JP4070222B2 - Instrument for measuring near-infrared transmission spectrum of tablets - Google Patents

Instrument for measuring near-infrared transmission spectrum of tablets Download PDF

Info

Publication number
JP4070222B2
JP4070222B2 JP2007109483A JP2007109483A JP4070222B2 JP 4070222 B2 JP4070222 B2 JP 4070222B2 JP 2007109483 A JP2007109483 A JP 2007109483A JP 2007109483 A JP2007109483 A JP 2007109483A JP 4070222 B2 JP4070222 B2 JP 4070222B2
Authority
JP
Japan
Prior art keywords
tablet
sample
light
receiver
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007109483A
Other languages
Japanese (ja)
Other versions
JP2007225621A (en
Inventor
マーカス トライグスタッド ダブリュー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foss NIRSystems Inc
Original Assignee
Foss NIRSystems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foss NIRSystems Inc filed Critical Foss NIRSystems Inc
Publication of JP2007225621A publication Critical patent/JP2007225621A/en
Application granted granted Critical
Publication of JP4070222B2 publication Critical patent/JP4070222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Description

本発明は、薬剤化合物を含む錠剤の近赤外線透過スペクトル測定に好適な器具に関する。 The present invention relates to a device suitable for near-infrared transmission spectrum measurement of a tablet containing a drug compound.

赤外線分光学、特に、近赤外線(Near−infrared;以下略して“NIR”という。)分光学は、試料の定性分析および定量分析のための貴重な非破壊(非浸透)方法である。分光器を用いた測定を行うのに必要とされる設備は、分光計としてよく知られるNIR光源と検出器を含んでいる。試料から反射した、または試料を透過したどちらかの入射光から、試料の原料構成要素に関する情報が測定できる。薬剤化合物の測定は分光計分析適用のなかでも重要である。薬剤中の化合物は異なる吸光度特性を有するので、試料における定性および定量特性は、試料から反射した、または試料を透過したどちらかの光を解析することによって決定できる。   Infrared spectroscopy, particularly near-infrared (hereinafter “NIR”) spectroscopy, is a valuable non-destructive (non-penetrating) method for qualitative and quantitative analysis of samples. The equipment required to perform measurements using a spectrometer includes a NIR light source and detector, well known as a spectrometer. From the incident light that is either reflected from the sample or transmitted through the sample, information about the raw material components of the sample can be measured. The measurement of drug compounds is important in spectroscopic analysis applications. Since the compounds in the drug have different absorbance characteristics, the qualitative and quantitative characteristics in the sample can be determined by analyzing either the light reflected from the sample or transmitted through the sample.

NIR分光学技術を用いた固体の測定は、主として反射技術を用いて行われる。反射率測定は、試料の表面の数ミクロンほどのところまで入射する光線の照射を1回以上伴う。
しかしながら、固体の反射率測定は、その正確さを得るためにいくらかの問題点があり、多大な努力が必要である。例えば試料に照射されるNIRエネルギーを光学的に高めるような設計を行うなどの努力が必要となる。技術の進歩にも関わらず、反射率測定に伴う多くの問題点および障害はなおも存在する。測定対象の活性化合物が試料の表面に存在せず、母材の中に埋まっているような場合は、試料の活性化合物は反射技術を用いては測定できない。さらに、活性化合物は母材から完全に分類することは不可能である。均質でない試料では、代表的でない測定結果を導いてしまう可能性がある。試料の表面またはその近辺に存在する活性化合物の化学反応は、錠剤の被覆膜または周囲への露出によって、影響を受けるかもしれない。これらの要因は、反射技術を使用した測定における不正確さの一因となる。反射率測定を使用した技術では試料を粉末状に砕かなければならないものもあるが、例えば生成物破壊の検査を行うような品質制御の方法としての技術は除外する。
Measurement of solids using NIR spectroscopy techniques is mainly performed using reflection techniques. Reflectance measurement involves one or more irradiations of light rays that are incident up to a few microns on the surface of the sample.
However, solid reflectivity measurement has some problems in order to obtain its accuracy and requires great effort. For example, it is necessary to make an effort to make a design that optically increases the NIR energy applied to the sample. Despite technological advances, many problems and obstacles associated with reflectance measurements still exist. When the active compound to be measured does not exist on the surface of the sample and is embedded in the base material, the active compound in the sample cannot be measured using a reflection technique. Furthermore, active compounds cannot be completely classified from the matrix. Non-homogeneous samples can lead to non-typical measurement results. The chemical reaction of the active compound present at or near the surface of the sample may be affected by exposure of the tablet to the coating film or surroundings. These factors contribute to inaccuracies in measurements using reflection techniques. Some techniques that use reflectometry require the sample to be crushed into powders, but exclude techniques such as quality control methods that, for example, inspect product breaks.

薬剤に関する従来の測定は、透過測定の使用を本質的に無視するかまたは見落としていた。しかし、透過測定の使用を無視してもよいのは、錠剤が不透明である場合や、NIR光は試料中を問題になるほど透過することはないと仮定できる場合である。しかしながら多くの場合、不透明にみえる固体でも、赤外線スペクトルにおけるほとんどの光が透過するので、透過測定により有用な情報を得ることができる。   Traditional measurements on drugs have essentially ignored or overlooked the use of permeation measurements. However, the use of transmission measurements can be ignored when the tablet is opaque or when it can be assumed that the NIR light does not penetrate the sample as problematic. However, in many cases, even a solid that appears opaque transmits most of the light in the infrared spectrum, so that useful information can be obtained by transmission measurements.

NIR光源と検出器の間に試料を配置する適当なハードウェアが無いという更なる問題点があり、このことが薬剤化合物に関する透過測定を無視することの一因となっているかもしれない。薬剤は様々な大きさ、形状のものがあり、ハードウェアは測定される試料に簡単に適応できるようにしなければならない。したがって、薬剤化合物を含む錠剤のような小さな固体試料を、分光計機器に都合よく、効果的に設置するための方法が必要である。このような方法は、迷放射が測定を妨げないようにしなけばならない。試料の周りに散乱または漏れる入射光はいずれも吸光度の測定において非線形の誤差を引き起こし測定の正確さを損なう可能性がある。 There is a further problem in that there is no suitable hardware to place the sample between the NIR light source and the detector, which may contribute to neglecting transmission measurements for drug compounds. Drugs come in various sizes and shapes, and the hardware must be easily adaptable to the sample being measured. Therefore, there is a need for a method for conveniently and effectively placing a small solid sample, such as a tablet containing a drug compound, on a spectrometer instrument. Such methods are not Banara is cry as stray radiation does not interfere with the measurement. Any incident light that scatters or leaks around the sample can cause non-linear errors in the measurement of absorbance and compromise the accuracy of the measurement.

本発明は、錠剤の近赤外線透過スペクトル測定用器具に関し、特に、錠剤の近赤外線透過スペクトル測定用器具において使用される試料受けおよび遮蔽体に関するものであり、試料受けおよび遮蔽体により、検出器に到達する迷放射の入射を最小限にするか、または排除することを課題としている。 The present invention relates to a near infrared transmission spectrum measurement instrument tablets, in particular, it relates to the sample receiving and shields are used in the near infrared transmission spectrum measurement instrument tablet, the sample receiver and the shield, the photodetector The objective is to minimize or eliminate the incidence of stray radiation that reaches.

請求項1に記載の発明は、狭いバンド幅の近赤外光ビームを錠剤を通して透過させるビーム透過手段と、前記錠剤を透過した光を検出する光検出手段と、前記光ビームを横切るように配置される錠剤受けであって、前記錠剤受けが、段付き縦穴を有する上部表面および下部表面を有する本体を有し、前記縦穴は第一部分と前記第一部分と同軸に形成される第二部分からなり、前記第二部分は前記錠剤を受容するために前記錠剤よりも小径の出口穴を有し、前記出口穴は前記下部表面から前記第二部分を介して前記錠剤を通過する前記光ビームを通過させる錠剤受けと、前記第一部分に納められ、前記錠剤の上部表面の境界の内側の境界内で前記錠剤を透過させるために前記ビーム透過手段から放出される光ビームの光路となる中心孔を有する遮蔽手段とを具備する。 The invention according to claim 1, arranged to intersect the beam transmission means for transmitting the near infrared light beam of narrow bandwidth through tablets, and light detecting means for detecting light transmitted through said tablet, said light beam A tablet receiver having a body having an upper surface and a lower surface having stepped vertical holes, the vertical hole comprising a first part and a second part formed coaxially with the first part. The second portion has an exit hole smaller in diameter than the tablet for receiving the tablet, the exit hole passing the light beam passing through the tablet from the lower surface through the second portion. And a center hole that is contained in the first part and serves as an optical path for a light beam emitted from the beam transmitting means for transmitting the tablet within the boundary inside the boundary of the upper surface of the tablet. ; And a蔽means.

請求項1に記載の発明によれば、錠剤に照射される近赤外光ビームが錠剤の周りに漏れるのを防ぐので、錠剤をバイパスして光検出器に到達する迷放射の入射を排除することができ、正確な近赤外線透過スペクトル測定を行う錠剤の赤外線透過スペクトル測定用器具を提供することができる。According to the first aspect of the present invention, since the near-infrared light beam applied to the tablet is prevented from leaking around the tablet, the incident of stray radiation that bypasses the tablet and reaches the photodetector is eliminated. It is possible to provide an instrument for measuring infrared transmission spectrum of a tablet that performs accurate near-infrared transmission spectrum measurement.

本発明は、薬剤の錠剤などのような固体試料を、スペクトル測定を行う位置に運ぶためのものである試料受け装置または試料配置装置に関するものである。試料受け装置は、遮蔽装置と組み合わされて、錠剤の縁から光が漏れるのを防ぐとともに、逆に試料中を透過する放射の検出を妨げるのを防ぐ。試料中を透過せずに検出器に到達する迷光を削減または排除することによって、正確な測定が可能となる。本発明はさらに、複数のスペクトル測定をすばやくユーザが実行できるように、様々な自動化を図る一方、位置決め装置および遮蔽体の組み合わせにより、さらに利点を具体化している。   The present invention relates to a sample receiving device or a sample placement device for transporting a solid sample such as a pharmaceutical tablet to a position where spectrum measurement is performed. The sample receiving device is combined with a shielding device to prevent light from leaking from the edge of the tablet and conversely to prevent detection of radiation transmitted through the sample. Accurate measurement is possible by reducing or eliminating stray light that reaches the detector without passing through the sample. The present invention further embodies the benefits of a combination of positioning device and shield while allowing various automations so that the user can quickly perform multiple spectral measurements.

本発明にかかる装置の第一実施例の断面図を図1に示す。同図によれば、装置は、外筒14および内部の光ファイバー束16を有する検査プローブ12を備えている。格子スペクトル計からなる光源10は、光ファイバー束16に狭いバンド幅のNIR光を供給する。検査プローブ12は、支持体(詳細は図示していない)の最上部の面18および最下部の面19によって定義されるスロット15の上方の固定位置に据え付けられる。スロット15内には試料受け20が収納されており、スロット15の直ぐ下には検査プローブ12と略同軸になるよう検出器22が配置されている。本発明の機器は薬剤の生成物の測定のために設計されたものであるが、試料の錠剤は測定を必要とする物質であれば、どんな固体から構成されるものでよい。検出器22は錠剤24中を透過したNIR放射(近赤外領域のスペクトル線)の振幅を検出するもので、その検出信号をコンピュータ23に伝送し、コンピュータ23は検出器22からの信号を透過測定の解析を行うためにディジタル形式に変換し、取り込む。   A cross-sectional view of a first embodiment of the apparatus according to the present invention is shown in FIG. According to the figure, the apparatus comprises an inspection probe 12 having an outer tube 14 and an optical fiber bundle 16 inside. A light source 10 composed of a grating spectrometer supplies NIR light with a narrow bandwidth to the optical fiber bundle 16. The inspection probe 12 is mounted in a fixed position above the slot 15 defined by the uppermost surface 18 and the lowermost surface 19 of a support (details not shown). A sample receiver 20 is accommodated in the slot 15, and a detector 22 is disposed just below the slot 15 so as to be substantially coaxial with the inspection probe 12. Although the device of the present invention is designed for the measurement of drug products, the sample tablet may be composed of any solid that is a substance that requires measurement. The detector 22 detects the amplitude of the NIR radiation (near-infrared spectrum line) transmitted through the tablet 24 and transmits the detection signal to the computer 23, and the computer 23 transmits the signal from the detector 22. Convert to digital format and capture for analysis of measurements.

試料受け20は最上部面25および下部表面42を有し、側壁26および環状の面28によって最上部面25に開口する第一円柱状縦穴が形成される。第一縦穴の中には、中心孔を有する環状の遮蔽体30が収容される。遮蔽体30の高さは側壁26の高さより低く、中心孔の直径は錠剤24の直径の約3分の2または67%である。遮蔽体30は試料受け20の最上部面25より上へ出っ張らないような大きさにする。遮蔽体30の底面は中心孔の縁で錠剤24の頂部表面32と直接接する。第二円柱状縦穴は第一縦穴と同中心であり、側壁面34および出口穴を有する底面36によって形成され、第一縦穴の面28に開口する。第二縦穴は錠剤24を収容する。   The sample receiver 20 has an uppermost surface 25 and a lower surface 42, and a first cylindrical vertical hole that opens to the uppermost surface 25 is formed by the side wall 26 and the annular surface 28. An annular shield 30 having a central hole is accommodated in the first vertical hole. The height of the shield 30 is lower than the height of the side wall 26, and the diameter of the central hole is about two thirds or 67% of the diameter of the tablet 24. The shield 30 is sized so as not to protrude above the uppermost surface 25 of the sample receiver 20. The bottom surface of the shield 30 is in direct contact with the top surface 32 of the tablet 24 at the edge of the central hole. The second cylindrical vertical hole is concentric with the first vertical hole, is formed by a side wall surface 34 and a bottom surface 36 having an outlet hole, and opens to the surface 28 of the first vertical hole. The second vertical hole accommodates the tablet 24.

図2は試料受け20を上から見た図である。同図によれば、面28と同じ平面の底面および第一縦穴の側壁26と交差する2つの鉛直の側壁によって形成される差し入れ口38を有する。差し入れ口38は試料受け20の側面に開口し、第一縦穴を連通させる。差し入れ口38は遮蔽体30の着脱を容易にするものである。さらに図2に示されるように、第二縦穴の底面36の出口穴39から試料受け20の下部表面42に連通する中央通路が供給される。   FIG. 2 is a view of the sample receiver 20 as viewed from above. According to the figure, it has an insertion port 38 formed by a bottom surface in the same plane as the surface 28 and two vertical side walls intersecting the side wall 26 of the first vertical hole. The insertion port 38 opens on the side surface of the sample receiver 20 and communicates the first vertical hole. The insertion slot 38 facilitates the attachment / detachment of the shield 30. Further, as shown in FIG. 2, a central passage communicating with the lower surface 42 of the sample receiver 20 is supplied from the outlet hole 39 of the bottom surface 36 of the second vertical hole.

使用する際、まず、錠剤24が試料受け20の第二縦穴の中に挿入される。ついで、遮蔽体30が第一縦穴の中に置かれ、錠剤24の頂部表面32と接触する。試料受け20は手動で、面18および面19によって形成されるスロット15の中に挿入され、試料受け20と検出器22の間に並べられる。錠剤24が置かれると、光源と検出器22が稼動され、測定が行われる。   In use, the tablet 24 is first inserted into the second vertical hole of the sample receiver 20. The shield 30 is then placed in the first longitudinal hole and contacts the top surface 32 of the tablet 24. The sample receiver 20 is manually inserted into the slot 15 formed by the surfaces 18 and 19 and is placed between the sample receiver 20 and the detector 22. Once the tablet 24 is placed, the light source and detector 22 are activated and measurements are taken.

試料受け20の大きさは、試料の錠剤に適合するように正確に形成され、錠剤の周りから光が漏れる可能性を最小限に食い止める。解析を要する各錠剤の形状の独自の大きさに適合するように、個々の試料受けと遮蔽体は作成されるよう考案されている。試料受け20の第一縦穴は直径が0.600インチである。錠剤を収容する試料受け20の第二縦穴は直径0.400インチで錠剤の直径より大きい。試料受け20の第二縦穴の直径を正確に決めることにより、試料周りに漏れる入射光は著しく少なくなる。第二縦穴の側壁34の高さは可変であり、錠剤の高さの約80%になるように設計される。錠剤の高さより第二縦穴の側壁34の高さを顕著に小さくすることにより、遮蔽体が錠剤の頂部表面32と確実に接するようにする。錠剤が穴の中でがたつかないように、第二縦穴は最低でも錠剤の高さの約25%の高さの側壁34を有する。第二縦穴の底面36に形成される出口穴39は、錠剤の直径の約67%または3分の2の直径で形成される。   The size of the sample receiver 20 is precisely shaped to fit the sample tablet, minimizing the possibility of light leaking around the tablet. Individual sample receptacles and shields have been devised to fit the unique size of each tablet shape that requires analysis. The first vertical hole of the sample receiver 20 has a diameter of 0.600 inch. The second vertical hole of the sample receiver 20 containing the tablet is 0.400 inch in diameter and larger than the tablet diameter. By accurately determining the diameter of the second vertical hole of the sample receiver 20, the incident light leaking around the sample is remarkably reduced. The height of the side wall 34 of the second vertical hole is variable and is designed to be about 80% of the height of the tablet. The height of the side wall 34 of the second vertical hole is made significantly smaller than the height of the tablet to ensure that the shield is in contact with the top surface 32 of the tablet. The second longitudinal hole has a side wall 34 that is at least about 25% of the height of the tablet so that the tablet does not rattle in the hole. An outlet hole 39 formed in the bottom surface 36 of the second longitudinal hole is formed with a diameter of about 67% or two-thirds of the tablet diameter.

この出口穴39の直径は遮蔽体の中心孔の直径と同じ大きさで、かつ、軸方向に一列に並ぶようにする。遮蔽体の高さおよび中心孔の直径ともに可変であり、錠剤の大きさによって決められる。試料の下部表面と検出器の間の距離は約0.005インチである。
本実施例において、測定の工程では、NIRスペクトルの範囲で、狭いバンド幅の光の中心周波数を変化するようにスペクトル計の格子を回転させる。格子が回転すると、スペクトル範囲を通して波長を徐々に間隔を空けて、増やしながら測定できる。コンピュータは公知の技術を用いて、試料を分類して、試料の成分を定性分析するなどを含む解析するための透過測定の結果を解析する。
The diameter of the outlet hole 39 is the same as the diameter of the central hole of the shield, and is arranged in a line in the axial direction. Both the height of the shield and the diameter of the central hole are variable and are determined by the size of the tablet. The distance between the lower surface of the sample and the detector is about 0.005 inches.
In the present embodiment, in the measurement step, the grating of the spectrometer is rotated so that the center frequency of light having a narrow bandwidth is changed in the range of the NIR spectrum. As the grating rotates, it can be measured as the wavelength is gradually spaced and increased throughout the spectral range. The computer uses known techniques to analyze the results of permeation measurements for analysis, including classifying samples and qualitatively analyzing the components of the samples.

試料の錠剤は光ファイバー束と検出器の途中に存在させ、NIR放射が周囲へ漏れずに試料を通過し、検出器へ確実に到達するようにしている。錠剤を挿入するのに必要最小限の大きさの試料受け縦穴を有することにより、光の漏れを最小限している。さらに、遮蔽体が錠剤の上へ直接静置されるとともに錠剤の大きさより小さい中心孔を有することで、錠剤をバイパスするNIR光の可能性を最小限にしている。これらは、光ファイバー束が錠剤の頂部表面の面積より狭い断面積を有することにより、さらに、出口穴が錠剤より小さく形成されることにより達成できる。 The sample tablet is placed in the middle of the optical fiber bundle and the detector so that the NIR radiation passes through the sample without leaking to the surroundings and reliably reaches the detector. By having a sample receiving vertical hole of minimum size to insert the tablet, and to minimize the leakage of light. In addition, the shield is placed directly on the tablet and has a central hole that is smaller than the size of the tablet, minimizing the possibility of NIR light bypassing the tablet. These can be achieved by the fact that the optical fiber bundle has a cross-sectional area narrower than the area of the top surface of the tablet, and further, the outlet hole is made smaller than the tablet.

さらに、NIR光は格子スペクトル計から放射され、検査プローブの中で終端している光ファイバー束を介して伝達され、その放射は空中を介して試料に直接伝達されることによってエネルギーは保護される。ほとんどの分光学的分析において、試料は波長の全スペクトルを同時に受けるので、試料によるエネルギーの吸収を伴い、それにより熱せられ、文字どおり焼けてしまうリスクがある。ある種の薬剤の試料の活性化化合物は特に熱低下に敏感である。もし、試料の品質を低下させてしまったら、試料をさらに、他の分析で分析して、正確な測定結果を得ることが不可能となる。本発明の好ましい実施例によれば、前散乱されたNIR放射は、試料が受ける熱を最小限にする。   Further, NIR light is emitted from the grating spectrometer and transmitted through a fiber optic bundle terminating in the inspection probe, and the radiation is transmitted directly to the sample through the air, thereby protecting the energy. In most spectroscopic analyses, the sample undergoes the full spectrum of wavelengths simultaneously, which entails the absorption of energy by the sample, which causes it to be heated and literally burned. Activating compounds in certain drug samples are particularly sensitive to heat reduction. If the quality of the sample is deteriorated, it is impossible to analyze the sample with another analysis to obtain an accurate measurement result. According to a preferred embodiment of the present invention, the pre-scattered NIR radiation minimizes the heat received by the sample.

図3は本発明における装置の第二実施例を示す図であり、試料受け40の第二縦穴の中に試料の錠剤が入っている状態を示している。本実施例において、検査プローブ12は錠剤と検出器に対して直線的に軸方向に動くように搭載される。図4に示されるように、第二実施例では遮蔽フード44が可動検査プローブ12に付属されている。遮蔽フード44は中心孔46を有し、中心孔46は錠剤の直径の約67%または3分の2の直径を有する。第1実施例と同様に、検査プローブ12の光ファイバー束16は、NIR光源としての格子スペクトル計に接続される。遮蔽フード44は通常円形で平らな底面を有し、中心孔46の縁で錠剤と直接接するようになっている。この接触の仕方は図1に示した遮蔽体30と同じである。遮蔽フード44は、光ファイバー束16から放出されるNIR光源を錠剤の頂部表面の面積より狭い範囲の錠剤の上部表面に照射させる。錠剤の表面より小さい範囲を照射することにより、錠剤の端と試料を収容している縦穴の側面から光が漏れるのを防ぐので、光の漏れを最小限にできる。これにより、錠剤周りにNIR照射が漏れる可能性を最小限にする。さらに、中心孔46の直径は試料受けの底面に形成された出口通路の直径と同じである。   FIG. 3 is a view showing a second embodiment of the apparatus according to the present invention, and shows a state in which a sample tablet is contained in the second vertical hole of the sample receiver 40. In this embodiment, the inspection probe 12 is mounted so as to move linearly in the axial direction with respect to the tablet and the detector. As shown in FIG. 4, in the second embodiment, a shielding hood 44 is attached to the movable inspection probe 12. The shielding hood 44 has a central hole 46, which has a diameter of about 67% or two-thirds of the tablet diameter. Similar to the first embodiment, the optical fiber bundle 16 of the inspection probe 12 is connected to a grating spectrometer as an NIR light source. The shielding hood 44 is usually circular and has a flat bottom surface so that it directly contacts the tablet at the edge of the central hole 46. This contact method is the same as that of the shield 30 shown in FIG. The shielding hood 44 irradiates the upper surface of the tablet in a range narrower than the area of the top surface of the tablet with the NIR light source emitted from the optical fiber bundle 16. By irradiating an area smaller than the surface of the tablet, light leakage is prevented from leaking from the edge of the tablet and the side surface of the vertical hole accommodating the sample, so that light leakage can be minimized. This minimizes the possibility of NIR radiation leaking around the tablet. Further, the diameter of the center hole 46 is the same as the diameter of the outlet passage formed in the bottom surface of the sample receiver.

検査プローブ12の外筒14に取り付けられる振り子軸48は検査プローブ12を動かすためのものである。ネジ75は振り子軸48の一端に、ネジ付き固定リング64を介して検査プローブ12を回転可能に保持するためのものである。振り子軸48は安定装置軸52上にある位置50を枢軸として回転する。検査プローブ12と反対側の他端で振り子軸48はカム54と接している。カム54の回転によって、振り子軸48は検査プローブ12を試料の上で昇降させる。カム54はコンピュータによって制御されるモータ55によって回転する。命令に応じてモータ55は発動し、カム54を回転させ、振り子軸48が検査プローブ12を試料の錠剤に向かって降下させる。検査プローブ12は錠剤と直接接触することによって、さらに下方へ動かないようになっていて、従って測定時は検査プローブ12は試料の上へ静止される。図3に示されるように、検査プローブ12が降下して錠剤と接触したとき、遮蔽フード44は試料受け40の上部表面より下の穴へと入っていく。   A pendulum shaft 48 attached to the outer cylinder 14 of the inspection probe 12 is for moving the inspection probe 12. The screw 75 is for holding the inspection probe 12 rotatably at one end of the pendulum shaft 48 via a threaded fixing ring 64. The pendulum shaft 48 rotates about a position 50 on the stabilizer shaft 52 as a pivot. The pendulum shaft 48 is in contact with the cam 54 at the other end opposite to the inspection probe 12. As the cam 54 rotates, the pendulum shaft 48 raises and lowers the inspection probe 12 over the sample. The cam 54 is rotated by a motor 55 controlled by a computer. In response to the command, the motor 55 is activated to rotate the cam 54 and the pendulum shaft 48 lowers the inspection probe 12 toward the tablet of the sample. The inspection probe 12 is prevented from moving further downward by direct contact with the tablet, so that the inspection probe 12 is rested on the sample during measurement. As shown in FIG. 3, when the inspection probe 12 descends and comes into contact with the tablet, the shielding hood 44 enters a hole below the upper surface of the sample receiver 40.

図5に示されるように、本実施例で使用される試料受け40は、10個の段差のある試料縦穴を有し、通常、参照番号70で示されるように、弓形に配置される。つまみ72は試料受け40を取り扱うためのものであり、開口部74は回転軸に試料受け40を滑り込ませるためのものである。試料受け40の縦穴70はそれぞれ第一実施例で説明したものと実質的に同じであるが、差し込み口38と同じような差し込み口は必要ではない。   As shown in FIG. 5, the sample receiver 40 used in this embodiment has ten sample vertical holes with steps, and is usually arranged in an arcuate shape as indicated by reference numeral 70. The knob 72 is for handling the sample receiver 40, and the opening 74 is for sliding the sample receiver 40 on the rotating shaft. The vertical holes 70 of the sample receiver 40 are substantially the same as those described in the first embodiment, but an insertion port similar to the insertion port 38 is not necessary.

コンピュータは図6に示されるステップ式(変速)モータ56の動作も制御し、回転軸58および試料受け40が静置される回転テーブル60をともに回転させる。回転テーブル60の直径は試料受け40の直径より小さく、各底穴66は試料受け40を貫通し、回転テーブル60とも重ならずに開口している。試料受け40の上のくぼみ部62でスプリングクリップ68によって、試料受け40は回転軸58周りに保持される。これらのモータ56、回転軸58および回転テーブル60は検査プローブ12に試料の錠剤を連続供給するためのものである。モータ56は、モータ55と同期して動作し、検査プローブ12の下に試料受け40上の試料縦穴が並んだときに、検査プローブ12を試料の錠剤の上で昇降させる。センサ57は試料受けの位置を検出するためのものである。   The computer also controls the operation of the step type (transmission) motor 56 shown in FIG. 6 to rotate both the rotary shaft 58 and the rotary table 60 on which the sample receiver 40 is stationary. The diameter of the rotary table 60 is smaller than the diameter of the sample receiver 40, and each bottom hole 66 passes through the sample receiver 40 and opens without overlapping the rotary table 60. The sample receiver 40 is held around the rotation axis 58 by a spring clip 68 at a recess 62 on the sample receiver 40. These motor 56, rotating shaft 58, and rotating table 60 are for continuously supplying sample tablets to the inspection probe 12. The motor 56 operates in synchronization with the motor 55 and raises and lowers the inspection probe 12 on the sample tablet when the sample vertical holes on the sample receiver 40 are arranged below the inspection probe 12. The sensor 57 is for detecting the position of the sample receiver.

本実施例においても、第一実施例と同様に、測定の工程では、NIRスペクトルの範囲で、狭いバンド幅の光の中心周波数を変化するようにスペクトル計の格子を回転させる。格子が回転すると、スペクトル範囲を通して波長を徐々に間隔を空けて、増やしながら測定できる。コンピュータは公知の技術を用いて、試料を分類して、試料の成分を定性分析するなどを含む解析するための透過測定の結果を解析する。   Also in the present embodiment, as in the first embodiment, in the measurement process, the grating of the spectrometer is rotated so as to change the center frequency of light having a narrow bandwidth in the range of the NIR spectrum. As the grating rotates, it can be measured as the wavelength is gradually spaced and increased throughout the spectral range. The computer uses known techniques to analyze the results of permeation measurements for analysis, including classifying samples and qualitatively analyzing the components of the samples.

試料の錠剤は光ファイバー束と検出器の途中に存在させることにより、NIR放射が周囲へ漏れずに試料を通過し、検出器へ確実に到達するようにしている。錠剤を挿入するのに必要最小限の大きさの試料受け縦穴を有することにより、光の漏れを最小限にしている。さらに、遮蔽体が直接錠剤の上へ直接静置されるとともに錠剤の大きさより小さい中心孔を有することで、錠剤をバイパスするNIR光の可能性を最小限にしている。これらは光ファイバー束が錠剤の頂部表面の面積より狭い断面積を有することにより、さらに、出口穴が錠剤より小さく形成されることにより、達成できる。   The sample tablet is present in the middle of the optical fiber bundle and the detector, so that the NIR radiation passes through the sample without leaking to the surroundings and reliably reaches the detector. Light leakage is minimized by having a sample receiving vertical hole of a minimum size necessary for inserting a tablet. In addition, the shield is placed directly on the tablet and has a central hole that is smaller than the size of the tablet, minimizing the possibility of NIR light bypassing the tablet. These can be achieved by the fact that the optical fiber bundle has a cross-sectional area that is smaller than the area of the top surface of the tablet and that the outlet hole is made smaller than the tablet.

さらに、本実施例においても第一実施例と同様に、NIR光は格子スペクトル計から放射され、検査プローブの中で終端している光ファイバー束を介して伝達され、その放射は空中を介して試料に直接伝達されることによってエネルギーは保護される。前散乱されたNIR放射は、試料が受ける熱を最小限にする。
さらに、本発明における第三実施例を図7から9を用いて説明すると、本実施例は自動的にソフトウェア制御される検査プローブ昇降機を備え、第二実施例で説明したように試料の上で検査プローブを昇降する。図8および9に示されるように、本実施例で使用される試料受け76は検査プローブの下に錠剤を一つ配置するものである。試料受け76は、側壁77および側壁78の間に終端壁80に接触するまで手動で挿入される。側壁78は支点85を有し、支点85を軸として回転するようになっている。図9に示されるように、初め、側壁78はスプリング81により傾いた第一の位置にある。図8に示されるように、試料受け76が挿入されると、スプリング81に力がかけられ、側壁78が第二の位置へ支点85を軸として回転し、錠剤を測定する位置に試料受け76を保持する。本実施例の試料受け76は一つの錠剤を保持するものであり、第一縦穴の差し入れ口の特徴が異なる以外は図2で説明した試料受けに類似している。第三実施例の遮蔽体は、図3から6の第二実施例で説明した検査プローブの遮蔽フード44と同じである。第二実施例と同じように、試料受けが測定位置に来たとき、検査プローブを順次に下げるようにモータ55を動作させる命令が準備される。
Further, in this embodiment, as in the first embodiment, NIR light is radiated from the grating spectrometer and transmitted through the optical fiber bundle terminated in the inspection probe, and the radiation is transmitted through the air through the sample. The energy is protected by being transmitted directly to. Pre-scattered NIR radiation minimizes the heat received by the sample.
Further, when a third embodiment of the present invention is described with reference to FIGS. 7 to 9, this embodiment includes an inspection probe elevator which is automatically controlled by software, and as described in the second embodiment, Raise and lower the inspection probe. As shown in FIGS. 8 and 9, the sample receiver 76 used in this embodiment is one in which one tablet is arranged under the inspection probe. The sample receiver 76 is manually inserted between the side wall 77 and the side wall 78 until it contacts the end wall 80. The side wall 78 has a fulcrum 85 and rotates around the fulcrum 85 as an axis. As shown in FIG. 9, initially, the side wall 78 is in a first position inclined by a spring 81. As shown in FIG. 8, when the sample receiver 76 is inserted, a force is applied to the spring 81, the side wall 78 rotates about the fulcrum 85 to the second position, and the sample receiver 76 is positioned to measure the tablet. Hold. The sample receiver 76 of the present embodiment holds one tablet and is similar to the sample receiver described in FIG. 2 except that the insertion hole of the first vertical hole is different. The shield of the third embodiment is the same as the shield hood 44 of the inspection probe described in the second embodiment of FIGS. As in the second embodiment, when the sample receiver comes to the measurement position, a command is prepared to operate the motor 55 to sequentially lower the inspection probe.

本実施例においても、第一および第二実施例と同様に、測定の工程では、NIRスペクトルの範囲で、狭いバンド幅の光の中心周波数を変化するようにスペクトル計の格子を回転させる。格子が回転すると、スペクトル範囲を通して波長を徐々に間隔を空けて、増やしながら測定できる。コンピュータは公知の技術を用いて、試料を分類して、試料の成分を定性分析するなどを含む解析するための透過測定の結果を解析する。   Also in this embodiment, as in the first and second embodiments, in the measurement process, the spectrometer grating is rotated so as to change the center frequency of light having a narrow bandwidth in the range of the NIR spectrum. As the grating rotates, it can be measured as the wavelength is gradually spaced and increased throughout the spectral range. The computer uses known techniques to analyze the results of permeation measurements for analysis, including classifying samples and qualitatively analyzing the components of the samples.

試料の錠剤は光ファイバー束と検出器の途中に存在させることにより、NIR放射が周囲へ漏れずに試料を通過し、検出器へ確実に到達するようにしている。錠剤を挿入するのに必要最小限の大きさの試料受け縦穴を有することにより、光の漏れを最小限にしている。さらに、遮蔽体が直接錠剤の上へ直接静置されるとともに錠剤の大きさより小さい中心孔を有することで、錠剤をバイパスするNIR光の可能性を最小限にしている。これらは光ファイバー束が錠剤の頂部表面の面積より狭い断面積を有することにより、さらに、出口穴が錠剤より小さく形成されることにより、達成できる。   The sample tablet is present in the middle of the optical fiber bundle and the detector, so that the NIR radiation passes through the sample without leaking to the surroundings and reliably reaches the detector. Light leakage is minimized by having a sample receiving vertical hole of a minimum size necessary for inserting a tablet. In addition, the shield is placed directly on the tablet and has a central hole that is smaller than the size of the tablet, minimizing the possibility of NIR light bypassing the tablet. These can be achieved by the fact that the optical fiber bundle has a cross-sectional area that is smaller than the area of the top surface of the tablet and that the outlet hole is made smaller than the tablet.

さらに、本実施例においても第一および第二実施例と同様に、NIR光は格子スペクトル計から放射され、検査プローブの中で終端している光ファイバー束を介して伝達され、その放射は空中を介して試料に直接伝達されることによってエネルギーは保護される。前散乱されたNIR放射は、試料が受ける熱を最小限にする。   Further, in this embodiment, as in the first and second embodiments, NIR light is radiated from the grating spectrometer and transmitted through the optical fiber bundle terminated in the inspection probe, and the radiation passes through the air. The energy is protected by being transferred directly to the sample through. Pre-scattered NIR radiation minimizes the heat received by the sample.

上述の各実施例において、検査プローブ、試料受けおよび検出器の間の距離の合計を最小限保つようにする。赤外線放射と試料の間の距離の短縮は光エネルギーの減衰を最小限にするので、本発明では重要である。検査プローブ内の光ファイバーと錠剤の頂部表面の間の正確な距離は、形状および選択される実施例によって異なる。例えば、図1で説明した固定式検査プローブを備えた第一実施例において、検査プローブと試料の錠剤の頂部表面の間の距離は約1/16インチから5/32インチ程度の範囲である。また、図3から9で説明した自動検査プローブ昇降機を備えた第二および第三実施例においては、検査プローブと試料の錠剤の頂部表面の間の距離は0.010から0.020インチの間である。 In the embodiments described above, to keep to a minimum sum of the distance between the test probe, sample receptacle and the detector. The shortening of the distance between the infrared radiation and the sample is important in the present invention because it minimizes the attenuation of light energy. The exact distance between the optical fiber in the inspection probe and the top surface of the tablet depends on the shape and the embodiment chosen. For example, in the first embodiment with the fixed inspection probe described in FIG. 1, the distance between the inspection probe and the top surface of the sample tablet is in the range of about 1/16 inch to 5/32 inch. 3 and 9, the distance between the inspection probe and the top surface of the sample tablet is between 0.010 and 0.020 inches. It is.

本発明の第一実施例の部分断面側面図である。It is a partial section side view of the 1st example of the present invention. 第一実施例の試料受けの上面図である。It is a top view of the sample receiver of the first embodiment. 本発明の第二実施例の側面図である。It is a side view of the 2nd example of the present invention. 第二実施例の検査プローブと遮蔽フードの先端部の斜視図である。It is a perspective view of the inspection probe of the 2nd example, and the tip part of a shielding hood. 第二実施例の試料受けの上面図である。It is a top view of the sample receptacle of a 2nd Example. 第二実施例の図3とは逆側の側面図であり、回転軸と回転テーブルを示している。It is a side view on the opposite side to FIG. 3 of 2nd Example, and has shown the rotating shaft and the rotary table. 本発明の第三実施例の側面図である。It is a side view of the 3rd example of the present invention. 第三実施例の検査位置に試料受けが挿入された状態を示す上面図である。It is a top view which shows the state by which the sample receiver was inserted in the test | inspection position of 3rd Example. 本発明の第三実施例の検査位置の外側に試料受けが位置したときの上から見た部分図である。It is the fragmentary view seen from the top when a sample receptacle is located in the outer side of the inspection position of the 3rd example of the present invention.

符号の説明Explanation of symbols

10 光源
12 検査プローブ
14 外筒
15 スロット(収容手段)
16 光ファイバー束
18 最上部の表面
19 最下部の表面
20 試料受け(錠剤受け)
22 検出器
23 コンピュータ
24 錠剤
25 最上部面(錠剤受けの上部表面)
26 第一縦穴(段付き縦穴の第一部分)の側壁
28 第一縦穴(段付き縦穴の第一部分)の環状の表面
30 遮蔽体(遮蔽手段)
32 錠剤の頂部表面
34 第二縦穴(段付き縦穴の第二部分)の側壁
36 第二縦穴(段付き縦穴の第二部分)の底面
39 出口穴
40 試料受け(錠剤受け)
42 下部表面(錠剤受けの下部表面)
44 遮蔽フード
46 中心孔
48 振り子軸(昇降手段)
50 位置
52 安定装置軸
54 カム
55 モータ(昇降手段)
56 ステップ式(変速)モータ(回転手段)
57 センサ
58 回転軸
62 くぼみ
64 ネジ付き固定リング
66 底穴
68 スプリングクリップ(取り付け手段)
70 弓形形状
72 つまみ
74 開口部
75 ネジ
76 試料受け(錠剤受け)
77,78 側壁
80 終端壁
81 スプリング
85 支点
DESCRIPTION OF SYMBOLS 10 Light source 12 Inspection probe 14 Outer cylinder 15 Slot (accommodating means)
16 Optical fiber bundle 18 Uppermost surface 19 Lowermost surface 20 Sample receptacle (tablet receptacle)
22 detector 23 computer 24 tablets 25 top-face (upper surface of the receiving tablets)
26 Side wall of first vertical hole (first part of stepped vertical hole) 28 Annular surface of first vertical hole (first part of stepped vertical hole) 30 Shield (shielding means)
32 Top surface of tablet 34 Side wall of second vertical hole (second portion of stepped vertical hole) 36 Bottom surface of second vertical hole (second portion of stepped vertical hole) 39 Exit hole 40 Sample receiver (tablet receiver)
42 Lower surface (lower surface of tablet holder)
44 Shielding hood 46 Center hole 48 Pendulum shaft (lifting means)
50 Position 52 Stabilizer shaft 54 Cam 55 Motor (elevating means)
56 Step type (transmission) motor (rotating means)
57 Sensor 58 Rotating shaft 62 Recessed 64 Threaded fixing ring 66 Bottom hole 68 Spring clip (attachment means)
70 Bow shape 72 Knob 74 Opening 75 Screw 76 Sample receptacle (tablet receptacle)
77, 78 Side wall 80 End wall 81 Spring 85 Support point

Claims (1)

錠剤を介して狭いバンド幅の近赤外光ビームを透過させるビーム透過手段と、
前記錠剤を透過した光を検出する光検出手段と、
前記光ビームを横切るように配置される錠剤受けであって、前記錠剤受けが、段付き縦穴を有する上部表面および下部表面を有する本体を有し、前記縦穴は第一部分と前記第一部分と同軸に形成される第二部分からなり、前記第二部分は前記錠剤を受容するために前記錠剤よりも小径の出口穴を有し、前記出口穴は前記下部表面から前記第二部分を介して前記錠剤を通過する前記光ビームを通過させる錠剤受けと、
前記第一部分に納められ、前記錠剤の上部表面の境界の内側の境界内で前記錠剤を透過させるために前記ビーム透過手段から放出される光ビームの光路となる中心孔を有する遮蔽手段とを具備する錠剤の近赤外線透過スペクトル測定用器具。
Beam transmitting means for transmitting a narrow-bandwidth near-infrared light beam through the tablet ;
Light detecting means for detecting light transmitted through the tablet;
A tablet receiver disposed across the light beam, the tablet receiver having a body having an upper surface and a lower surface having stepped vertical holes, the vertical holes being coaxial with the first portion and the first portion. A second portion formed, wherein the second portion has an outlet hole smaller in diameter than the tablet for receiving the tablet, the outlet hole extending from the lower surface through the second portion to the tablet. A tablet receiver for passing the light beam passing through
Shielding means having a central hole which is housed in the first part and serves as an optical path of a light beam emitted from the beam transmitting means for transmitting the tablet within the boundary inside the boundary of the upper surface of the tablet. A device for measuring the near infrared transmission spectrum of tablets.
JP2007109483A 1995-10-02 2007-04-18 Instrument for measuring near-infrared transmission spectrum of tablets Expired - Fee Related JP4070222B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/538,293 US5760399A (en) 1995-10-02 1995-10-02 Measurement of transmission spectra of pharmaceutical tablets

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP26152996A Division JP3967785B2 (en) 1995-10-02 1996-10-02 Near-infrared transmission spectrum measuring device and instrument for measuring near-infrared transmission of tablets

Publications (2)

Publication Number Publication Date
JP2007225621A JP2007225621A (en) 2007-09-06
JP4070222B2 true JP4070222B2 (en) 2008-04-02

Family

ID=24146290

Family Applications (2)

Application Number Title Priority Date Filing Date
JP26152996A Expired - Fee Related JP3967785B2 (en) 1995-10-02 1996-10-02 Near-infrared transmission spectrum measuring device and instrument for measuring near-infrared transmission of tablets
JP2007109483A Expired - Fee Related JP4070222B2 (en) 1995-10-02 2007-04-18 Instrument for measuring near-infrared transmission spectrum of tablets

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP26152996A Expired - Fee Related JP3967785B2 (en) 1995-10-02 1996-10-02 Near-infrared transmission spectrum measuring device and instrument for measuring near-infrared transmission of tablets

Country Status (4)

Country Link
US (1) US5760399A (en)
EP (1) EP0767369A3 (en)
JP (2) JP3967785B2 (en)
CA (1) CA2185613A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2328016B (en) * 1997-08-08 2001-04-25 Pfizer Ltd Spectrophotometric analysis
SE9800965D0 (en) 1998-03-23 1998-03-23 Astra Ab Analyzing Device
SE512098C2 (en) 1998-05-19 2000-01-24 Agrovision Ab Concentration determination of one component in a mixture of at least two components
AU5886399A (en) * 1998-09-07 2000-03-27 Hamish Alexander Nigel Kennedy Quality sorting of produce
JP2007039335A (en) * 1998-11-24 2007-02-15 Nippon Electric Glass Co Ltd Manufacturing method for ceramic article
GB2347739A (en) 1999-03-09 2000-09-13 Pfizer Ltd Powder Analysis
SE9903423D0 (en) 1999-09-22 1999-09-22 Astra Ab New measuring technique
SE0000314D0 (en) * 2000-01-31 2000-01-31 Astrazeneca Ab Apparatus and method of analysis
US6667808B2 (en) 2000-03-08 2003-12-23 Thermo Electron Scientific Instruments Corporation Multifunctional fourier transform infrared spectrometer system
US6751576B2 (en) 2000-03-10 2004-06-15 Cognis Corporation On-site agricultural product analysis system and method of analyzing
IL154256A0 (en) 2000-08-29 2003-09-17 Glaxo Group Ltd Method and system for real-time fluorescent determination of trace elements
US6853447B2 (en) * 2001-02-12 2005-02-08 Analytical Spectral Devices, Inc. System and method for the collection of spectral image data
US6894772B2 (en) * 2001-02-12 2005-05-17 Analytical Spectral Devices System and method for grouping reflectance data
US20030135547A1 (en) * 2001-07-23 2003-07-17 Kent J. Thomas Extensible modular communication executive with active message queue and intelligent message pre-validation
US6771369B2 (en) * 2002-03-12 2004-08-03 Analytical Spectral Devices, Inc. System and method for pharmacy validation and inspection
SE0200782D0 (en) 2002-03-14 2002-03-14 Astrazeneca Ab Method of analyzing a pharmaceutical sample
EP1363120A1 (en) * 2002-05-14 2003-11-19 PerkinElmer International C.V. Tool for making a sample holder
US7218395B2 (en) * 2003-04-16 2007-05-15 Optopo Inc. Rapid pharmaceutical identification and verification system
US20050097021A1 (en) * 2003-11-03 2005-05-05 Martin Behr Object analysis apparatus
EP1699422A4 (en) * 2003-12-31 2009-04-29 Univ South Carolina Thin-layer porous optical sensors for gases and other fluids
DE102004008321B3 (en) * 2004-02-20 2005-11-17 Fette Gmbh Method and device for quality control in the manufacture of tablets
US20070201136A1 (en) * 2004-09-13 2007-08-30 University Of South Carolina Thin Film Interference Filter and Bootstrap Method for Interference Filter Thin Film Deposition Process Control
US7053373B1 (en) 2005-01-19 2006-05-30 Thermo Electron Scientific Instruments Llc Infrared spectrometer with automated tablet sampling
EP1974201A1 (en) * 2005-11-28 2008-10-01 University of South Carolina Optical analysis system for dynamic, real-time detection and measurement
EP1969326B1 (en) 2005-11-28 2020-06-10 Ometric Corporation Optical analysis system and method for real time multivariate optical computing
US8345234B2 (en) * 2005-11-28 2013-01-01 Halliburton Energy Services, Inc. Self calibration methods for optical analysis system
US20070166245A1 (en) * 2005-11-28 2007-07-19 Leonard Mackles Propellant free foamable toothpaste composition
DE102006002359B4 (en) * 2006-01-18 2009-01-02 Fette Gmbh Apparatus and method for monitoring the production of tablets in a rotary press
US20070294094A1 (en) * 2006-06-20 2007-12-20 Ometric Corporation Methods of customizing, licensing and sustaining a technology option to meet a customer requirement
US9170154B2 (en) 2006-06-26 2015-10-27 Halliburton Energy Services, Inc. Data validation and classification in optical analysis systems
WO2008057912A2 (en) * 2006-11-02 2008-05-15 University Of South Carolina Multi-analyte optical computing system
EP2140238B1 (en) * 2007-03-30 2020-11-11 Ometric Corporation In-line process measurement systems and methods
US8184295B2 (en) * 2007-03-30 2012-05-22 Halliburton Energy Services, Inc. Tablet analysis and measurement system
US8213006B2 (en) * 2007-03-30 2012-07-03 Halliburton Energy Services, Inc. Multi-analyte optical computing system
US8283633B2 (en) * 2007-11-30 2012-10-09 Halliburton Energy Services, Inc. Tuning D* with modified thermal detectors
US8212213B2 (en) * 2008-04-07 2012-07-03 Halliburton Energy Services, Inc. Chemically-selective detector and methods relating thereto
US9713575B2 (en) 2009-05-07 2017-07-25 Gea Process Engineering Limited Tablet production module and method for continuous production of tablets
US9297749B2 (en) * 2012-03-27 2016-03-29 Innovative Science Tools, Inc. Optical analyzer for identification of materials using transmission spectroscopy
US8888005B2 (en) 2013-04-12 2014-11-18 David Prokop Uniquely identifiable drug dosage form units
JP7463926B2 (en) * 2020-09-23 2024-04-09 ウシオ電機株式会社 Tablet spectrometry method, tablet spectrometry device, tablet inspection method and tablet inspection device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349531A (en) * 1975-12-15 1982-09-14 Hoffmann-La Roche Inc. Novel dosage form
JPH0131957Y2 (en) * 1980-03-28 1989-10-02
DE3032334A1 (en) * 1980-08-27 1982-04-08 Dr. Madaus & Co, 5000 Köln OPTICAL SCANING DEVICE
DE3587927T2 (en) * 1984-07-23 1995-03-02 Mutual Corp Method and device for the automatic examination of tablets.
US4882493A (en) * 1988-03-09 1989-11-21 Indiana University Foundation Sample holders or reflectors for intact capsules and tablets and for liquid microcells for use in near-infrared reflectance spectrophotometers
JP2770243B2 (en) * 1989-09-21 1998-06-25 ライオンエンジニアリング株式会社 Tablet component amount inspection method and device
US5070874A (en) * 1990-01-30 1991-12-10 Biocontrol Technology, Inc. Non-invasive determination of glucose concentration in body of patients
DE4030699C1 (en) * 1990-09-28 1991-10-10 Bruker Analytische Messtechnik Gmbh, 7512 Rheinstetten, De
US5319200A (en) * 1991-06-05 1994-06-07 Zeltex, Inc. Rapid near-infrared measurement of nonhomogeneous samples
US5235409A (en) * 1991-08-13 1993-08-10 Varian Associates, Inc. Optical detection system for capillary separation columns
DE9114260U1 (en) * 1991-11-15 1992-01-23 Hans P. Friedrich Elektronik Gmbh, 7068 Urbach, De
US5214277A (en) * 1992-06-15 1993-05-25 Drennen Iii James K Near-infrared reflectance spectrometer system and related sample cell and sample support
US5338935A (en) * 1992-09-25 1994-08-16 Truett William L Positioning device for infrared accessories in FTIR spectrometers
CH692841A5 (en) * 1993-12-14 2002-11-29 Buehler Ag Sorter.
US5463223A (en) * 1994-01-24 1995-10-31 Patwong Technologies, Inc. Disposable all purpose micro sample holder
US5504332A (en) * 1994-08-26 1996-04-02 Merck & Co., Inc. Method and system for determining the homogeneity of tablets

Also Published As

Publication number Publication date
JPH09178658A (en) 1997-07-11
US5760399A (en) 1998-06-02
JP3967785B2 (en) 2007-08-29
EP0767369A3 (en) 1998-07-01
EP0767369A2 (en) 1997-04-09
JP2007225621A (en) 2007-09-06
CA2185613A1 (en) 1997-04-03

Similar Documents

Publication Publication Date Title
JP4070222B2 (en) Instrument for measuring near-infrared transmission spectrum of tablets
US6667808B2 (en) Multifunctional fourier transform infrared spectrometer system
JP3790827B2 (en) System, apparatus and method for measuring and analyzing diamond color
JP4229529B2 (en) Spectroscopic apparatus and method based on reflectance and transmittance, and probe for spectrometer
US4801804A (en) Method and apparatus for near infrared reflectance measurement of non-homogeneous materials
US7576855B2 (en) Spectrophotometric method and apparatus
US8150114B2 (en) Method for ensuring quality of a sample carrier
JP3088090B2 (en) Equipment for spectrometry analysis
US5708273A (en) Transflectance probe having adjustable window gap adapted to measure viscous substances for spectrometric analysis and method of use
EP0795129B1 (en) Apparatus for analysing blood and other samples
US5039225A (en) Apparatus for measurement of reflection density
US11781989B2 (en) Apparatuses for analyzing the optical properties of a sample
KR20010033480A (en) Sampling Apparatus
KR100691581B1 (en) Apparatus and method for analysing
JPS6191526A (en) Reading head, distance sensitivity thereof is reduced, reflecting photometer and spectrophotometer using said head and method of measuring component of body fluid by employingsaid meter
EP3830553B1 (en) Diffuse reflectance apparatus
PT807810E (en) DEVICE FOR AUTOMATIC ANALYSIS OF SAMPLES IN BOTTLES
KR20000051127A (en) Multifunctional Spectrophotometer with CCD detector and Integrating Sphere
JPH0239212A (en) Heating and temperature controller for organism sample container
JP2000009740A (en) Blood text device and dispensation device
JPH023467B2 (en)
JPH03246466A (en) Transfer method for chromatograph
JPH02147938A (en) Light source apparatus for measuring density

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees