JP4070506B2 - Vehicle bearing system - Google Patents

Vehicle bearing system Download PDF

Info

Publication number
JP4070506B2
JP4070506B2 JP2002142338A JP2002142338A JP4070506B2 JP 4070506 B2 JP4070506 B2 JP 4070506B2 JP 2002142338 A JP2002142338 A JP 2002142338A JP 2002142338 A JP2002142338 A JP 2002142338A JP 4070506 B2 JP4070506 B2 JP 4070506B2
Authority
JP
Japan
Prior art keywords
wheel side
bearing device
side bearing
rear wheel
front wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002142338A
Other languages
Japanese (ja)
Other versions
JP2003335107A (en
Inventor
孝爾 嶋
昌弘 井上
啓介 野村
尚登 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Toyota Motor Corp
Original Assignee
JTEKT Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp, Toyota Motor Corp filed Critical JTEKT Corp
Priority to JP2002142338A priority Critical patent/JP4070506B2/en
Publication of JP2003335107A publication Critical patent/JP2003335107A/en
Application granted granted Critical
Publication of JP4070506B2 publication Critical patent/JP4070506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、前輪側軸受装置と後輪側軸受装置からなる自動車等の車両用軸受システムに関する。
【0002】
【従来の技術】
従来から、自動車の軸受装置には、複列アンギュラ玉軸受が用いられることが多い。
【0003】
この種の軸受においては、一般に、操舵時に作用する荷重によって、車軸と内輪との間に回転方向に滑りが生じる、いわゆるクリープ現象が発生する。
【0004】
このクリープ問題に対処するため、前後輪の軸受装置の剛性を高めることが行われている。
【0005】
【発明が解決しようとする課題】
しかし、従来は、前後輪の軸受装置の剛性が等しくなるように高めているため、操舵時に自動車の姿勢を確保し難いという問題があった。
【0006】
すなわち、図8において、100は自動車を示しており、101は前輪、102は後輪である。自動車100が矢印で示すような操舵時に、前輪側軸受装置の剛性と、後輪側軸受装置の剛性が等しい場合、想像線で示すように、オーバーステア傾向となり、自動車100の姿勢を確保しにくくなる恐れがあった。
【0007】
この発明は、操舵時に車両の姿勢を確保し易い車両用軸受システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の車両用軸受システムは、前輪側車軸を支持する複列斜接軸受からなる前輪側軸受装置と、後輪側車軸を支持する複列斜接軸受からなる後輪側軸受装置とを備え、車両をアンダーステア方向にして操舵時における安定性を高めるよう、前記前輪側軸受装置の剛性を、前記後輪側軸受装置の剛性より小さく設定したものである。
【0010】
具体的には、前輪側軸受装置の各列の転動体の中心間距離を、後輪側軸受装置の各列の転動体の中心間距離より小さくする。または、前輪側軸受装置の転動体の接触角を、後輪側軸受装置の転動体の接触角より小さくする。あるいは、前輪側軸受装置の各列の転動体の中心間距離を、後輪側軸受装置の各列の転動体の中心間距離より小さくし、かつ、前輪側軸受装置の転動体の接触角を、後輪側軸受装置の転動体の接触角より小さくする。
【0011】
なお、前輪側軸受装置ならびに後輪側軸受装置を構成する複列斜接軸受には、例えば、複列アンギュラ玉軸受を用いる。
【0012】
より具体的には、前輪側車軸を支持する前輪側軸受装置と、後輪側車軸を支持する後輪側軸受装置とを備え、前記両軸受装置は、ハブホイールの外周に装着され、車体に固定した外輪と、2列に配置した玉とを有した複列アンギュラ玉軸受からなり、前記前輪側軸受装置の各列の玉の中心間距離を、前記後輪側軸受装置の各列の玉の中心間距離より小さくし、および/または、前記前輪側軸受装置の玉の接触角を、前記後輪側軸受装置の玉の接触角より小さくして、前記前輪側軸受装置の剛性を、前記後輪側軸受装置の剛性より小さく設定する。
【0015】
本発明の車両用軸受システムによると、前輪側軸受装置の剛性を、後輪側軸受装置の剛性より小さく設定したことにより、操舵時に車両の姿勢が確保し易くなる。
【0016】
また、前輪側軸受装置の各列の転動体の中心間距離を、後輪側軸受装置の各列の転動体の中心間距離より小さくすることで、前輪側軸受装置のモーメント剛性が小さくなる。その結果、前輪側軸受装置の剛性が、後輪側軸受装置の剛性より低くなり、操舵時に車両の姿勢が確保し易くなる。
【0017】
また、前輪側軸受装置の転動体の接触角を、後輪側軸受装置の転動体の接触角より小さくすることで、前輪側軸受装置のモーメント剛性が小さくなる。その結果、前輪側軸受装置の剛性が、後輪側軸受装置の剛性より低くなり、操舵時に車両の姿勢が確保し易くなる。
【0018】
【発明の実施の形態】
以下、本発明の詳細を図面に示す実施の形態を参照して説明する。図1は自動車用の軸受装置の断面図、図2(a)は前輪側軸受装置の断面図、図2(b)は後輪側軸受装置の断面図である。
【0019】
図1を参照して、前輪側と後輪側それぞれの軸受装置において共通の構成を説明する。前輪側軸受装置は、車両の前輪側車軸を支持する。後輪側軸受装置は、車両の後輪側車軸を支持する。これら両軸受装置は、共に、等速ジョイント1と、ハブホイール4と、複列アンギュラ玉軸受2とを備える。等速ジョイント1は、椀形外輪11と、この椀形外輪11から延びる軸部12とを含む。ハブホイール4は、等速ジョイント1の軸部12の外周に装着され、ハブフランジ41を有している。複列アンギュラ玉軸受2は、転がり軸受の一例として、等速ジョイント1の軸部12の外周とハブホイール4の外周とにまたがって装着されている。ハブホイール4の外周と等速ジョイント1の軸部12の外周は、複列アンギュラ玉軸受2の内輪軌道31,32が形成されている。
【0020】
複列アンギュラ玉軸受2は、前記のように内輪軌道31,32が形成されていることにより、内輪が設けられていない。複列アンギュラ玉軸受2は、外輪21を有する。この外輪21は、車体にナックルを介して固定されており、その内周面に軸方向2列の外輪軌道33,34を有する。複列アンギュラ玉軸受2は、軸方向2列の玉22,23と、各列の玉22,23を保持する軸方向2つの保持器35,36とを有する。軸方向2列の玉22,23は、それぞれ、各保持器35,36に保持された状態で軸方向2列とされた内輪軌道31,32と外輪軌道33,34との間に転動可能に配列されている。
【0021】
本実施形態の車両用軸受システムは、前輪側軸受装置と後輪側軸受装置とを含み、前輪側軸受装置の剛性を後輪側軸受装置の剛性より小さく設定したことを特徴とする。この剛性関係について図2(a)および図2(b)を参照して説明する。図2(a)は前輪側軸受装置、図2(b)は後輪側軸受装置を示す。そして、本実施の形態では、両軸受装置に対して各列の玉22,23の中心間距離を異ならせている。すなわち、前輪側軸受装置の軸方向2列の玉22,23の中心間距離をL1、後輪側軸受装置の軸方向2列の玉22,23の中心間距離をL2とすると、これら両中心間距離を次式(1)の関係が成立するように設定している。
【0022】
1<L2 …(1)
つまり、前輪側軸受装置の方が、後輪側軸受装置よりも、玉22,23の中心間距離が短くされている。この結果、各列の玉22,23から内輪軌道31,32に加わる力の作用方向を示す作用線F1,F2と、軸受装置の中心軸線Oとが交わる交点をO1,O2とすると、前輪側軸受装置における両交点O1,O2間の距離Aと、後輪側軸受装置における両交点O1,O2間の距離B(>A)とに相違が生じる。ここで、これらの距離A,Bは、軸受負荷中心間距離のことである。この軸受負荷中心間距離は、大きい程、軸受装置のモーメント剛性が大きくなる。したがって、本実施形態では、前輪側軸受装置の玉22,23の中心間距離L1を、後輪側軸受装置の玉22,23の中心間距離L2より小さくしたことにより、前輪側軸受装置の軸受負荷中心間距離Aが、後輪側軸受装置の軸受負荷中心間距離Bより小さくなる。これにより、前輪側軸受装置のモーメント剛性を、後輪側軸受装置のモーメント剛性より下げることができる。そのため、前輪側軸受装置の剛性は、後輪側軸受装置の剛性より小さくなる。なお、前輪側と後輪側それぞれの軸受装置における内輪軌道31,32に対する玉22,23の接触角θ1は同じである。
【0023】
以上のように本実施形態では、前輪側軸受装置の剛性を、クリープ現象が発生しない程度の剛性に設定することでクリープ現象の発生を抑制できる一方、前輪側軸受装置の剛性を、後輪側軸受装置の剛性より小さく設定することで、操舵時における動車の姿勢を確保し易くすることができる。
【0024】
また、前輪側軸受装置の玉22,23の中心間距離L1を小さくすることで、軸受の軸方向の長さを短縮でき、その分、ステアリング部品やサスペンション部品等の設計やレイアウトの自由度が向上する。
【0025】
なお、本発明は、上述の実施形態に限定されるものではなく、以下に述べる実施形態にも適用することができる。
【0026】
(1) 上述の実施形態では、前輪側軸受装置の軸受負荷中心間距離Aを、後輪側軸受装置の軸受負荷中心間距離Bより小さくするために、前後輪の軸受装置の各列の玉22,23の中心間距離L1,L2を異ならせているのに対し、前輪側と後輪側それぞれの軸受装置における内輪軌道31,32に対する玉22,23の接触角を変えてもよい。このことを図3および図4を参照して説明する。図3および図4は、共に、前輪側軸受装置の断面図を示している。後輪側軸受装置は、図2(b)に示した例と同様に構成されている。
【0027】
図3に示す前輪側軸受装置と、図2(b)に示す後輪側軸受装置との違いは、玉22,23の接触角が異なる点である。
【0028】
すなわち、前輪側軸受装置の玉22,23の接触角θ2と、後輪側軸受装置の玉22,23の接触角θ1との間に、θ1>θ2の関係が成立する。例えば、θ1=40°とすると、θ2を40°未満に設定する。
【0029】
このように、前輪側軸受装置の玉22,23の接触角θ2を、後輪側軸受装置の玉22,23の接触角θ1より小さくしたことにより、前輪側軸受装置の軸受負荷中心間距離Cが、後輪側軸受装置の軸受負荷中心間距離Bより小さくなる。その結果、前輪側軸受装置の剛性が、後輪側軸受装置の剛性より小さくなる。
【0030】
また、図4に示す前輪側軸受装置と、図2(b)に示す後輪側軸受装置との違いは、各列の玉22,23の中心間距離が異なる点と、玉22,23の接触角が異なる点である。
【0031】
すなわち、前輪側軸受装置の玉22,23の中心間距離L1と、後輪側軸受装置の玉22,23の中心間距離L2との間に、L1<L2の関係が成立する。さらに、前輪側軸受装置の玉22,23の接触角θ2と、後輪側軸受装置の玉22,23の接触角θ1との間に、θ1>θ2の関係が成立する。
【0032】
これにより、前輪側軸受装置の軸受負荷中心間距離Dが、後輪側軸受装置の軸受負荷中心間距離Bより、さらに小さくなる。その結果、前輪側軸受装置の剛性が、後輪側軸受装置の剛性より小さくなる。
【0033】
このように構成された車両用軸受システムにおいても、前輪側軸受装置の剛性が、後輪側軸受装置の剛性より低くなり、操舵時に車両の姿勢が確保し易くなる。
【0034】
(2) 本発明は、上述の各実施形態に示したような構成の軸受に限定されるものではなく、各種構成の軸受にも適用できる。例えば、図5および図6に示すような構成の軸受に適用してもよい。なお、図5は前輪側軸受装置の断面図、図6は後輪側軸受装置の断面図を示しており、後輪駆動の自動車に適用した例である。
【0035】
この実施の形態の軸受装置は、ハブフランジ41が一体形成されたハブホイール4の軸部42の外周に、複列アンギュラ玉軸受2を装着したものである。
【0036】
複列アンギュラ玉軸受2は、軸部42ならびに内輪24に形成した内輪軌道31,32と、外輪21に形成した外輪軌道33,34に沿って、各々保持器にて保持された2列の玉22,23を配置して構成されている。
【0037】
次に、前後輪の軸受装置の違いについて説明する。
【0038】
前後輪の軸受装置の違いは、各列の玉22,23の中心間距離が異なる点と、玉22,23の接触角が異なる点である。
【0039】
すなわち、前輪側軸受装置の玉22,23の中心間距離L3と、後輪側軸受装置の玉22,23の中心間距離L4との間に、L3<L4の関係が成立する。さらに、前輪側軸受装置の玉22,23の接触角θ3と、後輪側軸受装置の玉22,23の接触角θ4と、の間に、θ3<θ4の関係が成立する。
【0040】
このように、前輪側軸受装置の玉22,23の中心間距離L3を、後輪側軸受装置の玉22,23の中心間距離L4より小さくしたこと、および前輪側軸受装置の玉22,23の接触角θ3を、後輪側軸受装置の玉22,23の接触角θ4より小さくしたことにより、前輪側軸受装置の軸受負荷中心間距離Eが、後輪側軸受装置の軸受負荷中心間距離Fより小さくなる。
【0041】
このように構成された車両用軸受システムにおいても、前輪側軸受装置の剛性が、後輪側軸受装置の剛性より低くなり、操舵時に車両の姿勢が確保し易くなる。
【0042】
なお、前輪側軸受装置の玉22,23の中心間距離L3を、後輪側軸受装置の玉22,23の中心間距離L4より小さくする点と、前輪側軸受装置の玉22,23の接触角θ3を、後輪側軸受装置の玉22,23の接触角θ4より小さくする点の2点のうち、いずれか一方を実施することで、前輪側軸受装置の軸受負荷中心間距離Eを、後輪側軸受装置の軸受負荷中心間距離Fより小さくする構成としたものであってもよい。
【0043】
また、前輪側軸受装置の剛性を、後輪側軸受装置の剛性より低くする構成は、前輪駆動や後輪駆動等の2輪駆動、あるいは4輪駆動のいずれの自動車にも適用できる。
【0044】
さらに、複列外向きアンギュラ玉軸受以外に、複列円すいころ等の各種複列斜接軸受を用いてもよい。例えば、複列円すいころ軸受を用いる場合においても、前輪側軸受装置の各列の円すいころの中心間距離を、後輪側軸受装置の各列の円すいころの中心間距離より小さくしたり、前輪側軸受装置の円すいころの接触角を、後輪側軸受装置の円すいころの接触角より小さくすることで、前輪側軸受装置の剛性を、後輪側軸受装置の剛性より低くしてもよい。
【0045】
(3) 前輪側軸受装置の剛性が、後輪側軸受装置の剛性より低くなるように、前後輪の軸受装置に種類の異なる複列斜接軸受を用いてもよい。
【0046】
例えば、図7の例は、前輪側軸受装置に比較的剛性の低い複列アンギュラ玉軸受(図7(a))を用い、後輪側軸受装置に比較的剛性の高い複列円すいころ軸受(図7(b))を用い、前輪駆動の自動車に適用したものである。
【0047】
図7(a)に示す前輪側軸受装置は、ハブホイール4の軸部42の外周に圧入した一対の内輪25,26と、外輪21と、保持器35,36にて保持された2列の玉22,23とから構成されている。
【0048】
また、図7(b)に示す後輪側軸受装置は、ハブホイール4の軸部42の外周に圧入した一対の内輪25,26と、外輪21と、保持器35,36にて保持された2列の円すいころ22,23とから構成されている。
【0049】
このように構成された車両用軸受システムにおいても、前輪側軸受装置の剛性が、後輪側軸受装置の剛性より低くなり、操舵時に車両の姿勢が確保し易くなる。
【0050】
【発明の効果】
本発明の車両用軸受システムによると、前輪側軸受装置の各列の転動体の中心間距離を、後輪側軸受装置の各列の転動体の中心間距離より小さくしたり、前輪側軸受装置の転動体の接触角を、後輪側軸受装置の転動体の接触角より小さくすることで、前輪側軸受装置の剛性が、後輪側軸受装置の剛性より低くなり、車両をよりアンダーステア方向にして操舵時における安定性を高めることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る車両用軸受装置の断面図である。
【図2】 (a)は本発明の実施の形態に係る前輪側軸受装置の断面図、(b)は後輪側軸受装置の断面図である。
【図3】本発明の他の実施の形態に係る前輪側軸受装置の断面図である。
【図4】本発明のさらに他の実施の形態に係る前輪側軸受装置の断面図である。
【図5】本発明のさらに他の実施の形態に係る前輪側軸受装置の断面図である。
【図6】本発明のさらに他の実施の形態に係る後輪側軸受装置の断面図である。
【図7】 (a)は本発明のさらに他の実施の形態に係る前輪側軸受装置の断面図、(b)は後輪側軸受装置の断面図である。
【図8】従来例の説明に供する図である。
【符号の説明】
1 等速ジョイント
2 複列アンギュラ玉軸受(転がり軸受)
4 ハブホイール
22,23 玉(転動体)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bearing system for a vehicle such as an automobile comprising a front wheel side bearing device and a rear wheel side bearing device.
[0002]
[Prior art]
Conventionally, double-row angular contact ball bearings are often used in automobile bearing devices.
[0003]
In this type of bearing, generally, a so-called creep phenomenon occurs in which a slip acting in the rotational direction occurs between the axle and the inner ring due to a load acting during steering.
[0004]
In order to cope with this creep problem, the rigidity of the bearing device for the front and rear wheels has been increased.
[0005]
[Problems to be solved by the invention]
However, conventionally, since the rigidity of the bearing devices for the front and rear wheels is increased to be equal, there has been a problem that it is difficult to ensure the posture of the automobile during steering.
[0006]
That is, in FIG. 8, reference numeral 100 denotes an automobile, 101 is a front wheel, and 102 is a rear wheel. When the vehicle 100 is steered as indicated by an arrow, if the rigidity of the front wheel side bearing device and the rigidity of the rear wheel side bearing device are equal, as shown by the imaginary line, the vehicle tends to oversteer and it is difficult to secure the posture of the vehicle 100. There was a fear.
[0007]
An object of this invention is to provide the vehicle bearing system which is easy to ensure the attitude | position of a vehicle at the time of steering.
[0008]
[Means for Solving the Problems]
A vehicle bearing system of the present invention includes a front wheel side bearing device including a double row oblique contact bearing that supports a front wheel side axle, and a rear wheel side bearing device including a double row oblique contact bearing that supports a rear wheel side axle. The rigidity of the front wheel side bearing device is set to be smaller than the rigidity of the rear wheel side bearing device so as to enhance the stability during steering in the understeer direction.
[0010]
Specifically, the distance between the centers of the rolling elements in each row of the front wheel side bearing device is made smaller than the distance between the centers of the rolling elements in each row of the rear wheel side bearing device. Alternatively, the contact angle of the rolling element of the front wheel side bearing device is made smaller than the contact angle of the rolling element of the rear wheel side bearing device. Alternatively, the distance between the centers of the rolling elements of each row of the front wheel side bearing device is made smaller than the distance between the centers of the rolling elements of each row of the rear wheel side bearing device, and the contact angle of the rolling elements of the front wheel side bearing device is The contact angle of the rolling element of the rear wheel side bearing device is made smaller.
[0011]
For example, a double row angular contact ball bearing is used as the double row oblique contact bearing constituting the front wheel side bearing device and the rear wheel side bearing device.
[0012]
More specifically, it includes a front wheel side bearing device that supports the front wheel side axle and a rear wheel side bearing device that supports the rear wheel side axle, and the both bearing devices are mounted on the outer periphery of the hub wheel and are attached to the vehicle body. It consists of a double row angular contact ball bearing having a fixed outer ring and balls arranged in two rows, and the distance between the centers of the balls in each row of the front wheel side bearing device is the ball of each row of the rear wheel side bearing device. And / or the contact angle of the ball of the front wheel side bearing device is smaller than the contact angle of the ball of the rear wheel side bearing device, and the rigidity of the front wheel side bearing device is Set smaller than the rigidity of the rear wheel side bearing device.
[0015]
According to the vehicle bearing system of the present invention, since the rigidity of the front wheel side bearing device is set to be smaller than the rigidity of the rear wheel side bearing device, the posture of the vehicle can be easily secured during steering.
[0016]
Further, by making the distance between the centers of the rolling elements in each row of the front wheel side bearing device smaller than the distance between the centers of the rolling elements in each row of the rear wheel side bearing device, the moment rigidity of the front wheel side bearing device is reduced. As a result, the rigidity of the front wheel side bearing device is lower than the rigidity of the rear wheel side bearing device, and the posture of the vehicle is easily secured during steering.
[0017]
Further, the moment rigidity of the front wheel side bearing device is reduced by making the contact angle of the rolling element of the front wheel side bearing device smaller than the contact angle of the rolling element of the rear wheel side bearing device. As a result, the rigidity of the front wheel side bearing device is lower than the rigidity of the rear wheel side bearing device, and the posture of the vehicle is easily secured during steering.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below with reference to embodiments shown in the drawings. FIG. 1 is a sectional view of a bearing device for an automobile, FIG. 2A is a sectional view of a front wheel side bearing device, and FIG. 2B is a sectional view of a rear wheel side bearing device.
[0019]
With reference to FIG. 1, a common configuration in each of the bearing devices on the front wheel side and the rear wheel side will be described. The front wheel side bearing device supports the front wheel side axle of the vehicle. The rear wheel side bearing device supports the rear wheel side axle of the vehicle. Both of these bearing devices include a constant velocity joint 1, a hub wheel 4, and a double row angular ball bearing 2. The constant velocity joint 1 includes a bowl-shaped outer ring 11 and a shaft portion 12 extending from the bowl-shaped outer ring 11. The hub wheel 4 is mounted on the outer periphery of the shaft portion 12 of the constant velocity joint 1 and has a hub flange 41. The double-row angular ball bearing 2 is mounted across the outer periphery of the shaft portion 12 of the constant velocity joint 1 and the outer periphery of the hub wheel 4 as an example of a rolling bearing. Inner ring raceways 31 and 32 of the double-row angular ball bearing 2 are formed on the outer periphery of the hub wheel 4 and the outer periphery of the shaft portion 12 of the constant velocity joint 1.
[0020]
The double-row angular contact ball bearing 2 has no inner ring because the inner ring raceways 31 and 32 are formed as described above. The double row angular ball bearing 2 has an outer ring 21. The outer ring 21 is fixed to the vehicle body via a knuckle, and has two rows of outer ring raceways 33 and 34 in the axial direction on the inner peripheral surface thereof. The double-row angular ball bearing 2 includes two rows of balls 22 and 23 in the axial direction, and two cages 35 and 36 in the axial direction that hold the balls 22 and 23 in each row. The balls 22 and 23 in the two rows in the axial direction can roll between the inner ring raceways 31 and 32 and the outer ring raceways 33 and 34 in the two rows in the axial direction while being held by the cages 35 and 36, respectively. Is arranged.
[0021]
The vehicle bearing system of the present embodiment includes a front wheel side bearing device and a rear wheel side bearing device, and is characterized in that the rigidity of the front wheel side bearing device is set smaller than the rigidity of the rear wheel side bearing device. This rigidity relationship will be described with reference to FIGS. 2 (a) and 2 (b). 2A shows a front wheel side bearing device, and FIG. 2B shows a rear wheel side bearing device. In the present embodiment, the distance between the centers of the balls 22 and 23 in each row is made different from that of the both bearing devices. That is, if the distance between the centers of the two balls 22 and 23 in the axial direction of the front wheel side bearing device is L 1 , and the distance between the centers of the balls 22 and 23 in the two rows in the axial direction of the rear wheel side bearing device is L 2 , The distance between the centers is set so that the relationship of the following equation (1) is established.
[0022]
L 1 <L 2 (1)
That is, the distance between the centers of the balls 22 and 23 is shorter in the front wheel side bearing device than in the rear wheel side bearing device. As a result, the intersection points where the action lines F 1 and F 2 indicating the action direction of the force applied to the inner ring races 31 and 32 from the balls 22 and 23 in each row intersect with the central axis O of the bearing device are O 1 and O 2 . Then, there is a difference between the distance A between the two intersections O 1 and O 2 in the front wheel side bearing device and the distance B (> A) between the two intersections O 1 and O 2 in the rear wheel side bearing device. Here, these distances A and B are distances between the bearing load centers. The greater the distance between the bearing load centers, the greater the moment rigidity of the bearing device. Therefore, in the present embodiment, the center distance L 1 of the ball 22, 23 of the front wheel side bearing device is made smaller than the center distance L 2 of the ball 22, 23 of the rear wheel bearing arrangement, the front-wheel-side bearing device The bearing load center distance A is smaller than the bearing load center distance B of the rear wheel side bearing device. As a result, the moment stiffness of the front wheel side bearing device can be made lower than the moment stiffness of the rear wheel side bearing device. Therefore, the rigidity of the front wheel side bearing device is smaller than that of the rear wheel side bearing device. The contact angles θ 1 of the balls 22 and 23 with respect to the inner ring raceways 31 and 32 in the bearing devices on the front wheel side and the rear wheel side are the same.
[0023]
As described above, in this embodiment, the rigidity of the front wheel side bearing device can be suppressed by setting the rigidity of the front wheel side bearing device to such a degree that the creep phenomenon does not occur, while the rigidity of the front wheel side bearing device is reduced to the rear wheel side. By setting it smaller than the rigidity of the bearing device, it is possible to easily ensure the posture of the moving vehicle during steering.
[0024]
Moreover, by reducing the center distance L 1 of the ball 22, 23 of the front wheel side bearing apparatus, it is possible to shorten the axial length of the bearing, correspondingly, the degree of freedom in design and layout such as a steering component and suspension parts Will improve.
[0025]
In addition, this invention is not limited to the above-mentioned embodiment, It can apply also to embodiment described below.
[0026]
(1) In the above-described embodiment, in order to make the distance A between the bearing load centers of the front wheel side bearing device smaller than the distance B between the bearing load centers of the rear wheel side bearing device, the balls in each row of the front and rear wheel bearing devices. Whereas the center distances L 1 and L 2 of 22 and 23 are different, the contact angles of the balls 22 and 23 with respect to the inner ring raceways 31 and 32 in the bearing devices on the front wheel side and the rear wheel side may be changed. . This will be described with reference to FIG. 3 and FIG. 3 and 4 both show cross-sectional views of the front wheel side bearing device. The rear wheel side bearing device is configured similarly to the example shown in FIG.
[0027]
The difference between the front wheel side bearing device shown in FIG. 3 and the rear wheel side bearing device shown in FIG. 2B is that the contact angles of the balls 22 and 23 are different.
[0028]
That is, a relationship of θ 1 > θ 2 is established between the contact angle θ 2 of the balls 22 and 23 of the front wheel side bearing device and the contact angle θ 1 of the balls 22 and 23 of the rear wheel side bearing device. For example, if θ 1 = 40 °, θ 2 is set to be less than 40 °.
[0029]
As described above, the contact angle θ 2 of the balls 22 and 23 of the front wheel side bearing device is made smaller than the contact angle θ 1 of the balls 22 and 23 of the rear wheel side bearing device, so that the bearing load center between the front wheel side bearing devices is reduced. The distance C is smaller than the bearing load center distance B of the rear wheel side bearing device. As a result, the rigidity of the front wheel side bearing device is smaller than that of the rear wheel side bearing device.
[0030]
Further, the difference between the front wheel side bearing device shown in FIG. 4 and the rear wheel side bearing device shown in FIG. 2B is that the distance between the centers of the balls 22 and 23 in each row is different from that of the balls 22 and 23. The contact angle is different.
[0031]
That is, a relationship of L 1 <L 2 is established between the center distance L 1 of the balls 22 and 23 of the front wheel side bearing device and the center distance L 2 of the balls 22 and 23 of the rear wheel side bearing device. . Further, a relationship of θ 1 > θ 2 is established between the contact angle θ 2 of the balls 22 and 23 of the front wheel side bearing device and the contact angle θ 1 of the balls 22 and 23 of the rear wheel side bearing device.
[0032]
As a result, the bearing load center distance D of the front wheel side bearing device is further smaller than the bearing load center distance B of the rear wheel side bearing device. As a result, the rigidity of the front wheel side bearing device is smaller than that of the rear wheel side bearing device.
[0033]
Also in the vehicular bearing system configured as described above, the rigidity of the front wheel side bearing device is lower than the rigidity of the rear wheel side bearing device, and the posture of the vehicle is easily secured during steering.
[0034]
(2) The present invention is not limited to the bearings configured as shown in the above-described embodiments, and can be applied to bearings having various configurations. For example, you may apply to the bearing of a structure as shown to FIG. 5 and FIG. FIG. 5 is a sectional view of the front wheel side bearing device, and FIG. 6 is a sectional view of the rear wheel side bearing device, which is an example applied to a rear wheel drive vehicle.
[0035]
In the bearing device of this embodiment, the double-row angular ball bearing 2 is mounted on the outer periphery of the shaft portion 42 of the hub wheel 4 in which the hub flange 41 is integrally formed.
[0036]
The double-row angular ball bearing 2 includes two rows of balls that are respectively held by cages along inner ring raceways 31 and 32 formed on the shaft portion 42 and the inner ring 24 and outer ring raceways 33 and 34 formed on the outer ring 21. 22 and 23 are arranged.
[0037]
Next, the difference between the front and rear wheel bearing devices will be described.
[0038]
The difference between the front and rear wheel bearing devices is that the distance between the centers of the balls 22 and 23 in each row is different from the contact angle of the balls 22 and 23.
[0039]
That is, the relationship L 3 <L 4 is established between the center distance L 3 of the balls 22 and 23 of the front wheel side bearing device and the center distance L 4 of the balls 22 and 23 of the rear wheel side bearing device. . Furthermore, the relationship of θ 34 is established between the contact angle θ 3 of the balls 22 and 23 of the front wheel side bearing device and the contact angle θ 4 of the balls 22 and 23 of the rear wheel side bearing device.
[0040]
Thus, the center distance L 3 between the balls 22 and 23 of the front wheel side bearing device is made smaller than the center distance L 4 between the balls 22 and 23 of the rear wheel side bearing device, and the ball 22 of the front wheel side bearing device. the contact angle theta 3 of 23 is made smaller than the contact angle theta 4 balls 22 and 23 of the rear wheel bearing device, a bearing load center distance E of the front wheel bearing device, the bearing of the rear wheel side bearing device It becomes smaller than the distance F between load centers.
[0041]
Also in the vehicular bearing system configured as described above, the rigidity of the front wheel side bearing device is lower than the rigidity of the rear wheel side bearing device, and the posture of the vehicle is easily secured during steering.
[0042]
The center-to-center distance L 3 of the balls 22 and 23 of the front wheel side bearing device is smaller than the center distance L 4 of the balls 22 and 23 of the rear wheel side bearing device and the balls 22 and 23 of the front wheel side bearing device. The contact angle θ 3 of the rear wheel side bearing device is made smaller than the contact angle θ 4 of the balls 22 and 23 of the rear wheel side bearing device. The distance E may be configured to be smaller than the distance F between the bearing load centers of the rear wheel side bearing device.
[0043]
Further, the configuration in which the rigidity of the front wheel side bearing device is lower than the rigidity of the rear wheel side bearing device can be applied to any two-wheel drive or four-wheel drive vehicle such as front wheel drive and rear wheel drive.
[0044]
Further, in addition to the double row outward angular ball bearing, various double row oblique contact bearings such as double row tapered rollers may be used. For example, even when a double row tapered roller bearing is used, the distance between the centers of the tapered rollers in each row of the front wheel side bearing device is made smaller than the distance between the centers of the tapered rollers in each row of the rear wheel side bearing device. The rigidity of the front wheel side bearing device may be made lower than the rigidity of the rear wheel side bearing device by making the contact angle of the tapered roller of the side bearing device smaller than the contact angle of the tapered roller of the rear wheel side bearing device.
[0045]
(3) Different types of double row oblique contact bearings may be used for the front and rear wheel bearing devices so that the rigidity of the front wheel side bearing device is lower than the rigidity of the rear wheel side bearing device.
[0046]
For example, the example of FIG. 7 uses a double row angular contact ball bearing (FIG. 7A) having a relatively low rigidity for the front wheel side bearing device, and a double row tapered roller bearing (with a relatively high rigidity for the rear wheel side bearing device). FIG. 7B is applied to a front-wheel drive vehicle.
[0047]
The front wheel side bearing device shown in FIG. 7A is a pair of inner rings 25 and 26 press-fitted into the outer periphery of the shaft portion 42 of the hub wheel 4, an outer ring 21, and two rows held by cages 35 and 36. It is composed of balls 22 and 23.
[0048]
Further, the rear wheel side bearing device shown in FIG. 7B is held by a pair of inner rings 25 and 26, an outer ring 21, and cages 35 and 36 that are press-fitted into the outer periphery of the shaft portion 42 of the hub wheel 4. It consists of two rows of tapered rollers 22 and 23.
[0049]
Also in the vehicular bearing system configured as described above, the rigidity of the front wheel side bearing device is lower than the rigidity of the rear wheel side bearing device, and the posture of the vehicle is easily secured during steering.
[0050]
【The invention's effect】
According to the vehicle bearing system of the present invention, the distance between the centers of the rolling elements in each row of the front wheel side bearing device is made smaller than the distance between the centers of the rolling elements in each row of the rear wheel side bearing device, or the front wheel side bearing device. By making the contact angle of the rolling element smaller than the contact angle of the rolling element of the rear wheel side bearing device, the rigidity of the front wheel side bearing device becomes lower than the rigidity of the rear wheel side bearing device, and the vehicle is placed in an understeer direction. Thus, it is possible to improve the stability during steering.
[Brief description of the drawings]
FIG. 1 is a sectional view of a vehicle bearing device according to an embodiment of the present invention.
2A is a sectional view of a front wheel side bearing device according to an embodiment of the present invention, and FIG. 2B is a sectional view of a rear wheel side bearing device.
FIG. 3 is a cross-sectional view of a front wheel side bearing device according to another embodiment of the present invention.
FIG. 4 is a cross-sectional view of a front wheel side bearing device according to still another embodiment of the present invention.
FIG. 5 is a cross-sectional view of a front wheel side bearing device according to still another embodiment of the present invention.
FIG. 6 is a cross-sectional view of a rear wheel side bearing device according to still another embodiment of the present invention.
7A is a cross-sectional view of a front wheel side bearing device according to still another embodiment of the present invention, and FIG. 7B is a cross sectional view of the rear wheel side bearing device.
FIG. 8 is a diagram for explaining a conventional example.
[Explanation of symbols]
1 Constant Velocity Joint 2 Double Row Angular Contact Ball Bearing (Rolling Bearing)
4 Hub wheels 22, 23 balls (rolling elements)

Claims (5)

前輪側車軸を支持する複列斜接軸受からなる前輪側軸受装置と、後輪側車軸を支持する複列斜接軸受からなる後輪側軸受装置とを備え、
車両をアンダーステア方向にして操舵時における安定性を高めるよう、前記前輪側軸受装置の剛性を、前記後輪側軸受装置の剛性より小さく設定した車両用軸受システムにおいて、
前輪側軸受装置の各列の転動体の中心間距離を、後輪側軸受装置の各列の転動体の中心間距離より小さくしたことを特徴とする車両用軸受システム。
A front wheel side bearing device composed of a double row oblique contact bearing supporting the front wheel side axle, and a rear wheel side bearing device composed of a double row oblique contact bearing supporting the rear wheel side axle,
In the vehicle bearing system in which the rigidity of the front wheel side bearing device is set to be smaller than the rigidity of the rear wheel side bearing device so as to increase the stability during steering in the understeer direction of the vehicle,
A vehicle bearing system, wherein a distance between centers of rolling elements in each row of the front wheel side bearing device is made smaller than a distance between centers of rolling elements in each row of the rear wheel side bearing device.
前輪側車軸を支持する複列斜接軸受からなる前輪側軸受装置と、後輪側車軸を支持する複列斜接軸受からなる後輪側軸受装置とを備え、
車両をアンダーステア方向にして操舵時における安定性を高めるよう、前記前輪側軸受装置の剛性を、前記後輪側軸受装置の剛性より小さく設定した車両用軸受システムにおいて、
前輪側軸受装置の転動体の接触角を、後輪側軸受装置の転動体の接触角より小さくしたことを特徴とする車両用軸受システム。
A front wheel side bearing device composed of a double row oblique contact bearing supporting the front wheel side axle, and a rear wheel side bearing device composed of a double row oblique contact bearing supporting the rear wheel side axle,
In the vehicle bearing system in which the rigidity of the front wheel side bearing device is set to be smaller than the rigidity of the rear wheel side bearing device so as to increase the stability during steering in the understeer direction of the vehicle,
A vehicle bearing system, wherein a contact angle of a rolling element of a front wheel side bearing device is made smaller than a contact angle of a rolling element of a rear wheel side bearing device.
前輪側車軸を支持する複列斜接軸受からなる前輪側軸受装置と、後輪側車軸を支持する複列斜接軸受からなる後輪側軸受装置とを備え、
車両をアンダーステア方向にして操舵時における安定性を高めるよう、前記前輪側軸受装置の剛性を、前記後輪側軸受装置の剛性より小さく設定した車両用軸受システムにおいて、
前輪側軸受装置の各列の転動体の中心間距離を、後輪側軸受装置の各列の転動体の中心間距離より小さくし、かつ、前輪側軸受装置の転動体の接触角を、後輪側軸受装置の転動体の接触角より小さくしたことを特徴とする車両用軸受システム。
A front wheel side bearing device composed of a double row oblique contact bearing supporting the front wheel side axle, and a rear wheel side bearing device composed of a double row oblique contact bearing supporting the rear wheel side axle,
In the vehicle bearing system in which the rigidity of the front wheel side bearing device is set to be smaller than the rigidity of the rear wheel side bearing device so as to increase the stability during steering in the understeer direction of the vehicle,
The distance between the centers of the rolling elements in each row of the front wheel side bearing device is made smaller than the distance between the centers of the rolling elements in each row of the rear wheel side bearing device, and the contact angle of the rolling elements in the front wheel side bearing device is A bearing system for a vehicle, characterized in that it is smaller than a contact angle of a rolling element of a wheel side bearing device.
前輪側軸受装置ならびに後輪側軸受装置を構成する複列斜接軸受が、複列アンギュラ玉軸受からなることを特徴とする請求項から請求項のいずれか1項に記載の車両用軸受システム。Front-wheel bearing device as well as double row angular contact bearing which constitutes a rear wheel bearing device, a vehicle bearing as claimed in any one of claims 3, characterized in that it consists of a double row angular contact ball bearing system. 前輪側車軸を支持する前輪側軸受装置と、後輪側車軸を支持する後輪側軸受装置とを備え、
前記両軸受装置は、ハブホイールの外周に装着され、車体に固定した外輪と、2列に配置した玉とを有した複列アンギュラ玉軸受からなり、
前記前輪側軸受装置の各列の玉の中心間距離を、前記後輪側軸受装置の各列の玉の中心間距離より小さくし、および/または、前記前輪側軸受装置の玉の接触角を、前記後輪側軸受装置の玉の接触角より小さくして、前記前輪側軸受装置の剛性を、前記後輪側軸受装置の剛性より小さく設定したことを特徴とする車両用軸受システム。
A front wheel side bearing device that supports the front wheel side axle, and a rear wheel side bearing device that supports the rear wheel side axle,
The double bearing device comprises a double row angular contact ball bearing having an outer ring mounted on the outer periphery of the hub wheel and fixed to the vehicle body, and balls arranged in two rows.
The distance between the centers of the balls of each row of the front wheel side bearing device is made smaller than the distance between the centers of the balls of each row of the rear wheel side bearing device, and / or the contact angle of the balls of the front wheel side bearing device is The vehicle bearing system is characterized in that the rigidity of the front wheel side bearing device is set smaller than the rigidity of the rear wheel side bearing device by making it smaller than the contact angle of the balls of the rear wheel side bearing device.
JP2002142338A 2002-05-17 2002-05-17 Vehicle bearing system Expired - Fee Related JP4070506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002142338A JP4070506B2 (en) 2002-05-17 2002-05-17 Vehicle bearing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142338A JP4070506B2 (en) 2002-05-17 2002-05-17 Vehicle bearing system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007273541A Division JP4753923B2 (en) 2007-10-22 2007-10-22 Vehicle bearing system and front wheel side bearing device in this system

Publications (2)

Publication Number Publication Date
JP2003335107A JP2003335107A (en) 2003-11-25
JP4070506B2 true JP4070506B2 (en) 2008-04-02

Family

ID=29702647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142338A Expired - Fee Related JP4070506B2 (en) 2002-05-17 2002-05-17 Vehicle bearing system

Country Status (1)

Country Link
JP (1) JP4070506B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298358A (en) * 2008-06-17 2009-12-24 Jtekt Corp Vehicular hub unit and its storage method
KR20130062139A (en) * 2011-12-02 2013-06-12 주식회사 일진글로벌 Wheel bearing for vehicle

Also Published As

Publication number Publication date
JP2003335107A (en) 2003-11-25

Similar Documents

Publication Publication Date Title
US7413349B2 (en) Wheel bearing unit
JP3887350B2 (en) Wheel support hub unit
JP2004108449A (en) Rolling bearing device
JPH01190586A (en) Bearing device for vehicle
US20150191044A1 (en) Bearing module
US6616340B2 (en) Hub assembly with driven hub
JP4070506B2 (en) Vehicle bearing system
US7896555B2 (en) Wheel bearing unit
JP3887349B2 (en) Wheel support hub unit
US20080226213A1 (en) Wheel Bearing Unit
JP4753923B2 (en) Vehicle bearing system and front wheel side bearing device in this system
US20210300112A1 (en) Upright
US6601994B2 (en) Compact hub assembly
JP5304113B2 (en) Axle bearing fastening structure
EP2889498B1 (en) Wheel Bearing Device
WO2008134415A1 (en) Wheel end with double row bearing having dissimilar contact angles
WO2012108507A1 (en) Bearing device for hub shaft for wheel
JP4595582B2 (en) Hub unit
JP2002160503A (en) Double row tapered roller bearing unit for supporting wheel
JP4821062B2 (en) Hub unit bearing for drive axle
JPH0632401Y2 (en) Car wheel support equipment
JP2807930B2 (en) Hubble reduction axle constant velocity joint
JPH0628344U (en) Automotive axle bearing
JP3699576B2 (en) Wheel bearing device
JP2539563Y2 (en) Automotive wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Ref document number: 4070506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees