Corp
Original Assignee
Maeda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corp filed Critical Maeda Corp
Priority to JP12644399A priority Critical patent/JP4072289B2/en
Publication of JP2000320041A publication Critical patent/JP2000320041A/en
Application granted granted Critical
Publication of JP4072289B2 publication Critical patent/JP4072289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Building Environments (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は建築物用外装材に関し、特に光合成活動を利用して二酸化炭素を分解する建築物用外装材に関する。
【0002】
【従来の技術】
従来より二酸化炭素は、自然界における植物や藻類等の光合成活動によって分解され、適度な濃度に維持されてきた。ところが、工業化が進んだ現在では、化石燃料の消費によって二酸化炭素の発生量が増加している。そして、この二酸化炭素の発生量の増加は、自然界の光合成活動による二酸化炭素の分解能力を上回り、地球温暖化の大きな要因となっている。
【0003】
前記二酸化炭素を低減する手段としては、二酸化炭素の発生量の削減と、発生した二酸化炭素の分解とが考えられている。これらのうち、二酸化炭素を分解する手段としては、緑地の拡大、すなわち緑化が有効である。特に都市部では緑地が極端に少なく、二酸化炭素の分解の他に景観の向上等の目的で、ビルディング屋上の緑化、道路や公園の植樹、土木工事における緑化コンクリートの使用等が都市部の緑化の一環として行われている。
【0004】
【発明が解決しようとする課題】
しかし、前述した緑化は主に植樹によるものであって、植樹にはある程度の空間が必要であることから、緑化が制限されてしまう。また、植えられた樹木は、落葉や害虫の発生、枝による視界の不良等の不都合が生じるおそれがあるとともに、防災上において問題があり、これらの点からも緑化が制限される。
【0005】
本発明は緑化による二酸化炭素の分解における問題点を解決すべくなされたもので、その目的は、設置にあたり設置箇所が制限されにくい二酸化炭素の分解手段を提供することにある。
【0006】
【課題を解決するための手段】
本発明は二酸化炭素分解機能付き建築物用外装材であり、前記目的を達成する手段として、以下に示す構成とされている。
すなわち、本発明の二酸化炭素分解機能付き建築物用外装材は、光合成活動を行う光合成微生物を培養する光合成微生物培養層を表面に有することを特徴とする。
【0007】
上記構成によれば、ビルディング等の建築物における屋上や外壁等に本発明の二酸化炭素分解機能付き建築物用外装材を設置することで、前記光合成微生物による光合成活動によって、空気中の二酸化炭素が分解される。
【0008】
また、本発明の二酸化炭素分解機能付き建築物用外装材は、板状体の一面に凹部を形成してなる基板と、前記凹部に前記光合成微生物培養層を供給する光合成微生物培養層供給手段と、前記凹部内の光合成微生物培養層を排出する光合成微生物培養層排出手段とを備えると、例えばビルディングの屋上等の水平な平面上に前記二酸化炭素分解機能付き建築物用外装材を設置でき、かつ前記光合成微生物培養層が連続して供給・排出される。
【0009】
また、本発明の二酸化炭素分解機能付き建築物用外装材は、上記構成に加えて前記凹部を水密に閉塞する光透過部材と、前記凹部及び前記光透過部材によって形成される室に二酸化炭素を供給する二酸化炭素供給手段とを備えると、例えばビルディングの屋上を除く外壁等の非水平な平面上への設置が可能となる。
【0010】
また、本発明の二酸化炭素分解機能付き建築物用外装材における光合成微生物は、一般に植物と同等の炭酸同化能力を有する微細藻類であることが望ましい。
以下、本発明の二酸化炭素分解機能付き建築物用外装材について、詳細に説明する。
【0011】
本発明における光合成活動とは、光エネルギーを化学的エネルギーに転換する生物的な営みによって二酸化炭素を分解する一連の活動を指している。この光合成活動を行う前記光合成微生物は、光合成細菌と微細藻類とに大別することができる。
【0012】
光合成細菌には、例えば、硫黄細菌、緑色糸状細菌、紅色非硫黄細菌、ヘリオパクテリウム、高度高塩菌等を例示することができ、一般に、炭酸同化はするが酸素排出はせず、好気・嫌気両極性であるものが多い。また、微細藻類には、例えば、緑藻、ラン藻、褐藻、真正眼点藻等を例示することができ、一般に、植物と同等の光合成活動をするものが多い。
【0013】
前記光合成微生物培養層は、建築物用外装材の一面に光合成微生物を保持可能であれば良く、光または気体に対する透過性の高いものが望ましい。また、光合成微生物培養層は、保持される光合成微生物の培養に適した環境を作り出せるものが望ましい。光合成微生物培養層には、客土、ジェル、中性コンクリート等を例示することができる。また、前記したように水密に閉塞された室内においては、適度な組成条件の水溶液(培養液)を例示することができる。
【0014】
前記光透過部材は、太陽光等の照射を受け、光合成活動に必要な光エネルギーを前記光合成微生物に与えるものが望ましい。また、光透過部材は、前記光合成微生物培養層を保持可能な強度を有することが望ましい。光透過部材には、強化ガラス、強化アクリル板等の透明部材や、一部に受けた光を散乱することにより光のむらを低減する加工をした曇りガラス等を例示することができる。
【0015】
また、光透過部材は、例えば半透膜のように、透過可能な分子の大きさを規定することができる部材を使用することにより、透光性及び通気性の両方を備えたものであっても良い。さらに、光透過部材は、前記光合成微生物の光合成活動に適した波長の光を透過するように着色等の処理を施しても良い。
【0016】
前記二酸化炭素供給手段は、前記光合成微生物の光合成活動に適した濃度となるように、空気中の二酸化炭素を前記光合成微生物培養層へ供給する手段であることが望ましい。二酸化炭素供給手段は、個々の二酸化炭素分解機能付き建築物用外装材にそれぞれ設けられても良く、また、前記光合成微生物培養層供給手段によって供給される光合成微生物培養層に、予め所定の濃度となるように二酸化炭素を供給する手段としても良い。
【0017】
前記二酸化炭素分解機能付き建築物用外装材は、隣接する二酸化炭素分解機能付き建築物用外装材と、光合成微生物培養層供給手段及び光合成微生物排出手段の連結によって連結されていても良いし、個々の二酸化炭素分解機能付き建築物用外装材が連結されることなく独立して光合成微生物の供給及び排出を行うように設置されていても良い。
【0018】
これらのうち、光合成微生物培養層供給手段及び光合成微生物培養層排出手段が連結される形態によれば、前記光合成微生物が複数の二酸化炭素分解機能付き建築物用外装材を通過することから、二酸化炭素分解機能付き建築物用外装材の設置箇所に起因する日照の良否等に左右されず二酸化酸素の分解を安定した条件で行うことができるとともに、排出された光合成微生物を安定した条件で取り出すことができる。排出された光合成微生物は、タンパク質や脂質等の炭化水素を多く含んでおり、栄養価の高い家畜飼料、建築資材原料、コンクリートの混和物等に利用することが可能である。
【0019】
【発明の実施の形態】
以下、本発明の二酸化炭素分解機能付き建築物用外装材を、微細藻類の一種であるラン藻を光合成微生物として使用した一実施の形態に基づき添付した図面を参照しながら説明する。
【0020】
まず、本実施の形態における構成について説明する。図1は、本実施の形態の二酸化炭素分解機能付き建築物用外装材で外装されたビルディング100の概略構成を示している。ビルディング100は、屋上に二酸化炭素分解機能付き建築物用外装材(以下、屋上用外装材とする)1が複数設置され、屋上を除く外壁に二酸化炭素分解機能付き建築物用外装材(以下、外壁用外装材とする)2が複数設置されている。また、ビルディング100内には、回収設備3が設置されている。
【0021】
屋上用外装材1は、図2に示されるように、上面に凹部を形成してなる基板1aと、前記凹部にラン藻培養層を供給するラン藻培養層供給管(光合成微生物培養層供給手段)1bと、前記凹部の底部に開口するラン藻培養層排出管1cと、ラン藻培養層排出管1cから排出されるラン藻培養層の排出量を規定するラン藻培養層排出バルブ1dとを備えている。なお、ラン藻培養層排出管1c及びラン藻培養層排出バルブ1dは、本発明における光合成微生物培養層排出手段に相当する。
【0022】
外壁用外装材2は、図3に示されるように、外面に凹部を形成してなる基板2aと、基板2aの凹部を外方から水密に閉塞する光透過部材である強化ガラス2bと、前記凹部の一側面からラン藻培養層を供給するラン藻培養層供給管2cと、前記凹部に供給されたラン藻培養層を排出するように凹部の底面に開口するラン藻培養層排出管2dと、ラン藻培養層排出管2dから排出されるラン藻培養層の排出量を規定するラン藻培養層排出バルブ2eと、前記凹部及び外気を連通し空気中の二酸化炭素を吸引するとともに二酸化炭素を所定の濃度となるよう前記凹部へ吹き出す二酸化炭素供給管(二酸化炭素供給手段)2fとを備えている。なお、ラン藻培養層排出管2d及びラン藻培養層排出バルブ2eは、屋上用外装材1と同様、本発明における光合成微生物培養層排出手段に相当する。
【0023】
屋上用外装材1は、隣接する他の屋上用外装材1と、ラン藻培養層排出管1c及びラン藻培養層供給管1bを連結することによって連結されている。そして、ビルディング100屋上の周縁部に設置された屋上用外装材1は、ビルディング100壁面の上端部に設置された外壁用外装材2と、ラン藻培養層排出管1c及びラン藻培養層供給管2cを連結することによって連結されている。さらに、外壁用外装材2は、下方に隣接する他の外壁用外装材2と、ラン藻培養層排出管2d及びラン藻培養層供給管2cを連結することによって連結されている。そして、最下位に設置された外壁用外装材2は、ラン藻培養層排出管2dによって回収設備3と連結されている。
【0024】
回収設備3は、図4に示されるように、光合成活動により二酸化炭素を吸収・固定したラン藻(以下、このラン藻を藻体とする)を回収する回収槽3aと、回収槽3aで一部の藻体が回収されたラン藻培養層をろ過して残りの藻体を取り除くろ過装置3bと、ろ過装置3bを通過したラン藻培養層を調整する調整槽3cとを備えている。
【0025】
回収設備3の回収槽3aには、不織性の捕集板が着脱自在に複数設置されている。また、調整槽3cには、新規の培養液を供給する培養液槽3dと、新規のラン藻を供給するラン藻槽3eと、調整槽3cで調整された新規のラン藻培養層を屋上用外装材1へ送液するポンプ3fと、調整槽3c内の培養層のpH、温度、濃度等を検出する各種センサ3gとが設けられている。調整槽3cは、ポンプ3fを介してラン藻培養層供給管1bによって屋上用外装材1と連結されている。
【0026】
次に、本実施の形態の前述した構成による作用をラン藻培養層の流れに沿って説明する。調整槽3cではラン藻培養層が調整される。まず、培養液層3dから新規の培養液が調整槽3cへ供給される。このときの培養液は、5mg/lとなるように添加された硝酸カリウム、及び2%の塩化ナトリウムを含む水溶液であり、pHは約8に設定されている。また、培養液の温度は約40℃に設定されている。この培養液にラン藻が供給されてラン藻培養層となる。
【0027】
前記ラン藻培養層は、ポンプ3fによって屋上用外装材1へ所定の速度で送液される。ラン藻培養層は、基板1aの凹部に供給され、ラン藻培養層中のラン藻は、日光の照射、及び空気中の二酸化炭素の吸収により光合成活動を行う。この光合成活動の結果、空気中の二酸化炭素は、水と反応することにより酸素及び炭化水素に分解される。ラン藻培養層は、屋上用外装材1のラン藻培養層排出管1cから連続して排出される。なお、屋上用外装材1のラン藻培養層排出バルブ1dは、所定の開度に設定されており、ラン藻培養層の排出速度を規定している。
【0028】
前記ラン藻培養層は、図1中の実線の矢印が示す方向へ排出及び供給を繰り返す。すなわち、前記屋上用外装材1から排出されたラン藻培養層は、隣接する他の屋上用外装材1へと供給され、そこでラン藻が前述した光合成活動を行いつつ、さらに隣接する屋上用外装材1へと供給される。このように屋上用外装材1での排出及び供給を繰り返したラン藻培養層は、次いで外壁用外装材2へと供給される。
【0029】
屋上用外装材1から排出されたラン藻培養層は、ラン藻培養層供給管2cを通って、外壁用外装材2の凹部及び強化ガラス2bによって形成される室に供給される。前記室に供給されたラン藻培養層は、外壁用外装材2の二酸化炭素供給管2fから二酸化炭素の供給を受ける。このとき二酸化炭素供給管2fは、ラン藻培養層に対して約5%の濃度となるように二酸化炭素を供給する。
【0030】
前記ラン藻培養層は二酸化炭素の供給を受けるとともに、強化ガラス2bを透過した日光を受け、ラン藻が光合成活動を行う。この光合成活動の結果、二酸化炭素供給管2fを介して供給された空気中の二酸化炭素は、水と反応することにより酸素と炭化水素に分解される。光合成活動によって前記藻体になったラン藻は、外壁用外装材2のラン藻培養層排出管2dからラン藻培養層とともに排出される。なお、ラン藻培養層排出バルブ2eは所定の開度に設定されており、ラン藻培養層の排出速度を規定している。
【0031】
ラン藻は、前述した屋上用外装材1における排出及び供給の繰り返しと同様に、光合成活動を行いながらラン藻培養層とともに下方に隣接する外壁用外装材2へ順次供給される。そして、最下位の外壁用外装材2から排出されたラン藻培養層は、回収設備3へ供給される。
【0032】
ラン藻培養層におけるラン藻は、前述した光合成活動によって炭化水素を含む藻体となっており、この炭化水素等を再利用すべく藻体を回収することが望ましい。また、藻体は前述した光合成活動の過程で生じてラン藻培養層を濁らせるため、ラン藻培養層の透光性の悪化等に起因する光合成活動の鈍化が生じる。従って、光合成活動の鈍化を防止するためには、藻体を回収しラン藻培養層を入れ替える必要がある。
【0033】
前記藻体は回収設備3で回収される。まず、ラン藻培養層中の藻体は、回収槽3aにおいて沈降し、あるいは回収槽3aに設置された前記捕集板を通過する際に絡め取られて一部が捕集される。回収槽3aで沈降した藻体は、培養層ごと回収される。また、捕集板で捕集された藻体は捕集板ごと回収される。
【0034】
回収槽3aで一部の藻体が取り除かれたラン藻培養層は、ろ過装置3bへ供給され、ここでラン藻培養層中のラン藻のうち、光合成活動の結果藻体になったものが全て取り除かれる。藻体が取り除かれた培養層は、調整槽3cへ供給される。回収槽3aあるいはろ過装置3bで回収された藻体は、家畜飼料や建築資材原料、コンクリートの混和剤等に再利用される。
【0035】
調整槽3cでは、藻体が取り除かれた培養層(培養液)を各種センサ3gが検出し、この各種センサ3gによる検出結果に基づき、培養液槽3dから新規の培養液が調整槽3cへ供給され、ラン藻の光合成活動に適した前記組成条件の培養液となるよう調整する。そして、ラン藻槽3eからは、ラン藻の光合成活動に好適な条件に再調整された培養液へ新規のラン藻が供給される。このようにして調整された新規のラン藻培養層は、ポンプ3fで屋上用外装材1へ送液される。
【0036】
時間の経過に伴い、ビルディング100のある一壁面の外壁に太陽光が当たらなくなったら、その外壁に設置された外壁用外装材2へラン藻培養層を排出する屋上用外装材1のラン藻培養層排出バルブ1dを閉じて、より強い日照の得られる外壁用外装材2へラン藻培養層を集中的に供給しても良い。
【0037】
また、前記二酸化炭素供給管2fに代えて、調整槽3cへ空気中の二酸化炭素を吹き込むブロアを設置し、ラン藻培養層に予め所定の濃度(5%程度)の二酸化炭素が含まれるようにしても良い。
【0038】
本実施の形態における屋上用外装材1は、ラン藻培養層を連続して供給及び排出可能な構成とし、かつ空気中の二酸化炭素を直接吸収する構成としたことから、空気中の二酸化炭素をラン藻の光合成活動によって分解することができる。
【0039】
また、本実施の形態における外壁用外装材2は、前記構成に加えて、前記凹部及び強化ガラス2bによってラン藻培養層を保持可能な構成とし、かつ空気中の二酸化炭素を二酸化炭素供給管2fによって供給可能な構成としたことから、ビルディング100の外壁においてもラン藻の光合成活動によって空気中の二酸化炭素を分解することができる。
【0040】
また、本実施の形態における回収設備3は、光合成活動によって炭化水素を生成したラン藻(藻体)を回収可能な構成としたことから、光合成活動によって生成した炭化水素(タンパク質や脂質等)を含む、再利用に有用な藻体を回収することができる。
【0041】
また、本実施の形態における回収設備3は、新規の培養液及び新規のラン藻を供給可能な構成としたことから、光合成活動に伴い二酸化炭素の分解反応が鈍化するラン藻培養層を入れ替えることができ、安定した状態で二酸化炭素の分解及びラン藻の回収(再利用)を行うことができる。
【0042】
【発明の効果】
本発明の二酸化炭素分解機能付き建築物用外装材は、光合成活動を行う光合成微生物を培養する光合成微生物培養層を表面に有することから、建築物の外壁に設置されることで、地球温暖化の大きな要因となっている空気中の二酸化炭素を分解することができる。
【0043】
また、本発明の二酸化炭素分解機能付き建築物用外装材は、前記基板が形成する凹部に前記光合成微生物培養層を供給及び排出可能な構成としたことから、光合成活動の鈍化が生じた光合成微生物培養層を入れ替えることができ、安定した二酸化炭素分解能力を維持することができる。
【0044】
さらに、本発明の二酸化炭素分解機能付き建築物用外装材は、前記構成としたことから、前記光合成微生物の回収が可能であるため、光合成微生物が光合成活動の一環として行う二酸化炭素中の炭素の固定化で得られた炭化水素を回収することが可能となる。
【0045】
また、本発明の二酸化炭素分解機能付き建築物用外装材は、前記凹部及び光透過部材によって水密な室を形成するとともに、この室へ空気中の二酸化炭素を供給可能な構成としたことから、建築物の非水平な外壁にも設置することができ、今まで活用されにくかったビルディングの側壁等を活用することができ、よって設置にあたり設置箇所が制限されにくい二酸化炭素の分解手段とすることができる。
【0046】
また、本発明の二酸化炭素分解機能付き建築物用外装材は、光合成微生物に微細藻類を使用すると、光合成活動による二酸化炭素の分解を効率よく行うことができるとともに、光合成活動によって生成した炭化水素類を含む微細藻類を、様々な分野において原料、あるいはエネルギー源として再利用することができる。
【図面の簡単な説明】
【図1】本発明の二酸化炭素分解機能付き建築物用外装材における一実施の形態を示す全体図である。
【図2】図1に示される屋上用外装材1をII−II線に沿って切断して示す断面図である。
【図3】図1に示される外壁用外装材2をIII−III線に沿って切断して示す断面図である。
【図4】図1に示される回収設備3を示す概略構成図である。
【符号の説明】
1 二酸化炭素分解機能付き建築物用外装材(屋上用外装材)
1a、2a 基板
1b、2c ラン藻培養層供給管
1c、2d ラン藻培養層排出管
1d、2e ラン藻培養層排出バルブ
2 二酸化炭素分解機能付き建築物用外装材(外壁用外装材)
2b 強化ガラス
2f 二酸化炭素供給管(二酸化炭素供給手段)
3 回収設備
3a 回収槽
3b ろ過装置
3c 調整槽
3d 培養液槽
3e ラン藻槽
3f ポンプ
3g 各種センサ
100 ビルディング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a building exterior material, and more particularly, to a building exterior material that decomposes carbon dioxide using photosynthesis activity.
[0002]
[Prior art]
Conventionally, carbon dioxide has been decomposed by natural photosynthetic activities such as plants and algae, and has been maintained at an appropriate concentration. However, with the progress of industrialization, the amount of carbon dioxide generated is increasing due to the consumption of fossil fuels. This increase in the amount of carbon dioxide generated exceeds the ability to decompose carbon dioxide by natural photosynthetic activity and is a major factor in global warming.
[0003]
As means for reducing the carbon dioxide, reduction of the generated amount of carbon dioxide and decomposition of the generated carbon dioxide are considered. Among these, as a means for decomposing carbon dioxide, expansion of green space, that is, greening is effective. Especially in urban areas, there are extremely few green spaces, and in addition to decomposing carbon dioxide, the use of green concrete on rooftops of buildings, tree planting of roads and parks, and the use of green concrete in civil engineering works for the purpose of urbanization It is done as a part.
[0004]
[Problems to be solved by the invention]
However, the above-mentioned greening is mainly due to tree planting, and a certain amount of space is required for tree planting, so the greening is limited. In addition, planted trees may cause inconveniences such as the occurrence of fallen leaves, pests, and poor visibility due to branches, and have problems in terms of disaster prevention. From these points, greening is limited.
[0005]
The present invention has been made to solve the problem in the decomposition of carbon dioxide by greening, and an object of the present invention is to provide a means for decomposing carbon dioxide in which the installation location is not easily limited in installation.
[0006]
[Means for Solving the Problems]
The present invention is a building exterior material with a carbon dioxide decomposition function, and has the following configuration as means for achieving the above object.
That is, the building exterior material with a carbon dioxide decomposing function of the present invention has a photosynthetic microorganism culture layer on the surface for culturing photosynthetic microorganisms that perform photosynthetic activity.
[0007]
According to the above configuration, by installing the exterior material for a building with a function of decomposing carbon dioxide of the present invention on the roof or outer wall of a building such as a building, carbon dioxide in the air is generated by the photosynthetic activity of the photosynthetic microorganism. Disassembled.
[0008]
The building exterior material with a carbon dioxide decomposition function according to the present invention includes a substrate formed with a recess on one surface of a plate-like body, and a photosynthetic microorganism culture layer supply means for supplying the photosynthetic microorganism culture layer to the recess. And a photosynthetic microorganism culture layer discharging means for discharging the photosynthetic microorganism culture layer in the recess, for example, the building exterior material with a function of decomposing carbon dioxide can be installed on a horizontal plane such as a rooftop of a building, and The photosynthetic microorganism culture layer is continuously supplied and discharged.
[0009]
In addition to the above-described structure, the building exterior material with a carbon dioxide decomposition function according to the present invention has a light transmission member for watertightly closing the concave portion, and carbon dioxide in a chamber formed by the concave portion and the light transmission member. When provided with the carbon dioxide supply means for supplying, for example, installation on a non-horizontal plane such as an outer wall excluding the roof of the building becomes possible.
[0010]
In addition, it is desirable that the photosynthetic microorganism in the building exterior material with a carbon dioxide decomposition function of the present invention is generally a microalgae having a carbon dioxide assimilation ability equivalent to that of a plant.
Hereinafter, the building exterior material with a carbon dioxide decomposition function of the present invention will be described in detail.
[0011]
The photosynthesis activity in the present invention refers to a series of activities for decomposing carbon dioxide by a biological activity that converts light energy into chemical energy. The photosynthetic microorganisms that perform this photosynthetic activity can be roughly classified into photosynthetic bacteria and microalgae.
[0012]
Examples of the photosynthetic bacteria include sulfur bacteria, green filamentous bacteria, red non-sulfur bacteria, heliopacterium, highly hypersalt bacteria, and the like. Many are both bipolar and anaerobic. Examples of microalgae include green algae, cyanobacteria, brown algae, and true-eye algae, and many of them generally perform photosynthesis activity equivalent to that of plants.
[0013]
The photosynthetic microorganism culture layer is not particularly limited as long as the photosynthetic microorganism can be held on one surface of the building exterior material, and preferably has high permeability to light or gas. In addition, the photosynthetic microorganism culture layer is desirably one that can create an environment suitable for cultivation of the photosynthetic microorganism to be retained. Examples of the photosynthetic microorganism culture layer include guest soil, gel, and neutral concrete. Further, in the room closed tightly as described above, an aqueous solution (culture solution) having an appropriate composition condition can be exemplified.
[0014]
The light transmitting member is preferably one that receives irradiation of sunlight or the like and gives the light-synthesizing microorganism the light energy necessary for the photosynthesis activity. Moreover, it is desirable that the light transmitting member has a strength capable of holding the photosynthetic microorganism culture layer. Examples of the light transmissive member include transparent members such as tempered glass and reinforced acrylic plate, and frosted glass that has been processed to reduce unevenness of light by scattering light received in part.
[0015]
In addition, the light transmissive member is provided with both translucency and air permeability by using a member capable of defining the size of a permeable molecule such as a semipermeable membrane. Also good. Further, the light transmitting member may be subjected to a treatment such as coloring so as to transmit light having a wavelength suitable for the photosynthetic activity of the photosynthetic microorganism.
[0016]
The carbon dioxide supply means is preferably means for supplying carbon dioxide in the air to the photosynthetic microorganism culture layer so as to have a concentration suitable for the photosynthetic activity of the photosynthetic microorganism. The carbon dioxide supply means may be provided in each of the building exterior materials with a function of decomposing carbon dioxide, and the photosynthetic microorganism culture layer supplied by the photosynthetic microorganism culture layer supply means has a predetermined concentration in advance. It is good also as a means to supply carbon dioxide.
[0017]
The building exterior material with a carbon dioxide decomposing function may be connected to the adjacent building exterior material with a carbon dioxide decomposing function by the connection of the photosynthetic microorganism culture layer supply means and the photosynthetic microorganism discharge means. It may be installed so that the photosynthetic microorganisms can be supplied and discharged independently without being connected to the building exterior material with carbon dioxide decomposition function.
[0018]
Among these, according to the form in which the photosynthetic microorganism culture layer supply means and the photosynthetic microorganism culture layer discharge means are connected, the photosynthetic microorganisms pass through a plurality of building exterior materials with a carbon dioxide decomposition function. The decomposition of oxygen dioxide can be performed under stable conditions regardless of the quality of sunshine caused by the installation location of the building exterior material with a decomposition function, and the discharged photosynthetic microorganisms can be taken out under stable conditions it can. The discharged photosynthetic microorganisms contain a large amount of hydrocarbons such as proteins and lipids, and can be used for livestock feed with high nutritional value, building material materials, concrete blends, and the like.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the building exterior material with a carbon dioxide decomposing function of the present invention will be described with reference to the accompanying drawings based on an embodiment in which cyanobacteria that are a kind of microalgae are used as photosynthetic microorganisms.
[0020]
First, the configuration in the present embodiment will be described. FIG. 1 shows a schematic configuration of a building 100 covered with a building exterior material with a carbon dioxide decomposition function of the present embodiment. The building 100 has a plurality of building exterior materials with a carbon dioxide decomposition function (hereinafter referred to as rooftop exterior materials) 1 installed on the roof, and a building exterior material with carbon dioxide decomposition functions (hereinafter referred to as the following) on the outer wall excluding the rooftop. A plurality of outer wall exterior materials 2) are installed. In the building 100, a recovery facility 3 is installed.
[0021]
As shown in FIG. 2, the roofing exterior material 1 includes a substrate 1a having a recess formed on the upper surface, and a cyanobacterium culture layer supply pipe (photosynthetic microorganism culture layer supply means) for supplying a cyanobacterium culture layer to the recess. ) 1b, a cyanobacterial culture layer discharge pipe 1c that opens to the bottom of the recess, and a cyanobacterial culture layer discharge valve 1d that regulates the discharge amount of the cyanobacterial culture layer discharged from the cyanobacterial culture layer discharge pipe 1c. I have. The cyanobacterium culture layer discharge pipe 1c and the cyanobacterium culture layer discharge valve 1d correspond to the photosynthetic microorganism culture layer discharge means in the present invention.
[0022]
As shown in FIG. 3, the outer wall exterior material 2 includes a substrate 2 a formed with a recess on the outer surface, a tempered glass 2 b that is a light transmitting member that water-tightly closes the recess of the substrate 2 a from the outside, A cyanobacterial culture layer supply pipe 2c for supplying a cyanobacterial culture layer from one side of the recess, and a cyanobacterial culture layer discharge pipe 2d that opens at the bottom of the recess so as to discharge the cyanobacteria culture layer supplied to the recess. The cyanobacterium culture layer discharge valve 2e that regulates the discharge amount of the cyanobacterium culture layer discharged from the cyanobacterium culture layer discharge pipe 2d and the recessed portion and the outside air communicate with each other to suck carbon dioxide in the air and A carbon dioxide supply pipe (carbon dioxide supply means) 2f that blows out into the recess so as to have a predetermined concentration is provided. The cyanobacterial culture layer discharge pipe 2d and the cyanobacterial culture layer discharge valve 2e correspond to the photosynthetic microorganism culture layer discharge means in the present invention, similarly to the roofing exterior material 1.
[0023]
The roof exterior material 1 is connected by connecting another adjacent roof exterior material 1 to the cyanobacteria culture layer discharge pipe 1c and the cyanobacteria culture layer supply pipe 1b. And the exterior material 1 for roofs installed in the peripheral part on the roof of the building 100 is the exterior material 2 for outer walls installed in the upper end part of the wall surface of the building 100, the cyanobacterium culture layer discharge pipe 1c, and the cyanobacterium culture layer supply pipe. It is connected by connecting 2c. Furthermore, the outer wall exterior material 2 is connected to the other outer wall exterior material 2 adjacent below by connecting the cyanobacteria culture layer discharge pipe 2d and the cyanobacteria culture layer supply pipe 2c. The outer wall exterior material 2 installed at the lowest level is connected to the recovery facility 3 by a cyanobacterial culture layer discharge pipe 2d.
[0024]
As shown in FIG. 4, the recovery facility 3 includes a recovery tank 3a for recovering cyanobacteria that have absorbed and fixed carbon dioxide by photosynthesis activity (hereinafter referred to as the algae), and a recovery tank 3a. A filtration device 3b that filters the cyanobacteria culture layer from which the alga bodies have been collected to remove the remaining algae bodies, and an adjustment tank 3c that adjusts the cyanobacteria culture layer that has passed through the filtration device 3b.
[0025]
In the collection tank 3a of the collection facility 3, a plurality of non-woven collection plates are detachably installed. In addition, in the adjustment tank 3c, a culture solution tank 3d for supplying a new culture solution, a cyanobacterium tank 3e for supplying a new cyanobacterium, and a new cyanobacterium culture layer adjusted in the adjustment tank 3c are used for the rooftop. A pump 3f for feeding the liquid to the exterior material 1 and various sensors 3g for detecting pH, temperature, concentration, etc. of the culture layer in the adjustment tank 3c are provided. The adjustment tank 3c is connected to the rooftop exterior material 1 by a cyanobacterial culture layer supply pipe 1b via a pump 3f.
[0026]
Next, the effect | action by the structure mentioned above of this Embodiment is demonstrated along the flow of the cyanobacteria culture layer. The cyanobacteria culture layer is adjusted in the adjustment tank 3c. First, a new culture solution is supplied from the culture solution layer 3d to the adjustment tank 3c. The culture solution at this time is an aqueous solution containing potassium nitrate and 2% sodium chloride added so as to be 5 mg / l, and the pH is set to about 8. Moreover, the temperature of the culture solution is set to about 40 ° C. Cyanobacteria are supplied to this culture solution to form a cyanobacterium culture layer.
[0027]
The cyanobacterial culture layer is fed to the rooftop packaging material 1 at a predetermined speed by a pump 3f. The cyanobacterial culture layer is supplied to the concave portion of the substrate 1a, and the cyanobacteria in the cyanobacterial culture layer perform photosynthetic activity by irradiation with sunlight and absorption of carbon dioxide in the air. As a result of this photosynthetic activity, carbon dioxide in the air is decomposed into oxygen and hydrocarbons by reacting with water. The cyanobacteria culture layer is continuously discharged from the cyanobacteria culture layer discharge pipe 1c of the roofing exterior material 1. In addition, the cyanobacterial culture layer discharge valve 1d of the roofing exterior material 1 is set to a predetermined opening degree, and regulates the discharge rate of the cyanobacterial culture layer.
[0028]
The cyanobacteria culture layer is repeatedly discharged and supplied in the direction indicated by the solid arrow in FIG. That is, the cyanobacteria culture layer discharged from the rooftop exterior material 1 is supplied to another adjacent rooftop exterior material 1, where the cyanobacteria perform the above-described photosynthetic activity while further adjoining the rooftop exterior packaging. Supplied to the material 1. The cyanobacterial culture layer that has been repeatedly discharged and supplied from the roofing exterior material 1 in this way is then supplied to the exterior wall exterior material 2.
[0029]
The cyanobacteria culture layer discharged from the rooftop exterior material 1 is supplied to the chamber formed by the concave portion of the exterior wall exterior material 2 and the tempered glass 2b through the cyanobacteria culture layer supply pipe 2c. The cyanobacterial culture layer supplied to the chamber is supplied with carbon dioxide from the carbon dioxide supply pipe 2 f of the outer wall exterior material 2. At this time, the carbon dioxide supply pipe 2f supplies carbon dioxide to a concentration of about 5% with respect to the cyanobacterial culture layer.
[0030]
The cyanobacterial culture layer is supplied with carbon dioxide and receives sunlight transmitted through the tempered glass 2b, and the cyanobacteria perform photosynthesis activity. As a result of this photosynthesis activity, carbon dioxide in the air supplied via the carbon dioxide supply pipe 2f is decomposed into oxygen and hydrocarbons by reacting with water. The cyanobacteria that have become algal bodies by the photosynthetic activity are discharged together with the cyanobacteria culture layer from the cyanobacteria culture layer discharge pipe 2d of the outer wall exterior material 2. The cyanobacterial culture layer discharge valve 2e is set to a predetermined opening, and regulates the discharge rate of the cyanobacterial culture layer.
[0031]
The cyanobacteria are sequentially supplied to the outer wall exterior material 2 adjacent to the lower side together with the cyanobacteria culture layer while performing the photosynthetic activity, similarly to the repetition of the discharge and supply in the roof exterior material 1 described above. Then, the cyanobacteria culture layer discharged from the lowermost outer wall exterior material 2 is supplied to the recovery facility 3.
[0032]
The cyanobacteria in the cyanobacteria culture layer are algal bodies containing hydrocarbons due to the above-mentioned photosynthesis activity, and it is desirable to recover the algal bodies in order to reuse the hydrocarbons and the like. In addition, the algal bodies are generated in the process of the above-mentioned photosynthetic activity and make the cyanobacter culture layer turbid, so that the photosynthetic activity is slowed due to the deterioration of the translucency of the cyanobacterial culture layer. Therefore, in order to prevent the slowdown of photosynthetic activity, it is necessary to collect algal bodies and replace the cyanobacterial culture layer.
[0033]
The algal bodies are collected by the collection facility 3. First, the alga bodies in the cyanobacteria culture layer settle in the collection tank 3a or are entangled when passing through the collection plate installed in the collection tank 3a and partly collected. The algal bodies settled in the collection tank 3a are collected together with the culture layer. Moreover, the algal bodies collected with the collection board are collect | recovered with the collection board.
[0034]
The cyanobacteria culture layer from which some algal bodies have been removed in the collection tank 3a is supplied to the filtration device 3b, and among the cyanobacteria in the cyanobacteria culture layer, those that have become alga bodies as a result of photosynthesis activity. Everything is removed. The culture layer from which the algal bodies have been removed is supplied to the adjustment tank 3c. The alga bodies collected in the collection tank 3a or the filtration device 3b are reused for livestock feed, building material raw materials, concrete admixtures, and the like.
[0035]
In the adjustment tank 3c, various sensors 3g detect the culture layer (culture liquid) from which the algal bodies have been removed, and based on the detection results of the various sensors 3g, a new culture liquid is supplied from the culture liquid tank 3d to the adjustment tank 3c. Then, the culture solution is adjusted so as to have a composition suitable for the photosynthetic activity of cyanobacteria. Then, from the cyanobacteria tank 3e, new cyanobacteria are supplied to the culture solution readjusted to conditions suitable for the photosynthetic activity of cyanobacteria. The new cyanobacterial culture layer thus adjusted is fed to the rooftop exterior material 1 by the pump 3f.
[0036]
As time passes, if the sun shines on the outer wall of one wall of the building 100, the cyanobacterium culture of the roofing exterior material 1 that discharges the cyanobacterium culture layer to the exterior wall exterior material 2 installed on the outer wall Alternatively, the layer discharge valve 1d may be closed to supply the cyanobacterial culture layer in a concentrated manner to the outer wall exterior material 2 where stronger sunlight is obtained.
[0037]
Further, instead of the carbon dioxide supply pipe 2f, a blower for blowing carbon dioxide in the air into the adjustment tank 3c is installed so that carbon dioxide at a predetermined concentration (about 5%) is previously contained in the cyanobacterial culture layer. May be.
[0038]
Since the roofing exterior material 1 in the present embodiment has a configuration in which the cyanobacterial culture layer can be continuously supplied and discharged, and has a configuration in which carbon dioxide in the air is directly absorbed, It can be degraded by the photosynthetic activity of cyanobacteria.
[0039]
In addition to the above configuration, the exterior wall exterior material 2 in the present embodiment has a configuration capable of holding a cyanobacterial culture layer by the recess and the tempered glass 2b, and carbon dioxide in the air is supplied to the carbon dioxide supply pipe 2f. Therefore, carbon dioxide in the air can be decomposed by the photosynthetic activity of cyanobacteria on the outer wall of the building 100 as well.
[0040]
In addition, since the recovery facility 3 in the present embodiment has a configuration capable of recovering cyanobacteria (algae) that have generated hydrocarbons by photosynthesis activity, hydrocarbons (proteins, lipids, etc.) generated by photosynthesis activity are collected. Algae useful for reuse can be recovered.
[0041]
Moreover, since the collection | recovery equipment 3 in this Embodiment was set as the structure which can supply a new culture solution and a new cyanobacteria, it replaces the cyanobacteria culture layer in which the decomposition reaction of carbon dioxide slows down with a photosynthesis activity. The carbon dioxide can be decomposed and cyanobacteria can be recovered (reused) in a stable state.
[0042]
【The invention's effect】
Since the exterior material for a building with a carbon dioxide decomposition function of the present invention has a photosynthetic microorganism culture layer for culturing photosynthetic microorganisms that perform photosynthetic activity on the surface, it is installed on the outer wall of the building, thereby preventing global warming. It can decompose carbon dioxide in the air, which is a major factor.
[0043]
Further, the exterior packaging material for a building with a function of decomposing carbon dioxide according to the present invention has a configuration in which the photosynthetic microorganism culture layer can be supplied to and discharged from the recess formed by the substrate, so that the photosynthetic microorganism in which the photosynthetic activity is slowed down is generated. The culture layer can be replaced, and stable carbon dioxide decomposition ability can be maintained.
[0044]
Furthermore, since the exterior packaging material for a building with a carbon dioxide decomposition function of the present invention has the above-described configuration, the photosynthetic microorganism can be recovered, so that the carbon in the carbon dioxide that the photosynthetic microorganism performs as part of the photosynthetic activity. It is possible to recover the hydrocarbon obtained by immobilization.
[0045]
In addition, the building exterior material with a carbon dioxide decomposition function of the present invention has a structure capable of supplying carbon dioxide in the air to the chamber while forming a watertight chamber by the concave portion and the light transmitting member. It can also be installed on non-horizontal outer walls of buildings, and it can be used as a means of decomposing carbon dioxide, which can be used on the side walls of buildings that have been difficult to use so far. it can.
[0046]
Moreover, the exterior material for a building with a function of decomposing carbon dioxide of the present invention can efficiently decompose carbon dioxide by photosynthesis activity when using microalgae for photosynthesis microorganisms, and hydrocarbons generated by photosynthesis activity. Can be reused as a raw material or an energy source in various fields.
[Brief description of the drawings]
FIG. 1 is an overall view showing an embodiment of a building exterior material having a carbon dioxide decomposition function according to the present invention.
FIG. 2 is a cross-sectional view showing the rooftop exterior material 1 shown in FIG. 1 cut along the line II-II.
3 is a cross-sectional view showing the outer wall exterior material 2 shown in FIG. 1 cut along the line III-III. FIG.
FIG. 4 is a schematic configuration diagram showing a recovery facility 3 shown in FIG.
[Explanation of symbols]
1 Exterior materials for buildings with carbon dioxide decomposition function (exterior materials for rooftops)
1a, 2a Substrate 1b, 2c Cyanobacterial culture layer supply pipe 1c, 2d Cyanobacteria culture layer discharge pipe 1d, 2e Cyanobacteria culture layer discharge valve 2 Exterior material for building with carbon dioxide decomposition function (exterior material for outer wall)
2b Tempered glass 2f Carbon dioxide supply pipe (carbon dioxide supply means)
3 collection equipment 3a collection tank 3b filtration device 3c adjustment tank 3d culture solution tank 3e cyanobacterium tank 3f pump 3g various sensors 100 building

Claims (3)

光合成活動を行う光合成微生物を培養する光合成微生物培養層を表面に有し、板状体であってその一面に凹部を形成してなる基板と、前記凹部に前記光合成微生物培養層を供給する光合成微生物培養層供給手段と、前記凹部内の光合成微生物培養層を排出する光合成微生物培養層排出手段と、を備えたことを特徴とする二酸化炭素分解機能付き建築物用外装材。The photosynthetic microorganism culture layer for culturing photosynthetic microorganisms performing photosynthetic activity possess the surface, photosynthetic microorganisms supplies a substrate obtained by forming a recess in one surface thereof a plate-like body, the photosynthetic microorganism culture layer in the recess A building exterior material with a carbon dioxide decomposition function , comprising: a culture layer supply means; and a photosynthetic microorganism culture layer discharge means for discharging the photosynthetic microorganism culture layer in the recess . 前記凹部を水密に閉塞する光透過部材と、前記凹部及び前記光透過部材によって形成される室に二酸化炭素を供給する二酸化炭素供給手段と、を備えたことを特徴とする請求項1記載の二酸化炭素分解機能付き建築物用外装材 2. The carbon dioxide according to claim 1, further comprising: a light transmissive member that tightly closes the concave portion; and carbon dioxide supply means that supplies carbon dioxide to a chamber formed by the concave portion and the light transmissive member. Exterior material for buildings with carbon decomposition function . 前記光合成微生物は、微細藻類であることを特徴とする請求項1記載の二酸化炭素分解機能付き建築物用外装材。The building exterior material with a carbon dioxide decomposition function according to claim 1, wherein the photosynthetic microorganism is a microalgae.
JP12644399A 1999-05-06 1999-05-06 Exterior materials for buildings with carbon dioxide decomposition function Expired - Fee Related JP4072289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12644399A JP4072289B2 (en) 1999-05-06 1999-05-06 Exterior materials for buildings with carbon dioxide decomposition function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12644399A JP4072289B2 (en) 1999-05-06 1999-05-06 Exterior materials for buildings with carbon dioxide decomposition function

Publications (2)

Publication Number Publication Date
JP2000320041A JP2000320041A (en) 2000-11-21
JP4072289B2 true JP4072289B2 (en) 2008-04-09

Family

ID=14935346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12644399A Expired - Fee Related JP4072289B2 (en) 1999-05-06 1999-05-06 Exterior materials for buildings with carbon dioxide decomposition function

Country Status (1)

Country Link
JP (1) JP4072289B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105507438A (en) * 2015-11-18 2016-04-20 四川农业大学 Method for producing fireproof eco-environment-friendly mushroom foam

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829017B2 (en) * 2006-06-29 2011-11-30 株式会社竹中工務店 Carbon dioxide fixed structural member
BRPI0923821A2 (en) * 2008-12-23 2019-09-24 X Tu "Algae and / or micro-organism culture device for the treatment of effluents and biofachada"
EP2290048B1 (en) * 2009-08-28 2012-02-29 King Abdulaziz City for Science and Technology Photo-bioreactor and building having a photo-bioreactor mounted on a wall thereon
EP2359682A1 (en) * 2010-02-11 2011-08-24 Ove Arup and Partners International Limited Facade element, facade construction and building
DE102010008093A1 (en) * 2010-02-15 2011-08-18 Phytolutions GmbH, 28759 Design and use of an endless-chamber bioreactor for the use of CO2 from flue gases and for the production of biomass from algae and prokaryotes
WO2013011240A2 (en) * 2011-07-18 2013-01-24 X-Tu Integrated curtain walling serving for optimized industrial production of microalgae in building facades
DE102011089692B4 (en) 2011-12-22 2017-04-27 Bauhaus Universität Weimar Bioreactor for the cultivation of phototrophic organisms
CN104963438B (en) * 2015-07-14 2017-03-29 李哲先 Bioenergy curtain wall
ITUB20153720A1 (en) * 2015-09-18 2015-12-18 Torino Politecnico MODULAR ELEMENT, SYSTEM AND PROCESS OF TREATMENT OF WASTE AND METEORIC WATERS.
JP7133164B2 (en) * 2018-04-27 2022-09-08 東京電力ホールディングス株式会社 Algae culture reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105507438A (en) * 2015-11-18 2016-04-20 四川农业大学 Method for producing fireproof eco-environment-friendly mushroom foam

Also Published As

Publication number Publication date
JP2000320041A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
CN101767893B (en) Device and method for coupling producing biological oil by utilizing microalgae to deeply treating wastewater
ES2444721T3 (en) Procedure and installation for the evacuation of exhaust gases, in particular CO2, assisted by photosynthesis
CN108975614B (en) Operation method of biogas slurry ecological treatment culture system
JP4072289B2 (en) Exterior materials for buildings with carbon dioxide decomposition function
US20230220319A1 (en) Photo-bioreactor device and methods
US20130115688A1 (en) Laminar photobioreactor for the production of microalgae
CN101280271A (en) Production unit for microalgae industrialization and method for producing microalgae
CN102382769B (en) By iron trichloride throwing out microalgae and the recycling of cultivating water body
CN109160669B (en) Operation method of biogas slurry light treatment breeding system
CN205616723U (en) Pool - ecological ditch canal non -point source pollution processing system
CN106006964B (en) A kind of park water purifier and its purification method using microorganism
US20140186931A1 (en) Process of Operating a Plurality of Photobioreactors
CN101503264A (en) Method for ectopically and ecologically repairing eutrophication water
CN111849704B (en) Stepped microalgae biofilm reactor for purifying biogas slurry
TW201302628A (en) System for decomposition of organic compounds and method of operation thereof
EP3109311A1 (en) Solar gas installation which can be operated in multiple modes
ES2262432B1 (en) PROCEDURE FOR SETTING CARBON DIOXIDE THROUGH THE USE OF A CIANOBACTERIA CULTURE.
CN209039279U (en) A kind of organic pollution aquifer dystopy Ecosystem restoration system
CA2761251A1 (en) Fast erectable bioreactor
CN109111054A (en) A kind of organic pollution aquifer dystopy Ecosystem restoration system and ecological restoring method
CN205617891U (en) Compound ecological room of modularization
CN105776551A (en) Sewage treatment device
CN106045054A (en) Acquiring method of ecological enzymes and water purifying system formed by using ecological enzymes
JP6866248B2 (en) Soil purification system and soil purification method
JP2017154093A (en) Exhaust purification system and exhaust purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees