JP4069812B2 - Garbage disposal equipment - Google Patents

Garbage disposal equipment Download PDF

Info

Publication number
JP4069812B2
JP4069812B2 JP2003180809A JP2003180809A JP4069812B2 JP 4069812 B2 JP4069812 B2 JP 4069812B2 JP 2003180809 A JP2003180809 A JP 2003180809A JP 2003180809 A JP2003180809 A JP 2003180809A JP 4069812 B2 JP4069812 B2 JP 4069812B2
Authority
JP
Japan
Prior art keywords
garbage
lid
processing unit
predetermined period
microbial decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003180809A
Other languages
Japanese (ja)
Other versions
JP2005013835A (en
Inventor
英夫 富田
剛 羽田野
達夫 吉川
義幸 東山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003180809A priority Critical patent/JP4069812B2/en
Publication of JP2005013835A publication Critical patent/JP2005013835A/en
Application granted granted Critical
Publication of JP4069812B2 publication Critical patent/JP4069812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は主に家庭の台所で発生する生ごみを減量及び減容させる生ごみ処理装置に関するものである。
【0002】
【従来の技術】
従来、この種の生ごみ処理装置は生ごみを減量、減容している(例えば、特許文献1参照)。
【0003】
図9は、前記公報に記載された従来の生ごみ処理装置を示すものである。図9において、微生物の生息場所となるおがくずや未分解の処理物等の微生物担体1を入れた微生物分解槽2と、投入された生ごみ3と微生物担体1とを混合、撹拌するための回転撹拌棒4及びその駆動装置5を有し、投入された生ごみ3を微生物により最終的には二酸化炭素と水に分解し、生ごみ3を減量及び減容するもので、微生物分解槽2内の温度を適正に保つための加熱手段6、酸素(空気)を供給するための換気ファン7と吸気口8、それらの制御を行う制御手段(図示せず)を備え、微生物の働きにより生ごみを分解し減量及び減容する生ごみ処理装置が一般的に知られている。また、乾燥室9は微生物分解槽2の上部に設けられ、回転可能なプレート10で仕切られている。乾燥室9には、吸気ファン11を有する吸気口12が設けられると共に、排気ファン13を有する排気口14が設けられる。
【0004】
生ごみ処理装置は微生物が生ごみ3を分解する方式のため、この微生物を生息させ、活性化させるための環境を作る必要がある。1つには、微生物が多く生息でき増殖するための場所が必要であり、微生物担体1には、おがくずのような木片チップ、多孔質のプラスチック片等が用いられている。2つには、微生物による分解に必要な条件である酸素(空気)が、微生物担体1に回転撹拌棒4の攪拌作用により供給される。また、3つには、適度の湿度が必要であり、乾燥しすぎの状態では、微生物は生存できなし、水分の多い状態でも分解の能力が低下する。
【0005】
そこで、生ごみが乾燥室9に投入されると、空気が吸気ファン11の吸引作用により吸気口12から乾燥室9に供給され、再び排気ファン13の排気作用により排気口14から排出される。その際、空気が乾燥室9に投入された生ごみを乾燥する。次に、生ごみ3の乾燥終了後プレート10が回転して、乾燥した生ごみ3は微生物分解槽2内に落下する。続いて、制御手段が加熱手段6の加熱量と換気ファン7の換気能力を調整して微生物担体1の水分を一定に保っている。特に、大量の生ごみ3や水分の多い生ごみ3が乾燥室9に投入された場合でも、事前に生ごみ3をある程度乾燥しているので、制御手段が加熱手段6の加熱量と換気ファン7の換気能力を上げて微生物担体1の水分調整をできる。
【0006】
【特許文献1】
特開平9−29211号公報(第2頁、第9図)
【0007】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、乾燥室9にコストがかかり、大きさが乾燥室9の分だけ大きくなるという課題を有していた。また、乾燥室9は生ごみ3の汁や生ごみ3自身の付着により乾燥室9の内壁が汚れ、かつ微生物分解槽2の微生物担体1の状態がプレート10に視界を遮られ観察できないという課題を有していた。更に、微生物担体1の水分を一定に保っているが、回転撹拌棒4の攪拌作用により微生物担体1に供給される酸素(空気)がまだ不十分なために臭気が発生するという課題を有していた。なお、攪拌頻度を多くすると、微生物担体1が細かく破砕されるので、微生物担体1は固まりやすくなり、逆に酸素(空気)が微生物担体1に供給され難くなる。
【0008】
本発明は、前記従来の課題を解決するもので、低コスト・コンパクトと汚れの防止と微生物担体の観察及び低臭気化を図った生ごみ処理装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
前記従来の課題を解決するために、本発明の生ごみ処理装置は、微生物担体を内蔵し生ごみを微生物により分解させる微生物分解処理部と、前記微生物分解処理部に内蔵した攪拌手段と、前記微生物分解処理部の上部に設けた吸気口および排気口と、前記吸気口または前記排気口に対応して設けた換気ファンと、前記微生物分解処理部に生ごみを投入する際に開閉する蓋と、前記蓋の開閉を検知する蓋開閉検知部とを備え、前記換気ファンは、前記微生物分解処理部の上部を連続的に換気すると共に、前記蓋開閉検知部が前記蓋の開いたことを検知した時点より所定期間前記攪拌手段の駆動を禁止することで、前記微生物分解処理部に投入され前記蓋が閉じられた状態での生ごみを微生物担体の表面に留めかつ前記生ごみの表面を乾燥させるものとし、前記所定期間は、前記生ごみの水分を10〜5 0%減少させる期間としたものである。
【0010】
これによって、換気ファンが常に駆動して、空気が吸気口から微生物分解処理部に導入され、続いて、微生物分解処理部を通過した後、排気口から排気される。すなわち、微生物分解処理部の換気が連続的に行われている。そして、微生物分解処理部に生ごみが投入されることを検知した後、所定期間攪拌手段の駆動を禁止するので、生ごみは微生物担体の表面に留まっている。他方、吸気口から導入された空気は、先に生ごみの表面に沿って流れながら生ごみを乾燥する。また、空気は、微生物分解処理部の微生物担体の表面近傍に浸透する。これらの結果、微生物分解処理部では良好な通気性が確保できる。更に、従来の乾燥室の乾燥機能を微生物分解処理部の上部に一元化したので、従来例の視界を遮るプレートがなく、微生物分解処理部を開口することにより微生物担体の状態が直接観察できる。
【0011】
【発明の実施の形態】
請求項1に記載の発明は、微生物担体を内蔵し生ごみを微生物により分解させる微生物分解処理部と、前記微生物分解処理部に内蔵した攪拌手段と、前記微生物分解処理部の上部に設けた吸気口および排気口と、前記吸気口または前記排気口に対応して設けた換気ファンと、前記微生物分解処理部に生ごみを投入する際に開閉する蓋と、前記蓋の開閉を検知する蓋開閉検知部とを備え、前記換気ファンは、前記微生物分解処理部の上部を連続的に換気すると共に、前記蓋開閉検知部が前記蓋の開いたことを検知した時点より所定期間前記攪拌手段の駆動を禁止することで、前記微生物分解処理部に投入され前記蓋が閉じられた状態での生ごみを微生物担体の表面に留めかつ前記生ごみの表面を乾燥させるものとし、前記所定期間は、前記生ごみの水分を10〜50%減少させる期間としたものである。
【0012】
これによって、換気ファンが常に駆動して、空気が吸気口から微生物分解処理部に導入され、続いて、微生物分解処理部の上部を通過した後、排気口から排気される。すなわち、微生物分解処理部の換気が略連続的に行われている。そして、微生物分解処理部に生ごみが投入されることを検知した後、所定期間攪拌手段の駆動を禁止するので、生ごみは微生物担体の表面に留まっている。
【0013】
他方、吸気口から導入された空気は、先の生ごみ表面に沿って流れながら生ごみを乾燥する。この乾燥分、水分の多い生ごみが投入された場合でも、微生物分解処理部での水分調整ができるので、微生物分解処理部では通気性が確保でき、生ごみの分解性能が継続できる。
【0014】
また、生ごみの表面が乾いているので、生ごみ自身や生ごみと微生物担体の絡み付きが抑制でき、生ごみや微生物担体の小粒化が防止できる。この結果、微生物分解処理部では良好な通気性が確保できる。更に、生ごみの表面が微生物担体等から吸湿して湿ってくるまでの間、微生物分解が抑えられる(生ごみの分解性能が平準化)ので、臭気成分の発生ピークが小さくなり、臭いが少なくなる。更に、従来例の乾燥室の乾燥機能を微生物分解処理部の上部に一元化したので、低コスト化とコンパクト化が図れる。また、従来例の乾燥室がないので、生ごみ処理装置の汚れが防止でき、かつ従来例の視界を遮るプレートがないので、微生物分解処理部を開口する際に微生物担体の状態が直接観察できる。
【0015】
請求項2に記載の発明は、微生物担体を内蔵し生ごみを微生物により分解させる微生物分解処理部と、前記微生物分解処理部に内蔵した攪拌手段と、前記微生物分解処理部の上部に設けた吸気口および排気口と、前記吸気口または前記排気口に対応して設けた換気ファンと、空気室と前記空気室に空気を送り込む乾燥ファンと前記空気室に送り込まれた空気を前記微生物分解処理部に向かって噴出する空気噴出口とから構成した送風乾燥処理部と、前記微生物分解処理部に生ごみを投入する際に開閉する蓋と、前記蓋の開閉を検知する蓋開閉検知部とを備え、前記換気ファンは、前記微生物分解処理部の上部を連続的に換気すると共に、前記蓋開閉検知部が前記蓋の開いたことを検知した時点より所定期間前記攪拌手段の駆動を禁止し、次に前記蓋開閉検知部が前記蓋の閉じたことを検知した場合、前記送風乾燥処理部の乾燥ファンを前記所定期間内駆動させることで、前記微生物分解処理部に投入され前記蓋が閉じられた状態での生ごみを微生物担体の表面に留めかつ前記生ごみの表面を乾燥させるものとし、前記所定期間は、前記生ごみの水分を10〜50%減少させる期間としたものである。
【0016】
そして、微生物分解処理部に生ごみが投入されることを検知した後、所定期間攪拌手段の駆動を禁止するので、生ごみは微生物担体の表面に留まっている。他方、乾燥ファンから送風乾燥処理部へ送風された空気は、空気噴出口から噴出し、噴出された空気は先の生ごみの上部から下部、側部へ貫通しながら生ごみ全体を乾燥する。その際、空気は微生物担体の表面近傍にも浸透するので、酸素(空気)が微生物担体に十分に供給される。これらの結果、微生物分解処理部では良好な通気性が確保できる。すなわち、部分的な嫌気性の微生物分解による臭気発生が防止できる。かつ、この乾燥分、大量の生ごみや水分の多い生ごみが投入された場合でも、微生物分解処理部での水分調整ができるので、微生物分解処理部では通気性が確保でき、生ごみの分解性能が継続できる。
【0017】
また、生ごみの表面が乾いているので、生ごみ自身や生ごみと微生物担体の絡み付きが抑制でき、生ごみや微生物担体の小粒化が防止できる。この結果、微生物分解処理部では良好な通気性が確保できる。更に、生ごみの表面が微生物担体等から吸湿して湿ってくるまでの間、微生物分解が抑えられるので、臭気成分の発生ピークが小さくなり、臭いが少なくなる。他方、従来例の乾燥室の乾燥機能を微生物分解処理部の上部に一元化したので、低コスト化とコンパクト化が図れる。また、従来例の乾燥室がないので、生ごみ処理装置の汚れが防止でき、かつ従来例の視界を遮るプレートがないので、微生物分解処理部を開口する際に微生物担体の状態が直接観察できる。
【0018】
請求項3に記載の発明は、特に、請求項2に記載の発明において、蓋開閉検知部が蓋の開いたことを検知した時点より攪拌手段の駆動を禁止する所定期間を第2の所定期間とし、次に前記蓋開閉検知部が前記蓋の閉じたことを検知したした時点より送風乾燥処理部の乾燥ファンを駆動させる所定期間を第1の所定期間とし、前記第2の所定期間は、前記第1の所定期間より短く設定し、攪拌手段が前記第1の所定期間より短い第2の所定期間経過後駆動するものである。
【0019】
そして、微生物分解処理部に生ごみが投入されることを検知した後、第2の所定期間攪拌手段の駆動を禁止するので、生ごみは微生物担体の表面に留まっている。同時に、第1の所定期間乾燥ファンは駆動する。続いて、第1の所定期間乾燥ファンから送風乾燥処理部へ送風された空気は、空気噴出口から噴出し、噴出された空気は先の生ごみの上部から下部、側部へ貫通しながら生ごみ全体を乾燥する。次に、第2の所定期間経過後、攪拌手段が駆動するので、微生物担体に酸素(空気)を供給できる。この結果、微生物担体が嫌気性雰囲気になることを防止できる。
【0020】
請求項4に記載の発明は、特に、請求項1と2に記載の微生物分解処理部に生ごみを投入する際、蓋開閉検知部が蓋の開きを検知した時刻と、この検知直前の攪拌手段が駆動した時刻との間隔が判定値より長い場合、所定期間を前記間隔の期間分短く設定するものである。
【0021】
そして、微生物分解処理部に生ごみが投入されることを検知した後、この時刻とこの検知直前の攪拌手段が駆動した時刻との間隔が判定値より長い場合、所定期間を短く設定する。この結果、攪拌手段の駆動を禁止した間隔がある期間以下に抑えられる。すなわち、生ごみが投入される時刻と、攪拌手段が駆動した時刻との間隔が長い場合でも、攪拌手段の駆動により酸素(空気)が微生物担体に短時間で供給されるので、部分的な嫌気性の微生物分解による臭気発生が防止できる。
【0022】
請求項5に記載の発明は、特に、請求項1と2に記載の吸気口に空気温センサが設けられ、空気温が高く前記空気温センサの検知値が判定値より高い場合、所定期間を半減するものである。
【0023】
微生物担体の温度が高い場合、好気生微生物分解が活発になり、微生物担体内の酸素が急激に消費されて、微生物担体内が嫌気性雰囲気になりやすい。そして、微生物担体の温度が判定温度より高い場合、所定期間を短く再設定する。この結果、微生物担体の温度に応じて攪拌手段の駆動を禁止した間隔がある期間以下に抑えられる。すなわち、微生物担体の温度が高い場合、攪拌手段の駆動により酸素(空気)が微生物担体に短時間で供給されるので、部分的な嫌気性の微生物分解による臭気発生が防止できる。
【0024】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0025】
(実施例1)
図1は、本発明の実施例1における生ごみ処理装置の構成図を、図2は同生ごみ処理装置のフローチャートを、それぞれ示すものである。
【0026】
図1において、21は有底状の微生物分解処理部であり、微生物分解槽22と3本の攪拌手段23とから構成されている。攪拌手段23は回転撹拌棒24と駆動装置25とから構成されている。26は微生物の生息場所となるおがくずや未分解の処理物等の微生物担体である。そして、回転撹拌棒24は投入された生ごみ27と微生物担体26とを混合、撹拌し、微生物担体26に酸素(空気)を供給する。28は微生物分解槽22内の温度を適正に保つための電気ヒータからなる加熱手段である。29は微生物分解槽22の上部に、生ごみ27を投入する際に開閉する蓋である。30は微生物分解槽22の側面上部に開口した排気口であり、換気ファン31を内蔵している。32は吸気口であり、排気口30に対応している。33は蓋29の開閉を検知する磁石とリードスイッチから成る蓋開閉検知部である。
【0027】
以上のように構成された生ごみ処理装置について、以下その動作、作用を説明する。
【0028】
まず、電源が供給されると換気ファン31が運転を開始し、空気が吸気口32から微生物分解処理部21の上部に流入する。続いて、この空気は換気ファン31の排気作用により排気口30から外へ排気される。すなわち、微生物分解処理部21の上部を略連続的に換気する。
【0029】
そして、蓋29を開けると、蓋開閉検知部33は蓋29が開いたことを検知する。この検知により、直ちに所定期間(例えば、4時間)駆動装置25の駆動を禁止する。次に、生ごみ27を微生物分解槽22に投入後、再び蓋29を閉める。この動作の結果、生ごみ27は微生物担体26の表面に留まっている。他方、吸気口32から導入された空気が、生ごみ27表面に沿って流れながら生ごみ27から発生する水蒸気を直ちに運び出す(生ごみ27の雰囲気の水蒸気分圧が下がる)ので、生ごみ27は乾燥する。この乾燥分、水分の多い生ごみ27が投入された場合でも、微生物分解処理部21での水分調整ができるので、微生物分解処理部21では通気性が確保でき、生ごみ27の分解性能が継続できる。
【0030】
また、生ごみ27表面が乾いているので、生ごみ27自身や生ごみ27と微生物担体26の絡み付きが抑制でき、生ごみ27や微生物担体26の小粒化が防止できる。この結果、微生物分解処理部21では良好な通気性が確保できる。更に、生ごみ27の表面が微生物担体26等から吸湿して湿ってくるまでの間、微生物分解の進行速度が抑えられる(生ごみ27の分解性能が平準化)ので、臭気成分の発生ピークが小さくなり、臭いが少なくなる。
【0031】
その後、蓋開閉検知部33が蓋29の開を検知してから所定時間経過後、攪拌手段23が駆動装置25により駆動し、回転撹拌棒24が乾燥した生ごみ27(例えば水分は10〜50%減)と微生物担体26とを混合する。他方、微生物分解槽22の微生物担体26が所定の温度(例えば30℃程度)に維持するように、加熱手段28がON/OFF制御される。
【0032】
また、攪拌手段23は微生物担体26と乾燥した生ごみ27を間欠的に混合、撹拌し、微生物担体26に酸素(空気)を供給する。同時に、回転撹拌棒24の攪拌動作は微生物担体26の水蒸気を微生物分解処理部21の上部空間に放出させる。
【0033】
更に、換気ファン31が、排気口30から微生物分解処理部21内の水蒸気や空気等を排気するので、微生物担体26の水分調整(水分を減らす)ができる。また、換気ファン31が吸気口32から微生物分解処理部21へ空気を導入する。次に、微生物担体26に生息する微生物は乾燥した生ごみ27を最終的には二酸化炭素と水に分解し、乾燥した生ごみ27を減量及び減容する。
【0034】
なお、微生物担体26が乾燥しやすい夏等の場合、換気ファン31はON/OFF駆動しても、同様の効果が得られる。
【0035】
以上のように、本実施例においては、排気口30に対応して設けた換気ファン31と、蓋開閉検知部33は蓋29が開いたことを検知後所定期間攪拌手段23の駆動を禁止することにより、水分の多い生ごみ27が投入された場合でも、微生物分解処理部21での水分調整ができる。この結果、微生物分解処理部21では通気性が確保でき、生ごみ27の分解性能が継続できる。また、生ごみ27の表面が乾いているので、生ごみ27自身や生ごみ27と微生物担体26の絡み付きが抑制でき、生ごみ27や微生物担体26の小粒化が防止できる。この結果、微生物分解処理部21では良好な通気性が確保できる。更に、生ごみ27の表面が乾いているので、生ごみ27の表面が微生物担体26等から吸湿して湿ってくるまでの間、微生物分解が抑えられる(生ごみ27の分解性能が平準化)ので、臭気成分の発生ピークが小さくなり、臭いが少なくなる。
【0036】
(実施例2)
図3は、本発明の実施例2における生ごみ処理装置の構成図を、図4は同生ごみ処理装置の平面図を、図5は同生ごみ処理装置のフローチャートを、それぞれ示すものである。尚、実施例1と同一部分には、同一符号を付与して、その詳細な説明を省略する。
【0037】
実施例1の構成と異なるところは、送風により生ごみ34を乾燥させる送風乾燥処理部35は微生物分解処理部36の上部側面に設けられ、空気室37と乾燥ファン38及び生ごみ34を乾燥させる空気を微生物分解処理部36に対応して噴出する多数の空気噴出口39とから構成され、蓋開閉検知部40が蓋41の開を検知した場合所定期間攪拌手段42の駆動を禁止し、次に蓋開閉検知部40が蓋41の閉を検知した場合先の所定期間内乾燥ファン38が駆動する点である。
【0038】
以上のように構成された生ごみ処理装置について、以下その動作、作用を説明する。
【0039】
まず、電源が供給されると換気ファン31が運転を開始し、空気が吸気口32から微生物分解処理部21の上部に流入する。続いて、この空気は換気ファン31の排気作用により排気口30から外へ排気される。すなわち、微生物分解処理部36の上部を略連続的に換気する。
【0040】
そして、生ごみ34を微生物分解槽22に投入するために蓋41を開けると、蓋開閉検知部40は蓋41が開いたことを検知する。この検知により、直ちに所定期間(例えば、4時間)駆動装置25の駆動を禁止する。次に、生ごみ34を微生物分解槽22に投入後、再び蓋40を閉めると、蓋開閉検知部40は蓋41が閉じられたことを検知する。この検知により、直ちに先の所定期間内乾燥ファン38が駆動する。これら一連の動作の結果、生ごみ34は微生物担体26の表面に留まっている。他方、乾燥ファン38が送風を開始し、空気室37に空気が送り込まれる。
【0041】
次に、空気室37に送り込まれた空気は、空気噴出口39から微生物分解処理部36に向かって噴出する。吸気口32から微生物分解処理部36の上部に流入する空気と空気噴出口39から噴出された空気は生ごみ34の上部から下部に貫通し、そして微生物担体26に衝突後、生ごみ34の側部から生ごみ34の外へ出て排気口30から排気される。その際に、空気が生ごみ34から発生する水蒸気を直ちに運び出すので、生ごみ34は十分に乾燥する。また、空気は微生物担体26の表面近傍にも浸透するので、酸素(空気)が微生物担体26に十分に供給される。この十分な乾燥分、大量の生ごみ34や水分の多い生ごみ34が投入された場合でも、微生物分解処理部36での水分調整ができるので、微生物分解処理部36では通気性が確保でき、生ごみ34の分解性能が継続できる。
【0042】
次に、蓋開閉検知部40が蓋41の開を検知してから所定時間経過後(例えば4時間後)、攪拌手段42が駆動装置25により駆動し、かつ換気ファン31が停止する。その後、攪拌手段42は間欠的に運転する。その際、生ごみ34の表面が乾いているので、生ごみ34自身や生ごみ34と微生物担体26の絡み付きが抑制でき、生ごみ34や微生物担体26の小粒化が防止できる。この結果、微生物分解処理部36では良好な通気性が確保できる。更に、生ごみ34の表面が微生物担体26等から吸湿して湿ってくるまでの間、微生物分解の進行速度が抑えられるので、臭気成分の発生ピークが小さくなり、臭いが少なくなる。
【0043】
更に、従来例の乾燥室の乾燥機能を微生物分解処理部36の上部に一元化したので、低コスト化とコンパクト化が図れる。また、従来例の乾燥室がないので、生ごみ処理装置の汚れが防止でき、かつ従来例の視界を遮るプレートがないので、蓋41を開ける際に微生物担体26の状態が直接観察できる。
【0044】
なお、換気ファン31の排気作用により、空気噴出口39から噴出した空気は吸気口32から外へ逆流することは少なく、排気口30からほとんど排気される。また、微生物担体26が乾燥しやすい夏等の場合、換気ファン31はON/OFF駆動しても、同様の効果が得られる。
【0045】
以上のように、本実施例においては、空気室37と乾燥ファン38及び生ごみ34を乾燥させる空気を微生物分解処理部36に対応して噴出する空気噴出口39とから構成した送風乾燥処理部35と、蓋開閉検知部40が蓋41の開を検知した場合所定期間攪拌手段42の駆動を禁止し、次に蓋開閉検知部40が蓋41の閉を検知した場合先の所定期間内乾燥ファン38が駆動するので、従来例の乾燥室の乾燥機能を微生物分解処理部36の上部に一元化した分、低コスト化とコンパクト化が図れる。また、従来例の乾燥室がないので、生ごみ処理装置の汚れが防止でき、かつ従来例の視界を遮るプレートがないので、蓋41を開ける際に微生物担体26の状態が直接観察できる。更に、大量の生ごみ34や水分の多い生ごみ34が投入された場合でも、微生物分解処理部36での水分調整と生ごみ34の小粒化防止できる。更に、臭気成分の発生ピークが小さくなり、臭いが少なくなる。
【0046】
(実施例3)
図6は、本発明の実施例3における生ごみ処理装置のフローチャートを示すものである。尚、実施例2と同一部分には、同一符号を付与して、その詳細な説明を省略する。
【0047】
実施例2の構成と異なるところは、乾燥ファン38が第1の所定期間駆動し、攪拌手段42を第1の所定期間より短い第2の所定期間経過後駆動させる点である。
【0048】
以上のように構成された生ごみ処理装置について、以下その動作、作用を説明する。
【0049】
そして、生ごみ34を微生物分解槽22に投入するために蓋41を開けると、蓋開閉検知部40は蓋41が開いたことを検知する。この検知により、直ちに第2の所定期間(例えば、2時間)駆動装置25の駆動を禁止する。次に、生ごみ34を微生物分解槽22に投入後、再び蓋40を閉めると、蓋開閉検知部40は蓋41が閉じられたことを検知する。この検知により、直ちに第1の所定期間(例えば、4時間)内乾燥ファン38を駆動する。これら一連の動作の結果、生ごみ34は微生物担体26の表面に留まっている。続いて、第1の所定期間乾燥ファン38から送風乾燥処理部36へ送風された空気は、空気噴出口39から噴出し、噴出された空気は先の生ごみ34の上部から下部、側部へ貫通しながら生ごみ34を乾燥する。次に、第2の所定期間経過後、攪拌手段42が駆動するので、微生物担体26に酸素(空気)を供給できる。この結果、微生物担体26が嫌気性雰囲気になることを抑制できる。
【0050】
以上のように、本実施例においては、乾燥ファン38が第1の所定期間駆動し、攪拌手段42を第1の所定期間より短い第2の所定期間経過後駆動させるので、微生物担体26が嫌気性雰囲気になることを抑制できる。
【0051】
(参考例1)
図6は、本発明の参考例1における生ごみ処理装置のフローチャートを示すものである。尚、実施例3と同一部分には、同一符号を付与して、その詳細な説明を省略する。
【0052】
実施例3の構成と異なるところは、第2の所定期間経過後攪拌手段42は略1回転で正転し、次に1回転以下で逆転する点である。
【0053】
以上のように構成された生ごみ処理装置について、以下その動作、作用を説明する。
【0054】
そして、蓋開閉検知部40は蓋41が開いたことを検知した場合、直ちに第2の所定期間(例えば、2時間)駆動装置25の駆動を禁止する。次に、生ごみ34投入後、再び蓋40を閉めると、蓋開閉検知部40は蓋41が閉じられたことを検知する。この検知により、直ちに第1の所定期間(例えば、4時間)内乾燥ファン38を駆動する。これら一連の動作の結果、生ごみ34は微生物担体26の表面に留まっている。そして、第1の所定期間乾燥ファン38から送風乾燥処理部36へ送風された空気は、空気噴出口39から噴出し、噴出された空気は先の生ごみ34を乾燥する。
【0055】
次に、第2の所定期間経過後、攪拌手段42が略1回転で正転して微生物担体26全体を十分に攪拌し、次に攪拌手段42が1回転以下で逆転して微生物担体26を逆方向から攪拌するので、微生物担体26に酸素(空気)を十分に供給できる。他方、攪拌手段42が駆動後微生物担体26に埋もれていない生ごみ34は、場所や方向を変えて微生物担体26の表面に留まっている。この結果、噴出された空気は生ごみ34を更に乾燥できる。この結果、微生物担体26が嫌気性雰囲気になることを防止でき、臭いが少なく、分解性能に優れた好気性微生物分解が維持できる。
【0056】
以上のように、本参考例においては、攪拌手段42は略1回転で正転し、次に1回転以下で逆転するので、微生物担体26が嫌気性雰囲気になることを防止できる。
【0057】
(参考例2)
図6は、本発明の参考例2における生ごみ処理装置のフローチャートを示すものである。尚、実施例3と同一部分には、同一符号を付与して、その詳細な説明を省略する。
【0058】
実施例3の構成と異なるところは、第2の所定期間経過後攪拌手段42は略同回転数の正転と逆転で駆動する点である。
【0059】
以上のように構成された生ごみ処理装置について、以下その動作、作用を説明する。
【0060】
そして、蓋開閉検知部40は蓋41が開いたことを検知した場合、直ちに第2の所定期間(例えば、2時間)駆動装置25の駆動を禁止する。次に、生ごみ34投入後、再び蓋40を閉めると、蓋開閉検知部40は蓋41が閉じられたことを検知する。この検知により、直ちに第1の所定期間(例えば、4時間)内乾燥ファン38を駆動する。これら一連の動作の結果、生ごみ34は微生物担体26の表面に留まっている。
【0061】
続いて、第1の所定期間乾燥ファン38から送風乾燥処理部36へ送風された空気は、空気噴出口39から噴出し、噴出された空気は先の生ごみ34を乾燥する。次に、第2の所定期間経過後、攪拌手段42が半回転数の正転と逆転で駆動し、比較的短時間(例えば1時間)間欠攪拌するので、微生物担体26に酸素(空気)を供給できる。この結果、微生物担体26が嫌気性雰囲気になることを抑制できる。
【0062】
他方、正転の攪拌手段42により生ごみは微生物担体26に埋まるが、引続き逆転の攪拌手段42により生ごみ34は掘起されるので、生ごみ34の大部分は微生物担体26の表面に留まっている。すなわち、生ごみ34は、場所や方向を変えて微生物担体26の表面に留まっている。この結果、噴出された空気はこの生ごみ34の上部から下部、側部へ貫通しながら生ごみ34を更に十分に乾燥できる。この十分な乾燥分、大量の生ごみ34や水分の多い生ごみ34が投入された場合でも、微生物分解処理部36での水分調整ができるので、微生物分解処理部36では通気性が確保でき、生ごみ34の分解性能が継続できる。
【0063】
以上のように、本参考例においては、攪拌手段42は略同回転数の正転と逆転で駆動するので、大量の生ごみ34や水分の多い生ごみ34が投入された場合でも、微生物分解処理部36では良好な通気性が確保できる。
【0064】
(実施例4)
図7は、本発明の実施例4における生ごみ処理装置のフローチャートを示すものである。尚、実施例2と同一部分には、同一符号を付与して、その詳細な説明を省略する。
【0065】
実施例2の構成と異なるところは、蓋開閉検知部40が蓋41の開いたことを検知した時刻と、この検知直前の攪拌手段42が駆動した時刻との間隔が判定値(例えば2時間)より長い場合、所定期間を短く設定する点である。
【0066】
以上のように構成された生ごみ処理装置について、以下その動作、作用を説明する。
【0067】
そして、生ごみ34を微生物分解槽22に投入するために蓋41を開けると、蓋開閉検知部40は蓋41が開いたことを検知する。その際、この検知した時刻とこの検知直前の攪拌手段42が駆動した時刻との間隔が判定値より短い場合、直ちに所定期間(例えば、4時間)駆動装置25の駆動を禁止する。逆に、検知した時刻とこの検知直前の攪拌手段42が駆動した時刻との間隔が判定値より長い場合、直ちに短く設定した所定期間(例えば、(6−間隔)時間)駆動装置25の駆動を禁止する。この結果、攪拌手段42の駆動を禁止した間隔が6時間以下に抑えられる。すなわち、生ごみ34が投入される時刻と、攪拌手段42が駆動した時刻との間隔が例えば2時間以上の場合でも、攪拌手段42の駆動により酸素(空気)が微生物担体26に、6時間以内に供給されるので、部分的な嫌気性の微生物分解による臭気発生が防止できる。
【0068】
以上のように、本実施例においては、蓋開閉検知部40が蓋41の開いたことを検知した時刻と、この検知直前の攪拌手段42が駆動した時刻との間隔が判定値より長い場合、所定期間を短く設定するので、部分的な嫌気性の微生物分解による臭気発生が防止できる。
【0069】
(実施例5)
図8は、本発明の実施例5における生ごみ処理装置のフローチャートを示すものである。
【0070】
実施例2の構成と異なるところは、空気温センサ43を吸気口32に設け、空気温が判定値(例えば、30℃)より高い場合、所定期間を半減する点である。
【0071】
以上のように構成された生ごみ処理装置について、以下その動作、作用を説明する。
【0072】
そして、生ごみ34を微生物分解槽22に投入するために蓋41を開けると、蓋開閉検知部40は蓋41が開いたことを検知する。その際、空気温センサ43の検知値が判定値より低い場合、直ちに所定期間(例えば、4時間)駆動装置25の駆動を禁止する。逆に、空気温センサ43の検知値が判定値より高い場合、半減した所定期間(例えば、2時間)駆動装置25の駆動を禁止する。この結果、攪拌手段42の駆動を禁止した間隔がある期間以下に抑えられる。すなわち空気温が高い場合、微生物分解処理部36の放熱損失が抑えられて微生物担体26の温度が上昇して好気生微生物分解が活発になり、微生物担体26内の酸素が急激に消費されるが、攪拌手段42の駆動により酸素(空気)が微生物担体26に短時間で供給されるので、部分的な嫌気性の微生物分解による臭気発生が防止できる。
【0073】
なお、空気温センサ43に限らず、微生物担体26の温度に相関しておればよく、例えば微生物分解槽22の温度により所定期間を減らしても同様の効果がえられる。
【0074】
以上のように、本実施例においては、空気温センサ43を吸気口32に設け、空気温が判定値より高い場合、所定期間を半減するので、部分的な嫌気性の微生物分解による臭気発生が防止できる。
【0075】
【発明の効果】
以上のように、請求項1から5に記載の発明によれば、低コスト・コンパクトと汚れの防止と微生物分解槽の観察及び低臭気化を図った。
【図面の簡単な説明】
【図1】 本発明の実施例1における生ごみ処理装置の構成図
【図2】 本発明の実施例1における生ごみ処理装置のフローチャート
【図3】 本発明の実施例2における生ごみ処理装置の構成図
【図4】 本発明の実施例2における生ごみ処理装置の平面構成図
【図5】 本発明の実施例2における生ごみ処理装置のフローチャート
【図6】 本発明の実施例3および参考例1、2における生ごみ処理装置のフローチャート
【図7】 本発明の実施例4における生ごみ処理装置のフローチャート
【図8】 本発明の実施例5における生ごみ処理装置のフローチャート
【図9】 従来の生ごみ処理装置の構成図
【符号の説明】
21、36 微生物処理部
23、42 攪拌手段
26 微生物担体
30 排気口
31 換気ファン
32 吸気口
35 送風乾燥処理部
37 空気室
38 乾燥ファン
39 空気噴出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a garbage disposal apparatus that reduces and reduces the volume of garbage generated mainly in a home kitchen.
[0002]
[Prior art]
Conventionally, this kind of garbage processing apparatus has reduced and reduced the volume of garbage (for example, refer patent document 1).
[0003]
FIG. 9 shows a conventional garbage disposal apparatus described in the publication. In FIG. 9, a microbial decomposition tank 2 containing a microbial carrier 1 such as sawdust and undecomposed processed material that becomes a habitat for microorganisms, and rotation for mixing and stirring the input garbage 3 and the microbial carrier 1. It has a stirring rod 4 and its driving device 5, and finally decomposes the input garbage 3 into carbon dioxide and water by microorganisms, and reduces and reduces the volume of garbage 3. In the microorganism decomposition tank 2, The heating means 6 for maintaining the temperature of the air properly, the ventilation fan 7 for supplying oxygen (air) and the intake port 8, and the control means (not shown) for controlling them are provided, and garbage is produced by the action of microorganisms. Garbage disposal apparatuses that decompose and reduce the volume and volume are generally known. The drying chamber 9 is provided at the upper part of the microbial decomposition tank 2 and is partitioned by a rotatable plate 10. The drying chamber 9 is provided with an intake port 12 having an intake fan 11 and an exhaust port 14 having an exhaust fan 13.
[0004]
Since the garbage disposal apparatus is a system in which microorganisms decompose garbage 3, it is necessary to create an environment for inhabiting and activating these microorganisms. One of them requires a place where many microorganisms can inhabit and grow, and the microorganism carrier 1 is made of wood chips such as sawdust, porous plastic pieces or the like. Secondly, oxygen (air), which is a condition necessary for decomposition by microorganisms, is supplied to the microorganism carrier 1 by the stirring action of the rotary stirring bar 4. In addition, three require moderate humidity, and microorganisms cannot survive in an excessively dry state, and the ability to decompose is reduced even in a state with much moisture.
[0005]
Therefore, when garbage is put into the drying chamber 9, air is supplied to the drying chamber 9 from the intake port 12 by the suction action of the intake fan 11, and is again discharged from the exhaust port 14 by the exhaust action of the exhaust fan 13. At that time, the garbage which the air was thrown into the drying chamber 9 is dried. Next, after the drying of the garbage 3 is finished, the plate 10 rotates, and the dried garbage 3 falls into the microbial decomposition tank 2. Subsequently, the control means adjusts the heating amount of the heating means 6 and the ventilation capacity of the ventilation fan 7 to keep the moisture of the microorganism carrier 1 constant. In particular, even when a large amount of garbage 3 or garbage 3 with a high amount of water is put into the drying chamber 9, since the garbage 3 is dried to some extent in advance, the control means controls the heating amount of the heating means 6 and the ventilation fan. The moisture capacity of the microorganism carrier 1 can be adjusted by increasing the ventilation capacity of 7.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-29211 (page 2, FIG. 9)
[0007]
[Problems to be solved by the invention]
However, the conventional configuration has a problem that the drying chamber 9 is costly and the size is increased by the amount corresponding to the drying chamber 9. In addition, the drying chamber 9 has a problem that the inner wall of the drying chamber 9 becomes dirty due to the juice of the garbage 3 and the garbage 3 itself, and the state of the microorganism carrier 1 in the microorganism decomposition tank 2 is blocked by the plate 10 and cannot be observed. Had. Furthermore, although the moisture of the microbial carrier 1 is kept constant, there is a problem that odor is generated because oxygen (air) supplied to the microbial carrier 1 due to the stirring action of the rotary stirring rod 4 is still insufficient. It was. If the agitation frequency is increased, the microbial carrier 1 is finely crushed, so that the microbial carrier 1 tends to harden, and conversely, oxygen (air) is hardly supplied to the microbial carrier 1.
[0008]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems, and an object thereof is to provide a garbage disposal apparatus that is low in cost and compact, prevents contamination, observes a microorganism carrier, and reduces odor.
[0009]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, a garbage treatment apparatus of the present invention includes a microbial decomposition treatment unit that incorporates a microbial carrier and decomposes garbage with microorganisms, a stirring unit incorporated in the microbial decomposition treatment unit, An intake port and an exhaust port provided at an upper portion of the microbial decomposition processing unit, a ventilation fan provided corresponding to the intake port or the exhaust port, and a lid that opens and closes when throwing garbage into the microbial decomposition processing unit; A lid opening / closing detection unit that detects opening / closing of the lid, and the ventilation fan continuously ventilates an upper part of the microorganism decomposition processing unit, and the lid opening / closing detection unit detects that the lid is opened. By prohibiting the driving of the agitating means for a predetermined period from the point of time, the garbage put into the microbial decomposition treatment unit and the lid closed is kept on the surface of the microorganism carrier and the surface of the garbage is dried. Make Cities, the predetermined period is obtained by a time period to reduce the water content of the food waste 10 to 5 0%.
[0010]
As a result, the ventilation fan is always driven, and air is introduced from the intake port into the microbial decomposition unit, and then passes through the microbial decomposition unit and is then exhausted from the exhaust port. That is, ventilation of the microbial decomposition processing unit is continuously performed. And after detecting that garbage is thrown into the microbial decomposition processing part, since the drive of a stirring means is prohibited for a predetermined period, garbage remains on the surface of a microorganism carrier. On the other hand, the air introduced from the intake port dries the garbage while flowing along the surface of the garbage first. Further, the air permeates near the surface of the microbial carrier in the microbial decomposition treatment unit. As a result, good air permeability can be secured in the microbial decomposition treatment section. Furthermore, since the drying function of the conventional drying chamber is unified at the top of the microbial decomposition processing unit, there is no plate that obstructs the view of the conventional example, and the state of the microbial carrier can be directly observed by opening the microbial decomposition processing unit.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 includes a microbial decomposition processing unit that incorporates a microbial carrier and decomposes garbage with microorganisms, a stirring means built in the microbial decomposition processing unit, and an intake air provided above the microbial decomposition processing unit. An opening and an exhaust port, a ventilation fan provided corresponding to the intake port or the exhaust port, a lid that opens and closes when throwing garbage into the microbial decomposition unit, and a lid opening and closing that detects opening and closing of the lid And the ventilation fan continuously ventilates the upper part of the microbial decomposition processing unit and drives the stirring means for a predetermined period from the time when the lid opening / closing detection unit detects that the lid is opened. Is prohibited, and the garbage in the state where the lid is closed after being put into the microbial decomposition treatment section is retained on the surface of the microorganism carrier and the surface of the garbage is dried, and the predetermined period is Raw The water is obtained by a time period to reduce 10-50%.
[0012]
As a result, the ventilation fan is always driven, and air is introduced into the microbial decomposition processing unit from the intake port, and subsequently passes through the upper part of the microbial decomposition processing unit and is then exhausted from the exhaust port. That is, ventilation of the microbial decomposition processing unit is performed substantially continuously. And after detecting that garbage is thrown into the microbial decomposition processing part, since the drive of a stirring means is prohibited for a predetermined period, garbage remains on the surface of a microorganism carrier.
[0013]
On the other hand, the air introduced from the intake port dries the garbage while flowing along the surface of the previous garbage. Even when the garbage containing a large amount of dry matter and moisture is added, the moisture can be adjusted in the microbial decomposition processing unit, so that the microbial decomposition processing unit can ensure air permeability and can continue the decomposition performance of the garbage.
[0014]
Moreover, since the surface of the garbage is dry, the entanglement between the garbage itself or the garbage and the microbial carrier can be suppressed, and the particle size of the garbage or the microbial carrier can be prevented. As a result, good air permeability can be ensured in the microbial decomposition treatment section. Furthermore, microbial decomposition is suppressed until the surface of the garbage absorbs moisture from the microbial carrier, etc. (degradation performance of the garbage is leveled), so that the peak of odor component generation is reduced and there is little odor. Become. Furthermore, since the drying function of the drying chamber of the conventional example is unified at the upper part of the microbial decomposition processing unit, cost reduction and compactness can be achieved. In addition, since there is no conventional drying chamber, the garbage processing apparatus can be prevented from being soiled and there is no plate that obstructs the field of view of the conventional example. .
[0015]
According to a second aspect of the present invention, there is provided a microbial decomposition processing unit that incorporates a microbial carrier and decomposes garbage with microorganisms, a stirring means built in the microbial decomposition processing unit, and an intake air provided above the microbial decomposition processing unit. An opening and an exhaust port; a ventilation fan provided corresponding to the intake port or the exhaust port; an air chamber; a drying fan that sends air to the air chamber; and the air sent to the air chamber An air blowing and drying unit configured to blow toward the air, a lid that opens and closes when throwing garbage into the microbial decomposition unit, and a lid opening and closing detection unit that detects opening and closing of the lid The ventilation fan continuously ventilates the upper part of the microbial decomposition processing unit and prohibits the driving of the stirring means for a predetermined period from the time when the lid open / close detection unit detects that the lid is opened. In When the lid opening / closing detection unit detects that the lid is closed, by driving the drying fan of the blowing drying processing unit within the predetermined period, the lid is closed by being put into the microbial decomposition processing unit The garbage is kept on the surface of the microorganism carrier and the surface of the garbage is dried, and the predetermined period is a period for reducing the moisture of the garbage by 10 to 50% .
[0016]
And after detecting that garbage is thrown into the microbial decomposition processing part, since the drive of a stirring means is prohibited for a predetermined period, garbage remains on the surface of a microorganism carrier. On the other hand, the air blown from the drying fan to the blow drying unit is ejected from the air outlet, and the ejected air dries the entire garbage while penetrating from the upper part to the lower part and the side part of the previous garbage. At that time, since air permeates also in the vicinity of the surface of the microbial carrier, oxygen (air) is sufficiently supplied to the microbial carrier. As a result, good air permeability can be secured in the microbial decomposition treatment section. That is, the generation of odor due to partial anaerobic microbial degradation can be prevented. In addition, even when a large amount of garbage or a large amount of garbage is thrown in, the moisture can be adjusted in the microbial decomposition treatment section, so that the microbial decomposition treatment section can ensure air permeability and decompose the garbage. Performance can be continued.
[0017]
Moreover, since the surface of the garbage is dry, the entanglement between the garbage itself or the garbage and the microbial carrier can be suppressed, and the particle size of the garbage or the microbial carrier can be prevented. As a result, good air permeability can be ensured in the microbial decomposition treatment section. Furthermore, since the microbial decomposition is suppressed until the surface of the garbage absorbs moisture from the microbial carrier or the like, the generation peak of the odor component is reduced and the odor is reduced. On the other hand, since the drying function of the drying chamber of the conventional example is unified at the upper part of the microbial decomposition processing unit, cost reduction and compactness can be achieved. In addition, since there is no conventional drying chamber, the garbage processing apparatus can be prevented from being soiled and there is no plate that obstructs the field of view of the conventional example. .
[0018]
The invention according to claim 3 is the second predetermined period, in particular, in the invention according to claim 2, the predetermined period for prohibiting the drive of the stirring means from the time when the lid opening / closing detection unit detects that the lid is opened. Then, a predetermined period for driving the drying fan of the blower drying processing unit from the time when the lid opening / closing detection unit detects that the lid is closed is a first predetermined period, and the second predetermined period is: The setting is made shorter than the first predetermined period, and the stirring means is driven after the elapse of a second predetermined period shorter than the first predetermined period.
[0019]
And after detecting that garbage is thrown into the microbial decomposition processing part, since the drive of a stirring means is prohibited for the 2nd predetermined period, garbage remains on the surface of a microorganism carrier. At the same time, the drying fan is driven for the first predetermined period. Subsequently, the air blown from the drying fan to the blower drying processing unit for the first predetermined period is ejected from the air outlet, and the ejected air is generated while penetrating from the upper part to the lower part and the side part of the previous garbage. Dry the entire garbage. Next, since the stirring means is driven after the second predetermined period has elapsed, oxygen (air) can be supplied to the microorganism carrier. As a result, the microbial carrier can be prevented from becoming an anaerobic atmosphere.
[0020]
The invention described in claim 4 particularly relates to the time when the lid open / close detection unit detects the opening of the lid when stirring the garbage into the microbial decomposition treatment unit according to claims 1 and 2, and the agitation just before this detection. When the interval from the time when the means is driven is longer than the determination value, the predetermined period is set shorter than the interval.
[0021]
Then, after detecting that garbage is put into the microbial decomposition processing unit, if the interval between this time and the time when the stirring means immediately before this detection is driven is longer than the determination value, the predetermined period is set short. As a result, the interval during which the driving of the stirring means is prohibited is suppressed to a certain period or less. That is, even when the interval between the time when the garbage is thrown in and the time when the stirring means is driven is long, oxygen (air) is supplied to the microbial carrier in a short time by driving the stirring means. Odor generation due to microbial degradation can be prevented.
[0022]
The invention according to claim 5 is provided with an air temperature sensor provided at the intake port according to claims 1 and 2, particularly when the air temperature is high and the detection value of the air temperature sensor is higher than the determination value. It will be halved.
[0023]
When the temperature of the microbial carrier is high, aerobic microbial degradation becomes active, oxygen in the microbial carrier is rapidly consumed, and the microbial carrier tends to become an anaerobic atmosphere. When the temperature of the microorganism carrier is higher than the determination temperature, the predetermined period is shortened and reset. As a result, the interval during which the driving of the stirring means is prohibited according to the temperature of the microorganism carrier can be suppressed to a certain period or less. That is, when the temperature of the microbial carrier is high, oxygen (air) is supplied to the microbial carrier in a short time by driving the stirring means, so that it is possible to prevent generation of odor due to partial anaerobic microbial decomposition.
[0024]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0025]
Example 1
FIG. 1 is a configuration diagram of a garbage disposal apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a flowchart of the garbage disposal apparatus.
[0026]
In FIG. 1, reference numeral 21 denotes a bottomed microbial decomposition treatment unit, which includes a microbial decomposition tank 22 and three stirring means 23. The stirring means 23 includes a rotary stirring rod 24 and a drive device 25. Reference numeral 26 denotes a microbial carrier such as sawdust or undecomposed processed material that becomes a habitat of microorganisms. The rotating stirring rod 24 mixes and stirs the garbage 27 and the microbial carrier 26, and supplies oxygen (air) to the microbial carrier 26. Reference numeral 28 denotes a heating means including an electric heater for keeping the temperature in the microbial decomposition tank 22 appropriately. A lid 29 opens and closes when the garbage 27 is put into the upper part of the microbial decomposition tank 22. Reference numeral 30 denotes an exhaust port that is opened in the upper part of the side surface of the microbial decomposition tank 22 and incorporates a ventilation fan 31. Reference numeral 32 denotes an intake port, which corresponds to the exhaust port 30. Reference numeral 33 denotes a lid opening / closing detection unit comprising a magnet for detecting opening / closing of the lid 29 and a reed switch.
[0027]
About the garbage processing apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
[0028]
First, when power is supplied, the ventilation fan 31 starts operation, and air flows from the intake port 32 into the upper part of the microbial decomposition processing unit 21. Subsequently, the air is exhausted from the exhaust port 30 by the exhaust action of the ventilation fan 31. That is, the upper part of the microbial decomposition processing unit 21 is ventilated substantially continuously.
[0029]
When the lid 29 is opened, the lid opening / closing detector 33 detects that the lid 29 is opened. By this detection, the driving of the driving device 25 is immediately prohibited for a predetermined period (for example, 4 hours). Next, after putting the garbage 27 into the microbial decomposition tank 22, the lid 29 is closed again. As a result of this operation, the garbage 27 remains on the surface of the microorganism carrier 26. On the other hand, the air introduced from the intake port 32 immediately carries the water vapor generated from the garbage 27 while flowing along the surface of the garbage 27 (the partial pressure of water vapor in the atmosphere of the garbage 27 is reduced). dry. Even when garbage 27 having a large amount of dry matter and moisture is added, moisture can be adjusted in the microbial decomposition processing unit 21, so that the microbial decomposition processing unit 21 can ensure air permeability, and the decomposition performance of the garbage 27 continues. it can.
[0030]
Further, since the surface of the garbage 27 is dry, the entanglement between the garbage 27 itself or the garbage 27 and the microorganism carrier 26 can be suppressed, and the particle size of the garbage 27 and the microorganism carrier 26 can be prevented. As a result, good ventilation can be ensured in the microbial decomposition treatment unit 21. Furthermore, since the progress rate of microbial decomposition is suppressed until the surface of the garbage 27 absorbs moisture from the microorganism carrier 26 and the like (the decomposition performance of the garbage 27 is leveled), the generation peak of the odor component is observed. Smaller and less odorous.
[0031]
Thereafter, after a predetermined time has elapsed after the lid opening / closing detection unit 33 detects the opening of the lid 29, the stirring means 23 is driven by the driving device 25, and the garbage 27 in which the rotary stirring rod 24 is dried (for example, moisture is 10-50). %) And the microbial carrier 26 are mixed. On the other hand, the heating means 28 is ON / OFF controlled so that the microbial carrier 26 in the microbial decomposition tank 22 is maintained at a predetermined temperature (for example, about 30 ° C.).
[0032]
The stirring means 23 intermittently mixes and stirs the microbial carrier 26 and the dried garbage 27 and supplies oxygen (air) to the microbial carrier 26. At the same time, the stirring operation of the rotary stirring rod 24 releases the water vapor of the microorganism carrier 26 to the upper space of the microorganism decomposition processing unit 21.
[0033]
Furthermore, since the ventilation fan 31 exhausts water vapor, air, and the like in the microbial decomposition processing unit 21 from the exhaust port 30, moisture adjustment (reducing moisture) of the microorganism carrier 26 can be performed. Further, the ventilation fan 31 introduces air into the microbial decomposition processing unit 21 from the air inlet 32. Next, the microorganisms that inhabit the microorganism carrier 26 finally decompose the dried garbage 27 into carbon dioxide and water, and reduce and reduce the volume of the dried garbage 27.
[0034]
In summer and the like when the microorganism carrier 26 is easily dried, the same effect can be obtained even if the ventilation fan 31 is driven ON / OFF.
[0035]
As described above, in this embodiment, the ventilation fan 31 provided corresponding to the exhaust port 30 and the lid opening / closing detection unit 33 prohibit the drive of the stirring means 23 for a predetermined period after detecting that the lid 29 is opened. As a result, even when the garbage 27 having a large amount of water is introduced, the water content can be adjusted in the microbial decomposition processing unit 21. As a result, the microbial decomposition treatment unit 21 can ensure air permeability and continue the decomposition performance of the garbage 27. Further, since the surface of the garbage 27 is dry, the entanglement between the garbage 27 itself or the garbage 27 and the microorganism carrier 26 can be suppressed, and the particle size of the garbage 27 and the microorganism carrier 26 can be prevented. As a result, good ventilation can be ensured in the microbial decomposition treatment unit 21. Furthermore, since the surface of the garbage 27 is dry, microbial decomposition is suppressed until the surface of the garbage 27 absorbs moisture from the microorganism carrier 26 and the like (the decomposition performance of the garbage 27 is leveled). Therefore, the generation peak of odor components is reduced and the odor is reduced.
[0036]
(Example 2)
FIG. 3 is a block diagram of a garbage disposal apparatus according to Embodiment 2 of the present invention, FIG. 4 is a plan view of the garbage disposal apparatus, and FIG. 5 is a flowchart of the garbage disposal apparatus. . The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0037]
The difference from the configuration of the first embodiment is that the blower drying processing unit 35 for drying the garbage 34 by blowing air is provided on the upper side surface of the microbial decomposition processing unit 36 to dry the air chamber 37, the drying fan 38 and the garbage 34. When the lid opening / closing detection unit 40 detects the opening of the lid 41, the driving of the stirring means 42 is prohibited for a predetermined period. In addition, when the lid opening / closing detection unit 40 detects the closure of the lid 41, the drying fan 38 is driven within the predetermined period.
[0038]
About the garbage processing apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
[0039]
First, when power is supplied, the ventilation fan 31 starts operation, and air flows from the intake port 32 into the upper part of the microbial decomposition processing unit 21. Subsequently, the air is exhausted from the exhaust port 30 by the exhaust action of the ventilation fan 31. That is, the upper part of the microbial decomposition processing unit 36 is ventilated substantially continuously.
[0040]
When the lid 41 is opened in order to put the garbage 34 into the microbial decomposition tank 22, the lid open / close detection unit 40 detects that the lid 41 is opened. By this detection, the driving of the driving device 25 is immediately prohibited for a predetermined period (for example, 4 hours). Next, after putting the garbage 34 into the microbial decomposition tank 22 and closing the lid 40 again, the lid open / close detection unit 40 detects that the lid 41 is closed. By this detection, the drying fan 38 within the predetermined period is immediately driven. As a result of the series of operations, the garbage 34 remains on the surface of the microorganism carrier 26. On the other hand, the drying fan 38 starts blowing and air is sent into the air chamber 37.
[0041]
Next, the air sent into the air chamber 37 is ejected from the air ejection port 39 toward the microbial decomposition processing unit 36. The air flowing into the upper part of the microbial decomposition processing unit 36 from the air inlet 32 and the air ejected from the air outlet 39 penetrate from the upper part to the lower part of the garbage 34 and collide with the microorganism carrier 26, and then the garbage 34 side. The portion goes out of the garbage 34 and is exhausted from the exhaust port 30. At that time, since the air immediately carries water vapor generated from the garbage 34, the garbage 34 is sufficiently dried. Moreover, since air permeates into the vicinity of the surface of the microorganism carrier 26, oxygen (air) is sufficiently supplied to the microorganism carrier 26. Even when a sufficient amount of dry matter, a large amount of garbage 34 or a large amount of garbage 34 is added, the microbial decomposition treatment unit 36 can adjust the water content, so that the microbial decomposition treatment unit 36 can ensure air permeability, The decomposition performance of the garbage 34 can be continued.
[0042]
Next, after elapse of a predetermined time (for example, after 4 hours) after the lid opening / closing detection unit 40 detects the opening of the lid 41, the stirring means 42 is driven by the driving device 25, and the ventilation fan 31 is stopped. Thereafter, the stirring means 42 operates intermittently. At that time, since the surface of the garbage 34 is dry, the entanglement between the garbage 34 itself and the garbage 34 and the microorganism carrier 26 can be suppressed, and the garbage 34 and the microorganism carrier 26 can be prevented from being reduced in size. As a result, the microbial decomposition processing unit 36 can ensure good air permeability. Furthermore, since the progress speed of microbial decomposition is suppressed until the surface of the garbage 34 is absorbed by the microbial carrier 26 and the like, the peak of odor component generation is reduced and the odor is reduced.
[0043]
Furthermore, since the drying function of the drying chamber of the conventional example is unified at the upper part of the microbial decomposition processing unit 36, the cost can be reduced and the size can be reduced. Further, since there is no conventional drying chamber, the garbage disposal apparatus can be prevented from being soiled, and since there is no plate that obstructs the field of view of the conventional example, the state of the microorganism carrier 26 can be directly observed when the lid 41 is opened.
[0044]
Note that, due to the exhausting action of the ventilation fan 31, the air ejected from the air ejection port 39 hardly flows backward from the intake port 32 and is almost exhausted from the exhaust port 30. Further, in summer or the like when the microorganism carrier 26 is easily dried, the same effect can be obtained even if the ventilation fan 31 is driven ON / OFF.
[0045]
As described above, in the present embodiment, the blower drying processing unit configured with the air chamber 37, the drying fan 38, and the air ejection port 39 that ejects air for drying the garbage 34 corresponding to the microbial decomposition processing unit 36. 35, when the lid opening / closing detection unit 40 detects the opening of the lid 41, the driving of the stirring means 42 is prohibited for a predetermined period. Next, when the lid opening / closing detection unit 40 detects the closure of the lid 41, drying within the predetermined period is performed. Since the fan 38 is driven, the cost can be reduced and the size can be reduced because the drying function of the drying chamber of the conventional example is unified at the upper part of the microbial decomposition processing unit 36. Further, since there is no conventional drying chamber, the garbage disposal apparatus can be prevented from being soiled, and since there is no plate that obstructs the field of view of the conventional example, the state of the microorganism carrier 26 can be directly observed when the lid 41 is opened. Furthermore, even when a large amount of garbage 34 or a large amount of garbage 34 is put in, moisture adjustment in the microbial decomposition processing unit 36 and the particle size reduction of the garbage 34 can be prevented. Furthermore, the generation peak of the odor component is reduced and the odor is reduced.
[0046]
(Example 3)
FIG. 6 shows a flowchart of the garbage disposal apparatus in Embodiment 3 of the present invention. The same parts as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0047]
The difference from the configuration of the second embodiment is that the drying fan 38 is driven for a first predetermined period, and the stirring means 42 is driven after a second predetermined period shorter than the first predetermined period.
[0048]
About the garbage processing apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
[0049]
When the lid 41 is opened in order to put the garbage 34 into the microbial decomposition tank 22, the lid open / close detection unit 40 detects that the lid 41 is opened. By this detection, the driving of the driving device 25 is immediately prohibited for the second predetermined period (for example, 2 hours). Next, after putting the garbage 34 into the microbial decomposition tank 22 and closing the lid 40 again, the lid open / close detection unit 40 detects that the lid 41 is closed. By this detection, the drying fan 38 is driven immediately within a first predetermined period (for example, 4 hours). As a result of the series of operations, the garbage 34 remains on the surface of the microorganism carrier 26. Subsequently, the air blown from the drying fan 38 to the blow drying processor 36 for the first predetermined period is blown out from the air jet 39, and the blown air is moved from the upper part of the garbage 34 to the lower part and the side part. The garbage 34 is dried while penetrating. Next, after the second predetermined period has elapsed, the stirring means 42 is driven, so that oxygen (air) can be supplied to the microorganism carrier 26. As a result, the microbial carrier 26 can be prevented from becoming an anaerobic atmosphere.
[0050]
As described above, in the present embodiment, the drying fan 38 is driven for the first predetermined period, and the stirring means 42 is driven after the second predetermined period shorter than the first predetermined period. It is possible to suppress a sex atmosphere.
[0051]
(Reference Example 1)
FIG. 6 shows a flowchart of the garbage disposal apparatus in Reference Example 1 of the present invention. The same parts as those in the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0052]
The difference from the configuration of the third embodiment is that after the second predetermined period has elapsed, the agitating means 42 rotates forward in approximately one rotation and then reverses in one rotation or less.
[0053]
About the garbage processing apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
[0054]
When the lid opening / closing detection unit 40 detects that the lid 41 is opened, the lid opening / closing detection unit 40 immediately prohibits driving of the driving device 25 for a second predetermined period (for example, two hours). Next, when the lid 40 is closed again after the garbage 34 is put in, the lid opening / closing detection unit 40 detects that the lid 41 is closed. By this detection, the drying fan 38 is driven immediately within a first predetermined period (for example, 4 hours). As a result of the series of operations, the garbage 34 remains on the surface of the microorganism carrier 26. Then, the air blown from the drying fan 38 to the blower drying processing unit 36 for the first predetermined period is ejected from the air ejection port 39, and the ejected air dries the previous garbage 34.
[0055]
Next, after the second predetermined period has elapsed, the stirring means 42 rotates forward in approximately one rotation to sufficiently stir the entire microorganism carrier 26, and then the stirring means 42 reverses in one rotation or less to remove the microorganism carrier 26. Since stirring is performed from the opposite direction, oxygen (air) can be sufficiently supplied to the microorganism carrier 26. On the other hand, the garbage 34 that has not been buried in the microbial carrier 26 after the stirring means 42 is driven remains on the surface of the microbial carrier 26 in different places and directions. As a result, the ejected air can further dry the garbage 34. As a result, it is possible to prevent the microbial carrier 26 from becoming an anaerobic atmosphere, to maintain an aerobic microbial decomposition with less odor and excellent decomposition performance.
[0056]
As described above, in the present reference example, the stirring means 42 rotates forward in approximately one rotation and then reverses in one rotation or less, so that the microorganism carrier 26 can be prevented from becoming an anaerobic atmosphere.
[0057]
(Reference Example 2)
FIG. 6 shows a flowchart of the garbage disposal apparatus in Reference Example 2 of the present invention. The same parts as those in the third embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0058]
The difference from the configuration of the third embodiment is that the agitating means 42 is driven by forward rotation and reverse rotation at substantially the same rotational speed after the second predetermined period has elapsed.
[0059]
About the garbage processing apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
[0060]
When the lid opening / closing detection unit 40 detects that the lid 41 is opened, the lid opening / closing detection unit 40 immediately prohibits driving of the driving device 25 for a second predetermined period (for example, two hours). Next, when the lid 40 is closed again after the garbage 34 is put in, the lid opening / closing detection unit 40 detects that the lid 41 is closed. By this detection, the drying fan 38 is driven immediately within a first predetermined period (for example, 4 hours). As a result of the series of operations, the garbage 34 remains on the surface of the microorganism carrier 26.
[0061]
Subsequently, the air blown from the drying fan 38 to the blower drying processing unit 36 for the first predetermined period is ejected from the air ejection port 39, and the ejected air dries the previous garbage 34. Next, after the elapse of the second predetermined period, the stirring means 42 is driven by normal rotation and reverse rotation at a half rotation number, and intermittently stirs for a relatively short time (for example, 1 hour). Can supply. As a result, the microbial carrier 26 can be prevented from becoming an anaerobic atmosphere.
[0062]
On the other hand, although the garbage is buried in the microorganism carrier 26 by the forward stirring means 42, the garbage 34 is continuously dug by the reverse stirring means 42, so that most of the garbage 34 remains on the surface of the microorganism carrier 26. ing. That is, the garbage 34 remains on the surface of the microorganism carrier 26 by changing the location and direction. As a result, the ejected air can further sufficiently dry the garbage 34 while penetrating from the upper part to the lower part and the side part of the garbage 34. Even when a sufficient amount of dry matter, a large amount of garbage 34 or a large amount of garbage 34 is added, the microbial decomposition treatment unit 36 can adjust the water content, so that the microbial decomposition treatment unit 36 can ensure air permeability, The decomposition performance of the garbage 34 can be continued.
[0063]
As described above, in the present reference example, the stirring means 42 is driven by forward rotation and reverse rotation at substantially the same rotational speed, so that even when a large amount of garbage 34 or garbage 34 with a large amount of water is added, microbial decomposition is performed. The processing unit 36 can ensure good air permeability.
[0064]
Example 4
FIG. 7 shows a flowchart of the garbage disposal apparatus in Embodiment 4 of the present invention. The same parts as those in the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0065]
The difference from the configuration of the second embodiment is that the interval between the time when the lid opening / closing detection unit 40 detects that the lid 41 is opened and the time when the stirring means 42 is driven immediately before the detection is a determination value (for example, 2 hours). If it is longer, the predetermined period is set shorter.
[0066]
About the garbage processing apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
[0067]
When the lid 41 is opened in order to put the garbage 34 into the microbial decomposition tank 22, the lid open / close detection unit 40 detects that the lid 41 is opened. At this time, when the interval between the detected time and the time when the stirring means 42 immediately before the detection is driven is shorter than the determination value, the driving of the driving device 25 is immediately prohibited for a predetermined period (for example, 4 hours). On the contrary, when the interval between the detected time and the time when the stirring means 42 immediately before the detection is driven is longer than the determination value, the driving device 25 is driven immediately for a predetermined period (for example, (6-interval) time) set to be short. Ban. As a result, the interval at which the driving of the stirring means 42 is prohibited is suppressed to 6 hours or less. That is, even when the interval between the time when the garbage 34 is thrown in and the time when the stirring means 42 is driven is, for example, 2 hours or more, oxygen (air) is driven into the microorganism carrier 26 within 6 hours by the driving of the stirring means 42. Therefore, odor generation due to partial anaerobic microbial decomposition can be prevented.
[0068]
As described above, in this embodiment, when the interval between the time when the lid opening / closing detection unit 40 detects that the lid 41 is opened and the time when the stirring means 42 is driven immediately before the detection is longer than the determination value, Since the predetermined period is set short, odor generation due to partial anaerobic microbial decomposition can be prevented.
[0069]
(Example 5)
FIG. 8 shows a flowchart of the garbage disposal apparatus in Embodiment 5 of the present invention.
[0070]
The difference from the configuration of the second embodiment is that the air temperature sensor 43 is provided in the intake port 32 and the predetermined period is halved when the air temperature is higher than a determination value (for example, 30 ° C.).
[0071]
About the garbage processing apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.
[0072]
When the lid 41 is opened in order to put the garbage 34 into the microbial decomposition tank 22, the lid open / close detection unit 40 detects that the lid 41 is opened. At this time, if the detection value of the air temperature sensor 43 is lower than the determination value, the driving of the driving device 25 is immediately prohibited for a predetermined period (for example, 4 hours). On the contrary, when the detected value of the air temperature sensor 43 is higher than the determination value, the driving of the driving device 25 is prohibited for a predetermined period (for example, 2 hours) halved. As a result, the interval during which the driving of the stirring means 42 is prohibited is suppressed to a certain period or less. That is, when the air temperature is high, the heat dissipation loss of the microbial decomposition treatment unit 36 is suppressed, the temperature of the microbial carrier 26 rises, and aerobic microbial decomposition becomes active, and oxygen in the microbial carrier 26 is consumed rapidly. However, since the oxygen (air) is supplied to the microorganism carrier 26 in a short time by driving the stirring means 42, it is possible to prevent the generation of odor due to partial anaerobic microorganism decomposition.
[0073]
It should be noted that not only the air temperature sensor 43 but also the correlation with the temperature of the microorganism carrier 26 may be used. For example, the same effect can be obtained even if the predetermined period is reduced by the temperature of the microorganism decomposition tank 22.
[0074]
As described above, in the present embodiment, when the air temperature sensor 43 is provided in the intake port 32 and the air temperature is higher than the determination value, the predetermined period is halved, so that odor generation due to partial anaerobic microbial decomposition occurs. Can be prevented.
[0075]
【The invention's effect】
As described above, according to the first to fifth aspects of the invention, low cost and compactness, prevention of dirt, observation of a microbial decomposition tank, and reduction in odor are achieved.
[Brief description of the drawings]
FIG. 1 is a block diagram of a garbage disposal apparatus in Embodiment 1 of the present invention. FIG. 2 is a flowchart of a garbage disposal apparatus in Embodiment 1 of the present invention. FIG. 3 is a garbage disposal apparatus in Embodiment 2 of the present invention. FIG. 4 is a plan view of a garbage disposal apparatus according to Embodiment 2 of the present invention. FIG. 5 is a flowchart of the garbage disposal apparatus according to Embodiment 2 of the present invention. Flowchart of garbage processing apparatus in Reference Examples 1 and 2 [FIG. 7] Flowchart of garbage processing apparatus in Embodiment 4 of the present invention [FIG. 8] Flowchart of garbage processing apparatus in Embodiment 5 of the present invention [FIG. Configuration diagram of conventional garbage disposal equipment [Explanation of symbols]
21, 36 Microbial processing unit 23, 42 Stirring means 26 Microbial carrier 30 Exhaust port 31 Ventilation fan 32 Inlet port 35 Blowing drying processing unit 37 Air chamber 38 Drying fan 39 Air outlet

Claims (5)

微生物担体を内蔵し生ごみを微生物により分解させる微生物分解処理部と、前記微生物分解処理部に内蔵した攪拌手段と、前記微生物分解処理部の上部に設けた吸気口および排気口と、前記吸気口または前記排気口に対応して設けた換気ファンと、前記微生物分解処理部に生ごみを投入する際に開閉する蓋と、前記蓋の開閉を検知する蓋開閉検知部とを備え、前記換気ファンは、前記微生物分解処理部の上部を連続的に換気すると共に、前記蓋開閉検知部が前記蓋の開いたことを検知した時点より所定期間前記攪拌手段の駆動を禁止することで、前記微生物分解処理部に投入され前記蓋が閉じられた状態での生ごみを微生物担体の表面に留めかつ前記生ごみの表面を乾燥させるものとし、前記所定期間は、前記生ごみの水分を10〜50%減少させる期間とした生ごみ処理装置。A microbial decomposition processing unit that incorporates a microbial carrier and decomposes garbage with microorganisms, an agitation unit built in the microbial decomposition processing unit, an intake port and an exhaust port provided above the microbial decomposition processing unit, and the intake port Or a ventilation fan provided corresponding to the exhaust port, a lid that opens and closes when throwing garbage into the microbial decomposition processing unit, and a lid open / close detection unit that detects opening and closing of the lid, and the ventilation fan Continuously ventilate the upper part of the microbial decomposition processing unit and prohibit the driving of the stirring means for a predetermined period from the time when the lid opening / closing detection unit detects that the lid is opened. The garbage in a state where the lid is closed while being put in the processing unit is kept on the surface of the microorganism carrier and the surface of the garbage is dried, and the moisture of the garbage is 10 to 50% for the predetermined period. Decrease Food waste processing apparatus to which the period to be. 微生物担体を内蔵し生ごみを微生物により分解させる微生物分解処理部と、前記微生物分解処理部に内蔵した攪拌手段と、前記微生物分解処理部の上部に設けた吸気口および排気口と、前記吸気口または前記排気口に対応して設けた換気ファンと、空気室と前記空気室に空気を送り込む乾燥ファンと前記空気室に送り込まれた空気を前記微生物分解処理部に向かって噴出する空気噴出口とから構成した送風乾燥処理部と、前記微生物分解処理部に生ごみを投入する際に開閉する蓋と、前記蓋の開閉を検知する蓋開閉検知部とを備え、前記換気ファンは、前記微生物分解処理部の上部を連続的に換気すると共に、前記蓋開閉検知部が前記蓋の開いたことを検知した時点より所定期間前記攪拌手段の駆動を禁止し、次に前記蓋開閉検知部が前記蓋の閉じたことを検知した場合、前記送風乾燥処理部の乾燥ファンを前記所定期間内駆動させることで、前記微生物分解処理部に投入され前記蓋が閉じられた状態での生ごみを微生物担体の表面に留めかつ前記生ごみの表面を乾燥させるものとし、前記所定期間は、前記生ごみの水分を10〜50%減少させる期間とした生ごみ処理装置。A microbial decomposition processing unit that incorporates a microbial carrier and decomposes garbage with microorganisms, an agitation unit built in the microbial decomposition processing unit, an intake port and an exhaust port provided above the microbial decomposition processing unit, and the intake port Or a ventilation fan provided corresponding to the exhaust port, an air chamber, a drying fan for sending air to the air chamber, and an air jet port for jetting the air sent to the air chamber toward the microbial decomposition treatment unit An air-drying processing unit configured from the above, a lid that opens and closes when throwing garbage into the microbial decomposition processing unit, and a lid open / close detection unit that detects opening and closing of the lid, and the ventilation fan includes the microbial decomposition The upper part of the processing unit is continuously ventilated, and the driving of the stirring means is prohibited for a predetermined period from the time when the lid opening / closing detection unit detects that the lid is opened, and then the lid opening / closing detection unit When it is detected that the cover is closed, by driving the drying fan of the blower drying processing unit within the predetermined period, the garbage in the state in which the lid is closed after being put into the microbial decomposition processing unit is removed. And the surface of the garbage is dried, and the predetermined period is a period for reducing moisture of the garbage by 10 to 50% . 蓋開閉検知部が蓋の開いたことを検知した時点より攪拌手段の駆動を禁止する所定期間を第2の所定期間とし、次に前記蓋開閉検知部が前記蓋の閉じたことを検知したした時点より送風乾燥処理部の乾燥ファンを駆動させる所定期間を第1の所定期間とし、前記第2の所定期間は、前記第1の所定期間より短く設定した請求項2に記載の生ごみ処理装置。  A predetermined period during which the driving of the stirring means is prohibited from the time when the lid opening / closing detection unit detects that the lid is opened is set as a second predetermined period, and then the lid opening / closing detection unit detects that the lid is closed. The garbage processing apparatus according to claim 2, wherein a predetermined period for driving the drying fan of the blower drying processing unit from the time is set as a first predetermined period, and the second predetermined period is set shorter than the first predetermined period. . 微生物分解処理部に生ごみを投入する際、蓋開閉検知部が蓋の開きを検知した時刻と、この検知直前の攪拌手段が駆動した時刻との間隔が判定値より長い場合、所定期間を前記間隔の期間分短く設定する請求項1または2に記載の生ごみ処理装置。  When throwing the garbage into the microbial decomposition processing unit, when the interval between the time when the lid opening / closing detection unit detects the opening of the lid and the time when the stirring means immediately before the detection is driven is longer than the determination value, the predetermined period is The garbage processing apparatus according to claim 1 or 2, wherein the garbage disposal apparatus is set shorter by an interval. 吸気口に空気温センサが設けられ、空気温が高く前記空気温センサの検知値が判定値より高い場合、所定期間を半減する請求項1または2に記載の生ごみ処理装置。  The garbage processing device according to claim 1 or 2, wherein an air temperature sensor is provided at an intake port, and when the air temperature is high and the detection value of the air temperature sensor is higher than a determination value, the predetermined period is halved.
JP2003180809A 2003-06-25 2003-06-25 Garbage disposal equipment Expired - Fee Related JP4069812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003180809A JP4069812B2 (en) 2003-06-25 2003-06-25 Garbage disposal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003180809A JP4069812B2 (en) 2003-06-25 2003-06-25 Garbage disposal equipment

Publications (2)

Publication Number Publication Date
JP2005013835A JP2005013835A (en) 2005-01-20
JP4069812B2 true JP4069812B2 (en) 2008-04-02

Family

ID=34181684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003180809A Expired - Fee Related JP4069812B2 (en) 2003-06-25 2003-06-25 Garbage disposal equipment

Country Status (1)

Country Link
JP (1) JP4069812B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040476A1 (en) * 2009-09-30 2011-04-07 Hoya株式会社 Process for producing imprinting mold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101258852B1 (en) 2011-02-01 2013-05-06 우경선 Canister for receiving food waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040476A1 (en) * 2009-09-30 2011-04-07 Hoya株式会社 Process for producing imprinting mold

Also Published As

Publication number Publication date
JP2005013835A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4069812B2 (en) Garbage disposal equipment
JP4033056B2 (en) Garbage disposal equipment
JP3997992B2 (en) Garbage disposal equipment
JP2005052772A (en) Garbage treatment apparatus
JP4214796B2 (en) Garbage disposal equipment
JP2005028221A (en) Garbage disposer
JP4285181B2 (en) Garbage disposal equipment
JP3653803B2 (en) 厨 芥 Processing device
JP4453403B2 (en) Garbage disposal equipment
JP3843862B2 (en) Garbage disposal equipment
JP2005081195A (en) Garbage treatment apparatus
JP2005111359A5 (en)
JP4096709B2 (en) Garbage disposal equipment
JP4168729B2 (en) Garbage disposal equipment
JP2005144348A (en) Garbage-treating apparatus
JP2005144348A5 (en)
JP2005305351A (en) Garbage disposer
JP2006198534A (en) Garbage treatment apparatus
JP2008062192A (en) Garbage disposer
JPH09239348A (en) Garbage processing device
JP3985635B2 (en) Garbage disposal equipment
JP2006263491A (en) Garbage treatment apparatus
JP2006061846A5 (en)
JP3842930B2 (en) Organic matter processing equipment
JP2005230596A (en) Garbage treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees