JP3887350B2 - Wheel support hub unit - Google Patents

Wheel support hub unit Download PDF

Info

Publication number
JP3887350B2
JP3887350B2 JP2003143124A JP2003143124A JP3887350B2 JP 3887350 B2 JP3887350 B2 JP 3887350B2 JP 2003143124 A JP2003143124 A JP 2003143124A JP 2003143124 A JP2003143124 A JP 2003143124A JP 3887350 B2 JP3887350 B2 JP 3887350B2
Authority
JP
Japan
Prior art keywords
ring raceway
inner ring
outer ring
peripheral surface
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003143124A
Other languages
Japanese (ja)
Other versions
JP2004345439A (en
Inventor
之秀 本城
泰律 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003143124A priority Critical patent/JP3887350B2/en
Publication of JP2004345439A publication Critical patent/JP2004345439A/en
Application granted granted Critical
Publication of JP3887350B2 publication Critical patent/JP3887350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • F16C19/505Other types of ball or roller bearings with the diameter of the rolling elements of one row differing from the diameter of those of another row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/80Pitch circle diameters [PCD]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両の車輪を、その懸架装置に支持させるための車輪支持用ハブユニット、特に、車輪を支持すると共に車輪に作用するモーメント荷重に対抗する対モーメント剛性を高め、かつ耐久性を向上させた、車輪支持用ハブユニットに関するものである。
【0002】
【従来の技術】
車両の車輪は、車輪支持用ハブユニットを介して懸架装置に支持されるが、従来の車輪支持用ハブユニットは、車輪に固定されるハブと、懸架装置に支持される外輪と、前記ハブの外面と前記外輪の内面との間に、それらの軸方向に間隔をあけて転動自在に介在される、複数列の転動体とを備えており、車輪を保持して回転させる機能を有している(たとえば、特許文献1、2参照)。
【0003】
【特許文献1】
特開平10−205532号公報
【0004】
【特許文献2】
特開平9−164803号公報
【0005】
【発明が解決しようとする課題】
ところで、図7に示すように、車体に懸架される懸架装置のナックルにハブユニットを介して車輪(図7では、駆動輪用)が支持されている場合において、車両を旋回走行させたときに、タイヤにかかる横力によって発生するコーナングモーメントに起因するモーメント荷重に対抗するハブユニットの対モーメント剛性を高めること〔コーナリングモーメントに対するハブユニットの車輪取付部(フランジ部)の傾き度合を小さくすること〕が、車両の操縦安定性を向上させる上で有効な技術手段であることが知られている。
【0006】
そこで、ハブユニットの前記対モーメント剛性を高めるための技術的手段として、
1) 転動体の軌道直径〔P.C.D(pitchi・circle・diameter) =内輪軌道接触直径+外輪軌道接触直径/2〕を大きくすること、
2) 複数列の転動体の列間を広くとること、
3) ハブユニットのフランジ部の剛性を高めるべく、その付根部分の肉厚を大きくすること、
などが考えられるが、それらのいずれの場合も、ハブユニットのスペース増、重量増を招き、その取付スペースや重量の面で制約を受けて実用に供することができないとという問題があり、さらにハブユニット自体のコスト増を招くという問題もある。
【0007】
本発明はかかる実情に鑑みてなされたものであり、ハブユニットのスペース増、重量増を最小限にとどめながら大幅な対モーメント剛性を向上させ、その上ハブユニットの耐久性をも向上させることができるようにした、新規な車輪支持用ハブユニットを提供することを目的とするものである。
【0008】
【課題を解決するための手段】
前記目的を達成するため、本発明は、外周面の軸方向外方に車輪を支持するためのフランジ部を形成した内輪軸部を有していて、前記フランジ部より軸方向内方の内輪軸部外周面に軸方向内方側から軸方向外方側へ向けて順に形成した複数列の内輪軌道を備えたハブと、架装置のナックルに対する取付フランジが外周面に一体に突設され、内周面に前記複数列の内輪軌道に各対向する複数列の外輪軌道を形成した外輪と、各対向する内輪軌道と外輪軌道との間に各複数個ずつ設けた転動体とを備えた車輪支持用ハブユニットであって、軸方向最外方側の内輪軌道の軌道接触直径を、その最外方側の内輪軌道と隣接する他の内輪軌道の軌道接触直径よりも大きくしたものにおいて、軸方向最外方側の外輪軌道とこれに隣接する軸方向内方側の外輪軌道との間で前記外輪にはアンチロックブーキ用回転速度検出センサ設けられ、前記取付フランジは、前記軸方向最外方側の外輪軌道の径方向外側に配置され、前記外輪の外周面には、前記取付フランジの軸方向内方側の側面に連なり前記ナックルの内周面に係合するナックル係合面と、そのナックル係合面から前記軸方向内方側の外輪軌道に向かって下る傾斜面とが形成されていて、その傾斜面と前記ナックルの内周面との間には、該傾斜面より張り出す前記アンチロックブーキ用回転速度検出センサの基端部を臨ませる空間が形成され、前記アンチロックブーキ用回転速度検出センサの基端部に接続した配線が前記空間を通して外部に引き出されることを特徴としている。
【0009】
かかる特徴によれば、車輪にかかるモーメント荷重に対抗するハブユニットの対モーメント剛性および耐久性の向上を図ることができる。その上、軸方向最外方側の内輪軌道と、これに隣接する前記他の内輪軌道の軌道接触直径差によって得られるスペースを利用して回転速度検出センサをナックルの径方向内側に配置することが可能となり、該センサの取付およびそれに接続される配線の車体側への取り回しが極めて容易になる
【0010】
【発明の実施の形態】
以下、本発明の実施形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0011】
まず、図1,2を参照して本発明の第1実施例について説明する。
【0012】
図は、本発明にかかるハブユニットにより駆動車輪を支持した状態を示す断面図、図2は、図1の2線矢視仮想線囲い部分のハブユニットの拡大図である。
【0013】
この第1実施例における、車輪支持用ハブユニットHUは、自動車の駆動車輪(FF車の前車輪、FR車の後車輪、4WD車の全輪)に適用され、車体に支持される懸架装置SUのナックルNに取付ボルト24により締結して使用される場合である。
【0014】
本発明にかかる駆動車輪用のハブユニットHUは、ハブ1と、内輪10と、外輪20と、2列の転動体、すなわち、内方側および外方側の転動体27,28とを備えている。
【0015】
ハブ1は、略円筒状に形成される内輪軸部2と、この内輪軸部2の外側端部から径方向外方に一体に延長されるフランジ部3とより構成されており、フランジ部3の付根部分と内輪軸部3の外側の外周面とは、円弧面により滑らかに接続されている。ハブ1の内輪軸部2の軸孔4の内周面には、その全長にわたり雌スプラインが形成されており、自動車への組み付け状態では、この雌スプラインには、ドライブシャフトDSに連なる等速ジョイントCJの軸部35の雄スプラインが挿通係合される。
【0016】
ハブ1の内輪軸部2の軸方向内方側の端部の外周面には、小径の段部2aが形成され、この小径の段部2aには、内輪10が一体に外嵌されている。内輪10の外周面には、内方側の内輪軌道7が形成されている。内輪10の内端部は径方向外側に湾曲されて、その内端面はハブ1の内輪軸部2の内端面よりも軸方向の内方に若干突出している。
【0017】
ハブ1の内輪軸部2の軸方向外方の外周面は、前記フランジ部3の付根部分に連なるべく傾斜されていて、その軸方向内方の外周面の直径より大きくなっており、その軸方向外方の外周面には、外方側の内輪軌道8が形成されている。そして、この外方側の内輪軌道8の軌道接触直径D8は、内方側の内輪軌道7の軌道接触直径D7よりも大きい。
【0018】
フランジ部3の外周部には、周方向に間隔をあけて複数の連結ボルト12が固定されており、これらの連結ボルト12により駆動車輪W1が固定される。
【0019】
一方、前記外輪20は、前記内輪軸部2の外周面を覆うように筒状に形成されており、その内周面は、その軸方向の、外方側の直径が内方側の直径よりも大きく形成されている。外輪20の内周面の内方側には、前記内方側の内輪軌道7と対向する、内方側の外輪軌道17が形成され、また、外輪20の内周面の外方(最外方)側には、前記外方側の内輪軌道8と対向する、内方側の外輪軌道18が形成されている。
【0020】
そして、内方側の内輪軌道7と外輪軌道17との間には、ボールよりなる内方側の複数個の転動体27が、また、外方側の内輪軌道8と外輪軌道18との間には、ボールよりなる外方(最外方)側の複数個の転動体28がそれぞれ転動自在に設けられている。各複数個の、内方および外方側の転動体27,28は、通常のように、リテーナにより周方向に間隔をあけて保持される。
【0021】
そして、内方側の、内、外輪軌道7,17および転動体27により、内方側の軸受部BIが、また、外方側の内、外輪軌道8,18および転動体28により、外方側(最外方)の軸受部BOがそれぞれ形成される。
【0022】
しかして、内方側および外方側の転動体27,28の接触角(転動体と外輪との接触点における法線が、ハブユニットの軸線に直角な平面となす角)αI,αOは、略同じ角度20°〜40°であり、また、外方側の転動体28の軌道直径は、内方側の転動体27の軌道直径よりも大きく、さらに、外方側の転動体28自体の直径は、内方側の転動体27の直径と略同じである。
【0023】
外輪20の軸方向の中間部には、軸方向最外方側の外輪軌道18の径方向外側において、ラジアル方向に延長される取付フラン21が一体に形成され、この取付フランジ21には、車体に支持される懸架装置SUのナックルNが複数の取付ボルト24を以て固定される。
【0024】
ハブ1のフランジ部3の内方の面と、外輪20の外端面との間には、外側シールリング30が介在され、また、ハブ1と一体の内輪10の端部外周面と、外輪20の内端部内周面との間には、内側シールリング31が介在され、前記転動体27,28の配置部分に異物が侵入したり、該配置部分に充填されたグリースが漏洩するのを防止している。
【0025】
前記ナックルNの径方向内側において、内方側の軸受部BIと、外方側の軸受部BOとの間の外輪20には、アンチロックブレーキ装置(ABS)の回転速度検出センサ(半導体磁気センサ)40が固定され、このセンサ40の感知部40aは、ハブ1と外輪20間の空隙部に臨んでいる。一方、ハブ1の内輪軸部2の外周面には、環状のスチールリング41が固定され、このスチールリング41の、前記感知部41aに対向する自由端には、多極磁石エンコーダ(円環状の磁石を多極に着磁したもの)42が接着により固定されている。そして、車輪W1の回転速度は、前記エンコーダ42とセンサ40との協働により検出される。なお、回転速度検出センサ40および多極磁石エンコーダ42は従来公知のものであるので、その詳細な説明を省略する。
【0026】
外輪20の外周面には、取付フランジ21の軸方向内方側の側面に連なり前記ナックルNの内周面に係合するナックル係合面と、そのナックル係合面から軸方向内方側の外輪軌道17に向かって下る傾斜面とが形成される。その傾斜面とナックルNの内周面との間には、該傾斜面より張り出す前記回転速度検出センサ40の基端部を臨ませる空間が形成され、前記回転速度検出センサ40の基端部に接続した配線43が前記空間を通して外部に引き出される。
【0027】
前記回転速度検出センサ40は、前述のように、ナックルNの径方向内側にあり、該センサ40に連なる配線43は、ナックルNの径方向内側の前記空間を通って図示しない制御部に接続される。
【0028】
しかして、ハブユニットHUの内方側及び外方側の軸受部BI,BO間に、回転速度検出センサ40を内蔵する場合において、内方側の内輪軌道7の軌道接触直径D7と、外方側の内輪軌道8の軌道接触直径D8との直径差によって得られるスペースを利用して回転速度検出センサ40をナックルNの径方向内側に配置することが可能となり、該センサ40の取付およびそれに接続される配線43の車体側への取り回しが極めて容易になる。
【0029】
なお、この第1実施例では、転動体としてボールを使用しているが、そのボールに代えてコロなどの同効物を使用してもよい。
【0030】
前述したように構成される駆動車輪支持用ハブユニットHUは、その外輪20の取付フランジ21に、複数の取付ボルト24を以て懸架装置SUのナックルNを固定し、また、ハブ1のフランジ部3に複数の連結ボルト12を以て駆動車輪W1を固定し、さらに、ハブ1の軸孔4の雌スプラインに、ドライブシャフトDSに連なる等速ジョイントCJの軸部35の雄スプラインを挿通係合し、該等速ジョイントCJの段部36を、前記内輪10の端面に衝き当てると共に等速ジョイントCJの軸部35の軸端に螺締したナット37をハブ1の外端面に衝き当てることにより、内輪10に予圧をかけて等速ジョイントCJをハブ1に固定することができる。
【0031】
ところで、この第1実施例のハブユニットHUは、軸方向外方(最外方)側の内輪軌道8の軌道接触直径D8を、軸方向内方側の内輪軌道7の軌道接触直径D7よりも大きくしたことにより、車輪にかかるモーメント荷重に対抗するハブユニットHUの対モーメント剛性を向上させることができる。
【0032】
また、内方側の転動体8と、外方側の転動体8の直径を等しくした場合に、軌道直径が大きい外方側の転動体28の個数を、内方側の転動体27の個数よりも多くすることができ、このようにすれば、外方側の転動体28一個あたりに作用する荷重を低減してその変形を抑制することができ、対モーメント剛性の更なる向上を図ることができる。
【0033】
また、外方側の転動体28と内方側の転動体27の個数を変えずに、外方側の転動体28の直径を内方側の転動体27の直径よりも大きくすれば、外方側の転動体28に作用する面圧を下げることができ、ハブユニットHUの耐久性の向上を図ることができる。
【0034】
つぎに、図3を参照して第1参考例について説明する。
【0035】
図3は、駆動車輪を支持したハブユニットの断面図であり、図中、前記第1実施例と同じ要素には同じ符号が付される。
【0036】
この参考例も駆動輪用のハブユニットであり、懸架装置へのナックルNへの固定手段が前記第1実施例と相違しているだけで、他の構成は第1実施例と同じである。
【0037】
図3において、外輪20の内輪軸部2の外周面は円筒面に形成され、この円筒部に、懸架装置のナックルN端部の軸孔Nhが圧入結合され、該ナックルNの内端縁と外輪20の外端縁間に、サークリップ50が係合される。これにより、ナックルNにハブユニットHUの外輪20が固定される
【0038】
つぎに、図4を参照して本発明の第実施例について説明する。
【0039】
図4は、従動車輪を支持したハブユニットの断面図であり、図中、前記第1実施例と同じ要素には同じ符号が付される。
【0040】
この第実施例は、本発明にかかる車輪支持用ハブユニットHUを、自動車の従動車輪W2(FF車の後輪、FR車の前輪)に適用した場合である。
【0041】
ハブ101が従動車輪W2用であるが、該ハブ101と、外輪20と、それら間に介在される、内方側および外方側の転動体27,28よりなる。内方側および外方側の軸受部BI,BOの構造は前記第1実施例と同じである。
【0042】
従動輪W2を固定するハブ101の内端部を直径方向外方にかしめCa広げ、これにより、このハブ101の内輪軸部102の段部102aに外嵌した内輪10を固定する。
【0043】
しかして、この第実施例も前記第1実施例と同じ作用効果を奏する。
【0044】
つぎに、図5を参照して、第2参考例について説明する。
【0045】
図5は、輪支持用ハブユニットの断面図であり、図中、前記第1実施例と同じ要素には同じ符号が付される。
【0046】
この第2参考例における、車輪支持用ハブユニットHUは、自動車の駆動車輪に適用される。
【0047】
駆動車輪用のハブユニットHUは、ハブ1と、内輪10と、外輪20と、3列の転動体、すなわち、第1(中間部)、第2(内方側)および第3(外方側)の転動体26,27,28とを備えている。
【0048】
ハブ1は、略円筒状に形成される内輪軸部2と、この内輪軸部2の外側端部から径方向外方に一体に延長されるフランジ部3とを備える。
【0049】
ハブ1の内輪軸部2の軸方向中間部の外周面には、第1、すなわち中間部の内輪軌道6が形成され、また、その内輪軸部2の内端部に形成した小径の段部2aに一体に外嵌した内輪10の外周面には、第2、すなわち内方側の内輪軌道7が形成されている。また、ハブ1のフランジ部3の内方側の面には、第3、すなわち外方(最外方)側の内輪軌道8が形成されている。
【0050】
一方、前記外輪20は、円筒状に形成されており、その内周面の軸方向中間部には、前記第1(中間部)の内輪軌道6と対向する第1(中間部)の外輪軌道16が形成され、また、その軸方向内端部には、前記第2(内方側)の内輪軌道7と対向する第2(内方側)の外輪軌道17が形成され、さらに、外輪20の、第1および第2の外輪接触軌道の直径よりも径大な外端面には、前記第3(外方側)の内輪軌道8と対向する第3(内方側)の外輪軌道18が形成されている。そして、第1、第2および第3の内輪軌道6,7,8と、第1、第2および第3の外輪軌道16,17,18間に、ボールよりなる複数列の転動体、すなわち第1(中間部)、第2(内方側)および第3(外方側)の転動体26,27,28がそれぞれ複数個ずつ転動自在に介在されている。各複数個の、第1、第2および第3の転動体26,27,28は、通常のように、リテーナにより周方向の間隔をあけて保持される。
【0051】
そして、第1の内、外輪軌道6、16および第1の転動体26により第1( 中間部)の軸受部BNが、また、第2の内、外輪軌道7,17および第2の転動体27により第2(内方側)の軸受部BIが、さらに第3の内、外輪軌道8,18および第3の転動体28により第3(外方側)の軸受部BOがそれぞれ形成される。
【0052】
しかして、第1(中間部)および第2(内方側)の転動体26,27の接触角αN、αIは、20°〜40°であるのに対し、第3(外方側)の転動体28の同接触角αOは、前記接触角αN、αIより大きく(〜90°)してあり、これにより、第3の転動体28のアキシアル荷重負荷能力を、第1、第2の転動体26,27のそれよりも高くしてある。また、前記第1、第2の転動体26,27の軌道直径は略同じであるのに対し第3の転動体28の軌道直径はそれらよりも大きく、さらに、第3の転動体28自体の直径は、第1、第2の転動体26,27の直径よりも小さくしてある。
【0053】
ところで、この第2参考例のハブユニットHUは、第3(最外方側)の軸受部BOが、第1、第2の軸受部BN,BIに加えて駆動車輪W1にかかるモーメント荷重を分担することができ、転動体1個当りにかかるモーメント荷重を低減することができて、各転動体の変形を抑制することができ、特に、軸方向外方側の内輪軌道8の軌道接触直径D8を、軸方向中間部の内輪軌道6および内方側の内輪軌道7の軌道接触直径D6,D7よりも大きくしたことにより、駆動車輪W1にかかるモーメント荷重に対抗するハブユニットHUの対モーメント剛性を向上させることができる。
【0054】
また、軌道直径が大きく、かつ直径の小さい、外方側の転動体28の個数を、中間部および内方側の転動体26,27の個数よりもを多くすることができ、このようにすれば、外方側の転動体28一個あたりに作用する荷重を低減してその変形を抑制することができ、対モーメント剛性の更なる向上を図ることができる。
【0055】
さらに、第3(最外方側)の軸受部BOを設けたことによるハブユニットHUの軸方向および径方向のスペース増およびその重量増を最小限にとどめることができる。
【0056】
つぎに、図6を参照して第3参考例について説明する。
【0057】
図6は、駆動車輪を支持したハブユニットの断面図であり、図中、前記第2参考例と同じ要素には同じ符号が付される。
【0058】
この第3参考例も前記第2参考例と同じく、輪支持用ハブユニットHUを、自動車の駆動車輪に適用した場合である。
【0059】
ハブユニットHUの内方側の軸受部BIの複数の転動体27の直径は、ハブユニットHUの中間部および外方側の軸受部BN,BOの転動体26,28の直径よりも大きく形成され、また、転動体26,28は略同径に形成され、それらの転動体26,27を受けるハブ1の中間部および内方側の内輪軌道6,7の内輪軌道接触直径は、略同径であるのに対し、外輪20の内方側の外輪軌道17の軌道接触直径は、中間部の外輪軌道16のそれよりも大径に形成される。また、外方側の転動体28を受ける外方側の内輪軌道8は、外方に向かって上り勾配の傾斜面に形成され、また同転動体28を受ける外輪軌道18も外方に向かって上り勾配に傾斜面に形成されている。そして、この第3参考例では、中間部の軸受部BNの転動体26の軌道直径は、内方側の軸受部BIの転動体27の軌道直径よりも小径であり、また、外方側の軸受部BOの転動体28の軌道直径は、中間部および内方側の転動体26,27の軌道直径よりも大きい。
【0060】
しかして、この第3参考例のものも前記第2参考例のものと同じ作用効果を奏する。
【0061】
なお、前記施例及び参考例において、ハブ1;101の内輪軸部2の内端部の段部2aに、内輪10を外嵌して、該内輪10の外周面に内方側の外輪軌道17を形成しているが、その理由は内方側の転動体27の、内、外輪軌道7,17に対する接触角を大きく確保しつつ、該転動体27の組み付けを可能としたものであり、通常は、ハブ1;101に内輪10を設けて、その内輪10に内方側の内輪軌道7を形成することになるが、ハブ1;101の内輪軸部2に直接内方側の内輪軌道7を形成してもよい。
【0062】
以上、本発明の実施例について説明したが、本発明はその実施例に限定されることなく、本発明の範囲内で種々の実施例が可能である。
【0063】
たとえば、前記実施例では、本発明車輪支持用ハブユニットHUを自動車用に実施した場合を説明したが、これを他の車両用にも実施できることは勿論である。
【0064】
【発明の効果】
以上のように発明によれば、車輪支持用ハブユニットにおいて、軸方向最外方の内輪軌道の軌道接触直径を、他の内輪軌道の軌道接触直径よりも大きくしたので、車輪にかかるモーメント荷重に対抗するハブユニットの対モーメント剛性および耐久性の向上を図ることができる。その上、前記軸方向最外方側の内輪軌道と、これに隣接する軸方向内方側の内輪軌道の軌道接触直径差によって得られるスペースを利用して回転速度検出センサをナックルの径方向内側に配置することが可能となり、該センサの取付およびそれに接続される配線の車体側への取り回しが極めて容易になる
【図面の簡単な説明】
【図1】 ハブユニットにより駆動車輪を支持した状態を示す断面図(第1実施例)
【図2】 図1の2矢視仮想線囲い部分で示すハブユニットの拡大断面図(第1実施例)
【図3】 ハブユニットの断面図(第1参考例)
【図4】 ハブユニットの断面図(第実施例)
【図5】 ハブユニットの断面図(第2参考例)
【図6】 ハブユニットの断面図(第3参考例)
【図7】 自動車の旋回走行時に、駆動車輪に横力およびコーナリングモーメントの作用する状態を示す図
【符号の説明】
1;101・・・ハブ
2・・・・・・・内輪軸部
3・・・・・・・フランジ
7・・・・・・・内輪軌道(内方側)
8・・・・・・・内輪軌道(外方側
17・・・・・・外輪軌道(内方側)
18・・・・・・外輪軌道(外方側)
20・・・・・・外
27・・・・・・転動体(内方側)
28・・・・・・転動体(外方側
D7・・・・・・軌道接触直径(内方側内輪軌道)
D8・・・・・・軌道接触直径(外方側内輪軌道)
20・・・・・・外輪
40・・・・・・回転速度検出センサ(アンチロックブレーキ用)
43・・・・・・配線
SU・・・・・・懸架装置
W1・・・・・・車輪(駆動車輪)
W2・・・・・・車輪(従動車輪)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wheel support hub unit for supporting a vehicle wheel by its suspension device, and in particular, supports the wheel and increases the moment rigidity against the moment load acting on the wheel and improves the durability. The present invention relates to a wheel support hub unit.
[0002]
[Prior art]
A vehicle wheel is supported by a suspension device via a wheel support hub unit. However, a conventional wheel support hub unit includes a hub fixed to a wheel, an outer wheel supported by the suspension device, and the hub. It has a plurality of rolling elements interposed between the outer surface and the inner surface of the outer ring so as to be freely rotatable with an axial interval between them, and has a function of holding and rotating the wheel. (For example, see Patent Documents 1 and 2).
[0003]
[Patent Document 1]
JP-A-10-205532 [0004]
[Patent Document 2]
JP-A-9-164803 [0005]
[Problems to be solved by the invention]
By the way, as shown in FIG. 7, when the wheel (for driving wheels in FIG. 7) is supported via the hub unit on the knuckle of the suspension device suspended from the vehicle body, , Increase the rigidity of the hub unit against the moment load caused by the cornering moment generated by the lateral force applied to the tire. ] Is known to be an effective technical means for improving the steering stability of the vehicle.
[0006]
Therefore, as a technical means for increasing the anti-moment rigidity of the hub unit,
1) Orbital diameter of rolling elements [P. C. D (pitchi / circle / diameter) = inner ring raceway contact diameter + outer ring raceway contact diameter / 2],
2) Wide space between multiple rows of rolling elements,
3) To increase the rigidity of the flange of the hub unit, increase its wall thickness
However, in any of these cases, there is a problem that the space and weight of the hub unit are increased, and there is a problem that it cannot be put to practical use due to restrictions on the installation space and weight. There is also a problem that the cost of the unit itself increases.
[0007]
The present invention has been made in view of the above circumstances, and it is possible to improve the rigidity against moment while minimizing the increase in space and weight of the hub unit, and also improve the durability of the hub unit. An object of the present invention is to provide a novel wheel support hub unit that can be used.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention has an inner ring shaft part in which a flange part for supporting a wheel is formed axially outward of an outer peripheral surface, and an inner ring shaft axially inward from the flange part. a hub having an inner ring raceway of a plurality of rows which are formed in order on the part outer peripheral surface toward the axially inner side to the axially outward side, the mounting flange against the knuckle of the suspension rack device is integrally projected on an outer peripheral surface , on the inner peripheral surface and a rolling element which is provided by the plurality between an outer ring forming the outer ring raceway of the plurality of rows that each facing the inner ring raceway of said plurality of rows, with each opposing inner raceway and the outer ring raceway A hub unit for supporting a wheel , in which the track contact diameter of the inner ring raceway on the outermost side in the axial direction is larger than the track contact diameter of another inner ring raceway adjacent to the inner ring raceway on the outermost side . , Axially outermost outer ring raceway and adjacent axially inward Rotational speed detecting sensor antilock boot key in the outer ring between the outer ring raceway is provided, the mounting flange is located radially outwardly of the outer ring raceway of the axially outermost side, of the outer ring The outer peripheral surface includes a knuckle engaging surface that is continuous with the axially inner side surface of the mounting flange and engages the inner peripheral surface of the knuckle, and the outer ring raceway on the axially inner side from the knuckle engaging surface. And a base end portion of the rotational speed detection sensor for the anti-locking bokeh protruding from the inclined surface is provided between the inclined surface and the inner peripheral surface of the knuckle. A space is formed, and wiring connected to the base end portion of the rotation speed detection sensor for the anti-lock bouquet is drawn out to the outside through the space .
[0009]
According to this feature, it is possible to improve the rigidity and durability of the hub unit that resists the moment load applied to the wheel. In addition, the rotational speed detection sensor is disposed on the radially inner side of the knuckle by utilizing the space obtained by the difference in the track contact diameter between the inner ring raceway on the outermost side in the axial direction and the other inner ring raceway adjacent thereto. Therefore, it is very easy to mount the sensor and route the wiring connected to the vehicle body .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the embodiments of the present invention shown in the accompanying drawings.
[0011]
First, a first embodiment of the present invention will be described with reference to FIGS.
[0012]
FIG. 2 is a cross-sectional view showing a state in which the driving wheel is supported by the hub unit according to the present invention, and FIG. 2 is an enlarged view of the hub unit at the phantom line encircled portion in FIG.
[0013]
The wheel supporting hub unit HU in the first embodiment is applied to a driving wheel of an automobile (front wheel of an FF vehicle, rear wheel of an FR vehicle, all wheels of a 4WD vehicle), and is a suspension device SU supported by the vehicle body. This is a case where the knuckle N is used by being fastened by the mounting bolt 24.
[0014]
A hub unit HU for a drive wheel according to the present invention includes a hub 1, an inner ring 10, an outer ring 20, and two rows of rolling elements, that is, inner and outer rolling elements 27 and 28. Yes.
[0015]
The hub 1 includes an inner ring shaft portion 2 formed in a substantially cylindrical shape, and a flange portion 3 integrally extended radially outward from an outer end portion of the inner ring shaft portion 2. The base portion and the outer peripheral surface outside the inner ring shaft portion 3 are smoothly connected by a circular arc surface. A female spline is formed on the inner peripheral surface of the shaft hole 4 of the inner ring shaft portion 2 of the hub 1 over its entire length. When assembled to an automobile, the female spline has a constant velocity joint connected to the drive shaft DS. The male spline of the shaft portion 35 of the CJ is inserted and engaged.
[0016]
A small-diameter step 2a is formed on the outer peripheral surface of the axially inward end of the inner ring shaft 2 of the hub 1, and the inner ring 10 is integrally fitted on the small-diameter step 2a. . An inner ring raceway 7 on the inner side is formed on the outer circumferential surface of the inner ring 10. The inner end portion of the inner ring 10 is curved radially outward, and its inner end surface slightly protrudes inward in the axial direction from the inner end surface of the inner ring shaft portion 2 of the hub 1.
[0017]
The outer peripheral surface in the axial direction of the inner ring shaft portion 2 of the hub 1 is inclined so as to continue to the root portion of the flange portion 3, and is larger than the diameter of the outer peripheral surface in the axial direction. An outer ring race 8 on the outer side is formed on the outer circumferential surface on the outer side in the direction. The track contact diameter D8 of the outer ring race 8 on the outer side is larger than the track contact diameter D7 of the inner ring track 7 on the inner side.
[0018]
A plurality of connecting bolts 12 are fixed to the outer peripheral portion of the flange portion 3 at intervals in the circumferential direction, and the driving wheel W <b> 1 is fixed by these connecting bolts 12.
[0019]
On the other hand, the outer ring 20 is formed in a cylindrical shape so as to cover the outer peripheral surface of the inner ring shaft portion 2, and the inner peripheral surface of the outer ring 20 has an outer diameter that is larger than the inner diameter. Is also formed large. On the inner side of the inner peripheral surface of the outer ring 20, an inner side outer ring raceway 17 is formed to face the inner side inner ring raceway 7. The outer ring raceway 18 on the inner side facing the outer ring raceway 8 on the outer side is formed on the outer side.
[0020]
Between the inner ring raceway 7 and the outer ring raceway 17 on the inner side, there are a plurality of inner rolling elements 27 made of balls, and between the inner ring raceway 8 and the outer ring raceway 18 on the outer side. A plurality of rolling elements 28 on the outer (outermost) side made of balls are provided so as to roll freely. Each of the plurality of inner and outer rolling elements 27 and 28 is held by a retainer at intervals in the circumferential direction as usual.
[0021]
The inner bearing portions BI are formed by the inner and outer ring raceways 7 and 17 and the rolling elements 27 on the inner side, and the outer bearing portions BI and 18 and the rolling elements 28 are disposed outward by the inner and outer ring raceways 8 and 18 and the rolling elements 28 on the outer side. A side (outermost) bearing portion BO is formed.
[0022]
Thus, the contact angles of the inner and outer rolling elements 27 and 28 (the angles that the normal line at the contact point between the rolling elements and the outer ring forms a plane perpendicular to the axis of the hub unit) αI and αO are: The outer diameter of the rolling element 28 is larger than the diameter of the inner rolling element 27, and the outer rolling element 28 itself has a larger diameter. The diameter is substantially the same as the diameter of the inner rolling element 27.
[0023]
In the middle portion in the axial direction of the outer ring 20, in the radially outer side of the outer ring raceway 18 axially outermost side, the mounting flange 21 extending in the radial direction is formed integrally in the mounting flange 21, The knuckle N of the suspension device SU supported by the vehicle body is fixed by a plurality of mounting bolts 24.
[0024]
An outer seal ring 30 is interposed between the inner surface of the flange portion 3 of the hub 1 and the outer end surface of the outer ring 20, the outer peripheral surface of the end portion of the inner ring 10 integral with the hub 1, and the outer ring 20. An inner seal ring 31 is interposed between the inner end and the inner peripheral surface of the inner end portion to prevent foreign matter from entering the arrangement portion of the rolling elements 27 and 28 and leakage of grease filled in the arrangement portion. is doing.
[0025]
On the radially inner side of the knuckle N, the outer ring 20 between the inner bearing portion BI and the outer bearing portion BO is provided with a rotational speed detection sensor (semiconductor magnetic sensor) of an antilock brake device (ABS). 40) is fixed, and the sensing portion 40a of the sensor 40 faces the gap between the hub 1 and the outer ring 20. On the other hand, an annular steel ring 41 is fixed to the outer peripheral surface of the inner ring shaft portion 2 of the hub 1, and a multi-pole magnet encoder (annular ring) is attached to the free end of the steel ring 41 facing the sensing portion 41 a. A magnet 42) is fixed by adhesion. The rotational speed of the wheel W1 is detected by the cooperation of the encoder 42 and the sensor 40 . Contact name, the rotation speed detection sensor 40 and the multi-pole magnet encoder 42 is conventionally known, detailed description thereof is omitted.
[0026]
On the outer peripheral surface of the outer ring 20, a knuckle engaging surface that is continuous with an axially inner side surface of the mounting flange 21 and engages with the inner peripheral surface of the knuckle N, and an axially inner side from the knuckle engaging surface. An inclined surface descending toward the outer ring raceway 17 is formed. A space is formed between the inclined surface and the inner peripheral surface of the knuckle N so as to face the base end portion of the rotational speed detection sensor 40 protruding from the inclined surface, and the base end portion of the rotational speed detection sensor 40 is formed. The wiring 43 connected to is pulled out through the space.
[0027]
As described above, the rotational speed detection sensor 40 is inside the knuckle N in the radial direction, and the wiring 43 connected to the sensor 40 is connected to a control unit (not shown) through the space inside the knuckle N in the radial direction. The
[0028]
Accordingly, when the rotational speed detection sensor 40 is built in between the bearing portions BI and BO on the inner side and the outer side of the hub unit HU, the track contact diameter D7 of the inner ring raceway 7 on the inner side, The rotational speed detection sensor 40 can be arranged on the radially inner side of the knuckle N by utilizing the space obtained by the diameter difference with the track contact diameter D8 of the inner ring raceway 8 on the side. It is very easy to route the wiring 43 to the vehicle body side.
[0029]
In the first embodiment, a ball is used as the rolling element, but a synergistic material such as a roller may be used instead of the ball.
[0030]
The driving wheel supporting hub unit HU configured as described above fixes the knuckle N of the suspension device SU to the mounting flange 21 of the outer ring 20 with a plurality of mounting bolts 24, and also to the flange portion 3 of the hub 1. The drive wheel W1 is fixed with a plurality of connecting bolts 12, and the male spline of the shaft portion 35 of the constant velocity joint CJ connected to the drive shaft DS is inserted and engaged with the female spline of the shaft hole 4 of the hub 1. The step portion 36 of the speed joint CJ is abutted against the end surface of the inner ring 10 and a nut 37 screwed to the shaft end of the shaft portion 35 of the constant velocity joint CJ is abutted against the outer end surface of the hub 1. The constant velocity joint CJ can be fixed to the hub 1 by applying a preload.
[0031]
By the way, in the hub unit HU of the first embodiment, the track contact diameter D8 of the inner ring raceway 8 on the axially outer (outermost) side is larger than the track contact diameter D7 of the inner ring track 7 on the axially inner side. By increasing the size, it is possible to improve the rigidity of the hub unit HU against the moment load applied to the wheels.
[0032]
Further, when the diameters of the inner rolling element 8 and the outer rolling element 8 are equal, the number of the outer rolling elements 28 having a large track diameter is the same as the number of the inner rolling elements 27. In this way, the load acting on each outer side rolling element 28 can be reduced to suppress the deformation thereof, and the rigidity against moment can be further improved. Can do.
[0033]
Further, if the diameter of the outer rolling element 28 is made larger than the diameter of the inner rolling element 27 without changing the number of the outer rolling elements 28 and the inner rolling elements 27, The surface pressure acting on the rolling element 28 on the side can be reduced, and the durability of the hub unit HU can be improved.
[0034]
Next, a first reference example will be described with reference to FIG.
[0035]
FIG. 3 is a cross-sectional view of the hub unit that supports the drive wheel. In the figure, the same elements as those in the first embodiment are denoted by the same reference numerals.
[0036]
This reference example is also a hub unit for driving wheels, and the other structure is the same as that of the first embodiment, except that the means for fixing the knuckle N to the suspension device is different from that of the first embodiment.
[0037]
In FIG. 3, the outer peripheral surface of the inner ring shaft portion 2 of the outer ring 20 is formed into a cylindrical surface, and the shaft hole Nh at the end of the knuckle N of the suspension device is press-fitted to this cylindrical portion, and the inner end edge of the knuckle N A circlip 50 is engaged between the outer edges of the outer ring 20. Thus, the outer ring 20 of the hub unit HU is fixed to the knuckle N.
[0038]
Next, a second embodiment of the present invention will be described with reference to FIG.
[0039]
FIG. 4 is a cross-sectional view of the hub unit that supports the driven wheel, in which the same elements as those in the first embodiment are denoted by the same reference numerals.
[0040]
In the second embodiment, the wheel supporting hub unit HU according to the present invention is applied to a driven wheel W2 of an automobile (rear wheel of an FF vehicle, front wheel of an FR vehicle).
[0041]
The hub 101 is for the driven wheel W2. The hub 101 includes the hub 101, the outer ring 20, and inner and outer rolling elements 27 and 28 interposed therebetween. The structure of the bearing portions BI and BO on the inner side and the outer side is the same as that in the first embodiment.
[0042]
The inner end of the hub 101 that fixes the driven wheel W2 is caulked outwardly in the diametrical direction Ca, thereby fixing the inner ring 10 that is externally fitted to the step 102a of the inner ring shaft portion 102 of the hub 101.
[0043]
Therefore, this second embodiment also has the same function and effect as the first embodiment.
[0044]
Next, a second reference example will be described with reference to FIG.
[0045]
Figure 5 is a cross-sectional view of a vehicle wheel supporting hub unit, in the figure, the same numerals are attached to the same elements as the first embodiment.
[0046]
The wheel supporting hub unit HU in the second reference example is applied to a driving wheel of an automobile.
[0047]
The hub unit HU for driving wheels includes a hub 1, an inner ring 10, an outer ring 20, and three rows of rolling elements, that is, a first (intermediate portion), a second (inward side), and a third (outward side). ) Rolling elements 26, 27, and 28.
[0048]
The hub 1 includes an inner ring shaft portion 2 formed in a substantially cylindrical shape, and a flange portion 3 integrally extended radially outward from an outer end portion of the inner ring shaft portion 2.
[0049]
On the outer peripheral surface of the axially intermediate portion of the inner ring shaft portion 2 of the hub 1, a first, ie, intermediate portion inner ring raceway 6 is formed, and a small diameter step portion formed at the inner end portion of the inner ring shaft portion 2. A second, that is, an inner ring raceway 7 on the inner side is formed on the outer circumferential surface of the inner ring 10 that is externally fitted integrally with 2a. A third, that is, an outer (outermost) inner ring raceway 8 is formed on the inner surface of the flange portion 3 of the hub 1.
[0050]
On the other hand, the outer ring 20 is formed in a cylindrical shape, and a first (intermediate portion) outer ring raceway facing the first (intermediate portion) inner ring raceway 6 is provided at an axially intermediate portion of the inner peripheral surface thereof. 16 is formed, and a second (inner side) outer ring raceway 17 facing the second (inner side) inner ring raceway 7 is formed at an axially inner end thereof. A third (inner side) outer ring raceway 18 facing the third (outer side) inner ring raceway 8 is formed on the outer end surface larger than the diameter of the first and second outer ring contact raceways. Is formed. Between the first, second and third inner ring raceways 6, 7, 8 and the first, second and third outer ring raceways 16, 17, 18, a plurality of rows of rolling elements consisting of balls, ie, first A plurality of rolling elements 26, 27, 28 of 1 (intermediate portion), second (inward side) and third (outside side) are movably interposed. Each of the plurality of first, second, and third rolling elements 26, 27, and 28 is held by a retainer at a circumferential interval as usual.
[0051]
The first inner and outer ring raceways 6 and 16 and the first rolling element 26 make the first (intermediate) bearing portion BN, and the second inner and outer ring raceways 7 and 17 and the second rolling element. 27 forms a second (inward side) bearing portion BI, and the third inner, outer ring raceways 8 and 18 and the third rolling element 28 form a third (outside side) bearing portion BO. .
[0052]
Thus, the contact angles αN and αI of the first (intermediate portion) and the second (inward side) rolling elements 26 and 27 are 20 ° to 40 °, while the third (outside side) The same contact angle αO of the rolling element 28 is larger (˜90 °) than the contact angles αN, αI, so that the axial load carrying capacity of the third rolling element 28 can be increased by the first and second rolling elements. It is higher than that of the moving bodies 26 and 27. Further, the orbit diameters of the first and second rolling elements 26 and 27 are substantially the same, whereas the orbit diameter of the third rolling element 28 is larger than those, and further, the third rolling element 28 itself The diameter is smaller than the diameter of the first and second rolling elements 26 and 27.
[0053]
By the way, in the hub unit HU of the second reference example, the third (outermost side) bearing portion BO shares the moment load applied to the driving wheel W1 in addition to the first and second bearing portions BN and BI. The moment load applied to each rolling element can be reduced and deformation of each rolling element can be suppressed. In particular, the track contact diameter D8 of the inner ring raceway 8 on the outer side in the axial direction can be reduced. Is larger than the track contact diameters D6 and D7 of the inner ring raceway 6 and the inner ring race 7 on the inner side in the axial direction, so that the rigidity of the hub unit HU against the moment load applied to the drive wheel W1 can be increased. Can be improved.
[0054]
Further, the number of the outer side rolling elements 28 having a large track diameter and a small diameter can be made larger than the number of the intermediate and inner side rolling elements 26, 27. For example, the load acting on each outer rolling element 28 can be reduced and the deformation thereof can be suppressed, and the rigidity against moment can be further improved.
[0055]
Furthermore, it is possible to minimize the increase in space and weight in the axial direction and the radial direction of the hub unit HU due to the provision of the third (outermost side) bearing portion BO.
[0056]
Next, a third reference example will be described with reference to FIG.
[0057]
FIG. 6 is a cross-sectional view of the hub unit that supports the drive wheel. In the figure, the same elements as those of the second reference example are denoted by the same reference numerals.
[0058]
The third reference example also as in the second reference example, the vehicle wheel supporting hub unit HU, is applied to a drive wheel of the motor vehicle.
[0059]
The diameter of the plurality of rolling elements 27 of the inner bearing portion BI of the hub unit HU is larger than the diameter of the rolling elements 26 and 28 of the intermediate portion of the hub unit HU and the outer bearing portions BN and BO. Further, the rolling elements 26 and 28 are formed to have substantially the same diameter, and the inner ring raceway contact diameters of the intermediate portion of the hub 1 receiving the rolling elements 26 and 27 and the inner ring raceways 6 and 7 on the inner side are substantially the same. On the other hand, the track contact diameter of the outer ring raceway 17 on the inner side of the outer ring 20 is formed to be larger than that of the outer ring raceway 16 in the intermediate portion. Further, the outer ring race 8 on the outer side that receives the outer rolling element 28 is formed on an inclined surface that is inclined upward, and the outer ring track 18 that receives the rolling element 28 is also directed outward. It is formed on an inclined surface with an upward slope. In this third reference example, the raceway diameter of the rolling element 26 of the intermediate bearing portion BN is smaller than the raceway diameter of the rolling element 27 of the inner bearing portion BI, The raceway diameter of the rolling elements 28 of the bearing BO is larger than the raceway diameters of the rolling elements 26 and 27 on the intermediate and inner sides.
[0060]
Thus, the third reference example also has the same effect as the second reference example.
[0061]
Note that in the real施例and Reference Example, the hub 1; the step portion 2a of the inner end portion of the inner ring shaft portion 2 of the 101, the inner ring 10 fitted around the outer peripheral surface of the inner race 10 of the inner side outer ring The track 17 is formed because the inner rolling element 27 can be assembled while ensuring a large contact angle with the inner and outer ring raceways 7 and 17. Normally, the inner ring 10 is provided on the hub 1; 101 and the inner ring raceway 7 on the inner side is formed on the inner ring 10, but the inner ring directly on the inner ring shaft portion 2 of the hub 1; 101 is formed. The track 7 may be formed.
[0062]
As mentioned above, although the Example of this invention was described, this invention is not limited to the Example, A various Example is possible within the scope of the present invention.
[0063]
For example, in the above-described embodiment, the case where the wheel support hub unit HU of the present invention is implemented for an automobile has been described, but it is needless to say that this can also be implemented for other vehicles.
[0064]
【The invention's effect】
As described above, according to the present invention, in the wheel support hub unit, the track contact diameter of the outermost inner ring raceway in the axial direction is made larger than the track contact diameter of other inner ring raceways. It is possible to improve the rigidity and durability against moment of the hub unit that counteracts the above. Moreover, the axial direction and the inner ring raceway of the outermost side, the axial inner side of the raceway contact diameter difference radial knuckle rotational speed sensor utilizing the space provided by the inner ring raceway adjacent thereto It becomes possible to dispose the sensor on the inner side, and it becomes extremely easy to attach the sensor and to route the wiring connected to the vehicle body side .
[Brief description of the drawings]
FIG. 1 is a sectional view showing a state in which a drive wheel is supported by a hub unit (first embodiment).
FIG. 2 is an enlarged cross-sectional view of the hub unit shown by the phantom line encircled portion in FIG. 1 (first embodiment).
FIG. 3 is a sectional view of a hub unit ( first reference example).
FIG. 4 is a sectional view of a hub unit ( second embodiment).
FIG. 5 is a sectional view of a hub unit ( second reference example).
FIG. 6 is a sectional view of a hub unit ( third reference example).
FIG. 7 is a diagram showing a state in which a lateral force and a cornering moment are applied to a driving wheel when the vehicle is turning.
1; 101 ... hub 2 ......... inner ring shaft portion 3 ....... flange 7 ....... inner ring raceway (inner side)
8 .... Inner ring raceway (outside )
17. Outer ring raceway (inward side)
18 .... Outer ring raceway (outside)
20 ...... outer wheel <br/> 27 ...... rolling elements (inner side)
28 ... Rolling elements (outside )
D7 ··· Track contact diameter (inner ring race on the inner side)
D8 ··· Track contact diameter (outer side inner ring track)
20 .... outer ring 40 ... rotational speed detection sensor (for anti-lock brake)
43 ··· Wiring SU ··· Suspension device W1 ··· Wheels (drive wheels)
W2 ・ ・ ・ Wheel (driven wheel)

Claims (1)

外周面の軸方向外方に車輪(W1;W2)を支持するためのフランジ部(3)を形成した内輪軸部(2,102を有していて、前記フランジ部(3)より軸方向内方の内輪軸部(2,102)外周面に軸方向内方側から軸方向外方側へ向けて順に形成した複数列の内輪軌道(7,8)を備えたハブ(1;101)と、
架装置(SU)のナックル(N)に対する取付フランジ(21)が外周面に一体に突設され、内周面に前記複数列の内輪軌道(7,8)に各対向する複数列の外輪軌道(17,18)を形成した外輪(20)と、
各対向する内輪軌道(7,8)と外輪軌道(17,18)との間に各複数個ずつ設けた転動体(27,28)とを備えた車輪支持用ハブユニットであって、
方向最外方側の内輪軌道(8)の軌道接触直径(D8)を、その最外方側の内輪軌道(8)と隣接する他の内輪軌道()の軌道接触直径(D)よりも大きくしたものにおいて、
軸方向最外方側の外輪軌道(18)とこれに隣接する軸方向内方側の外輪軌道(17)との間で前記外輪(20)にはアンチロックブーキ用回転速度検出センサ(40)設けられ、
前記取付フランジ(21)は、前記軸方向最外方側の外輪軌道(18)の径方向外側に配置され、
前記外輪(20)の外周面には、前記取付フランジ(21)の軸方向内方側の側面に連なり前記ナックル(N)の内周面に係合するナックル係合面と、そのナックル係合面から前記軸方向内方側の外輪軌道(17)に向かって下る傾斜面とが形成されていて、その傾斜面と前記ナックル(N)の内周面との間には、該傾斜面より張り出す前記アンチロックブーキ用回転速度検出センサ(40)の基端部を臨ませる空間が形成され、
前記アンチロックブーキ用回転速度検出センサ(40)の基端部に接続した配線(43)が前記空間を通して外部に引き出されることを特徴とする、車輪支持用ハブユニット
Axially outward of the outer peripheral surface wheel; have flange portion for supporting the (W1 W2) (3) inner ring shaft portion formed of a (2, 102), the axial direction from the flange portion (3) A hub (1; 101) provided with a plurality of rows of inner ring raceways (7, 8) formed in order from the inner side in the axial direction toward the outer side in the axial direction on the outer peripheral surface of the inner ring portion (2 , 102 ). )When,
Suspension rack apparatus mounting flange against the knuckle (N) of (SU) (21) is integrally projected on an outer peripheral surface, the inner peripheral surface of the plurality of rows that each facing the inner ring raceway (7, 8) of said plurality of rows An outer ring (20) forming an outer ring raceway (17, 18);
A wheel support hub unit comprising a plurality of rolling elements (27, 28) provided between each opposed inner ring raceway (7, 8) and outer ring raceway (17, 18) ,
Track contact diameter of the inner ring raceway of the axially outermost side (8) to (D8), the track contact diameter of the other inner ring raceway and the adjacent inner ring raceway of the outermost side (8) (7) (D 7) in those larger than,
Between the outer ring raceway (18) on the outermost side in the axial direction and the outer ring raceway (17) on the inner side in the axial direction adjacent thereto , the rotational speed detection sensor (40 ) it is provided,
The mounting flange (21) is disposed on the radially outer side of the outer ring raceway (18) on the outermost side in the axial direction,
On the outer peripheral surface of the outer ring (20), a knuckle engaging surface that is continuous with the axially inner side surface of the mounting flange (21) and engages with the inner peripheral surface of the knuckle (N), and its knuckle engagement An inclined surface that descends from the surface toward the outer ring raceway (17) on the inner side in the axial direction, and between the inclined surface and the inner peripheral surface of the knuckle (N), A space is formed to face the base end of the rotation speed detection sensor (40) for the anti-lock bouquet that protrudes,
A wheel support hub unit, wherein a wire (43) connected to a base end portion of the rotation speed detection sensor (40) for the anti-lock bouquet is drawn out through the space .
JP2003143124A 2003-05-21 2003-05-21 Wheel support hub unit Expired - Fee Related JP3887350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143124A JP3887350B2 (en) 2003-05-21 2003-05-21 Wheel support hub unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143124A JP3887350B2 (en) 2003-05-21 2003-05-21 Wheel support hub unit

Publications (2)

Publication Number Publication Date
JP2004345439A JP2004345439A (en) 2004-12-09
JP3887350B2 true JP3887350B2 (en) 2007-02-28

Family

ID=33530996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143124A Expired - Fee Related JP3887350B2 (en) 2003-05-21 2003-05-21 Wheel support hub unit

Country Status (1)

Country Link
JP (1) JP3887350B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722115B1 (en) 2005-05-12 2015-10-07 NTN Corporation Wheel support bearing assembly
JP5024850B2 (en) * 2005-10-21 2012-09-12 Ntn株式会社 Wheel bearing device
JP2007113719A (en) * 2005-10-21 2007-05-10 Ntn Corp Bearing device for wheel
DE102006004274A1 (en) * 2006-01-31 2007-08-02 Schaeffler Kg Antifriction bearing for wheel bearing, comprises two bearing race, where multiple antifriction bodies are located between former and later bearing races, and antifriction bodies are arranged in multiple rows
DE102006004297B4 (en) * 2006-01-31 2019-03-07 Schaeffler Kg Asymmetrical three-row rolling bearing
JP4872444B2 (en) * 2006-04-25 2012-02-08 日本精工株式会社 Hub unit assembly method and hub unit
JP2008057596A (en) * 2006-08-30 2008-03-13 Ntn Corp Wheel bearing device
JP5099875B2 (en) * 2006-08-30 2012-12-19 Ntn株式会社 Wheel bearing device
JP5250951B2 (en) 2006-08-31 2013-07-31 日本精工株式会社 Rolling bearing unit for wheel support
WO2008032831A1 (en) * 2006-09-14 2008-03-20 Nsk Ltd. Method for manufacturing wheel supporting roller bearing unit, and method for testing double-race roller bearing unit
JP4940847B2 (en) * 2006-09-14 2012-05-30 日本精工株式会社 Manufacturing method of wheel bearing rolling bearing unit
WO2008047472A1 (en) * 2006-10-17 2008-04-24 Ntn Corporation Bearing device for wheel
WO2008050488A1 (en) * 2006-10-26 2008-05-02 Ntn Corporation Bearing device for wheel
DE112007002699B4 (en) 2006-11-14 2021-10-07 Ntn Corporation Wheel bearing device for a vehicle
JP5228343B2 (en) * 2006-12-06 2013-07-03 日本精工株式会社 Double row rolling bearing unit for wheel support and manufacturing method thereof
JP2007132526A (en) * 2007-02-13 2007-05-31 Ntn Corp Bearing device for wheel
JP5023774B2 (en) * 2007-04-05 2012-09-12 日本精工株式会社 Rolling bearing structure
JP4877815B2 (en) * 2007-05-11 2012-02-15 Ntn株式会社 Wheel bearing device
CN101784397B (en) 2007-10-02 2013-01-30 日本精工株式会社 Method of producing raceway ring member for rolling bearing unit
JP5030187B2 (en) * 2010-07-23 2012-09-19 Ntn株式会社 Grease filling method for wheel bearing device
US8616779B2 (en) * 2010-11-29 2013-12-31 Honda Motor Co., Ltd. Shortened driveshaft stem
JP5236097B2 (en) * 2012-04-25 2013-07-17 Ntn株式会社 Wheel bearing device
DE102012215280A1 (en) * 2012-08-29 2014-03-06 Schaeffler Technologies AG & Co. KG Pinion shaft bearing i.e. three-row skew-angle roller bearing, for deflecting or deriving rotational movements of drive shaft of motor car via torque, has roller body rows engaged in same direction and including different pressure angles
CN110271367A (en) * 2019-06-12 2019-09-24 浙江万向精工有限公司 A kind of non-driven circular cone hub unit of lightweight
CN117083465A (en) 2021-03-01 2023-11-17 株式会社捷太格特 Bearing device for wheel
US20240003383A1 (en) * 2022-06-30 2024-01-04 Schaeffler Technologies AG & Co. KG Multi-row bearing assembly

Also Published As

Publication number Publication date
JP2004345439A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP3887350B2 (en) Wheel support hub unit
US6280093B1 (en) Wheel supporting structure
JP2004108449A (en) Rolling bearing device
US7267486B2 (en) Protective cap for wheel support bearing assembly
JP2004514844A (en) Bearings unitized for handling
WO2004022992A1 (en) Rolling bearing unit for supporting wheel
WO2005111448A1 (en) Bearing with sensor
JP3887349B2 (en) Wheel support hub unit
WO2004022991A1 (en) Rolling bearing unit for supporting wheel
WO2008110938A2 (en) Wheel end support bearing
JP3794008B2 (en) Wheel bearing
JP5087901B2 (en) Rolling bearing device for wheels
JP2008024064A (en) Bearing unit
US20080256798A1 (en) Wheel Bearing Unit
JPH06300035A (en) Wheel bearing for automobile
WO2012108507A1 (en) Bearing device for hub shaft for wheel
JP2001199202A (en) Wheel bearing device
JP3306918B2 (en) Wheel speed detector
JP4221831B2 (en) Rolling bearing unit for wheels
JP3491394B2 (en) Rolling bearing unit with tone wheel
JP2007038740A (en) Hub unit fitting structure
JP2005299685A (en) Rolling bearing unit for wheel support
JP2000356646A (en) Rolling bearing unit with rotation speed detection device
JP2019019893A (en) Hub unit bearing for rear wheel
JP2532376Y2 (en) Rolling bearing unit for rotation speed detection

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees