JP4068894B2 - Aquarium equipment - Google Patents

Aquarium equipment Download PDF

Info

Publication number
JP4068894B2
JP4068894B2 JP2002153717A JP2002153717A JP4068894B2 JP 4068894 B2 JP4068894 B2 JP 4068894B2 JP 2002153717 A JP2002153717 A JP 2002153717A JP 2002153717 A JP2002153717 A JP 2002153717A JP 4068894 B2 JP4068894 B2 JP 4068894B2
Authority
JP
Japan
Prior art keywords
water
water level
tank
alarm
tanks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002153717A
Other languages
Japanese (ja)
Other versions
JP2003342980A (en
Inventor
昌一 松永
Original Assignee
株式会社 Fmバルブ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Fmバルブ製作所 filed Critical 株式会社 Fmバルブ製作所
Priority to JP2002153717A priority Critical patent/JP4068894B2/en
Publication of JP2003342980A publication Critical patent/JP2003342980A/en
Application granted granted Critical
Publication of JP4068894B2 publication Critical patent/JP4068894B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、受水槽、高置水槽等の上水、中水用の水槽、また排水槽、下水処理設備の水槽等の水槽装置に関する。
【0002】
さらに特定すれば、本発明は複数の水槽とこれら水槽にそれぞれ設けられた水位検出器とを有するものにおいて、各水槽の水位検出器からの水位信号に所定の差が生じた場合に警報を出力する制御装置を備えた水槽装置に関する。
【0003】
【従来の技術】
従来から、水槽装置たとえば上水給水用の受水槽等では、受水槽内部の清掃の際の便宜のため、たとえばA槽、B槽の2個の受水槽が設置されており、A槽、B槽を片方ずつ清掃することにより、清掃の際にも断水を生じないように構成されているものが多い。
【0004】
この場合に、A槽、B槽の底部は一本のヘッダ管に連通され、このヘッダ管を介して揚水ポンプの吸込口に接続されている。また、これらA槽、B槽の底部は連通管により互いに連通されているとともに、A槽、B槽には、それぞれ内部の水位を検出する水位検出器が設けられ、独立して運転が可能となっている。
【0005】
このような水槽装置は、通常の運転の場合には、上記の連通管の途中にある仕切弁を開弁し、A槽、B槽の底部を連通させた状態で使用される。また各水槽に設けられている水位検出器は、一方のみを主検出器として常時使用しこれら水槽内の水位を制御する。
【0006】
ところで、上記の揚水ポンプにより受水槽内の水を高置水槽に揚水したり、または給水ポンプ等で末端の需要側に送る場合に、このポンプがA槽、B槽から均等に水を吸引するとは限らず、いずれか一方の水槽からの水量が多く、他方の水槽からの水量は少なくなる場合が多い。特に、これらの水槽等が設置されている機械室などのスペースの関係で上記のヘッダ管がポンプに対して対称な形状をしていない場合には、上記のようなA槽、B槽からの水量の差が大きくなる。
【0007】
もちろん、上記のヘッダ管と各水槽との間には、仕切弁が設けられているので、これらの仕切弁の開度を調整し、A槽、B槽からの水量が均等になるように調整はするが、このような調整作業は正確ではなく、また調整した後に両槽からの水量が再び不均一になる場合がある。このように両槽からの水量の差が大きくなると、水量の少ない他方の水槽内の水の交換率が低くなり、水の滞留を生じ、塩素濃度の低下により水質が低下することがある。
【0008】
また、上記の水位検出器として、水頭圧、超音波などにより水位に対応した連続した水位信号を出力するものを使用し、制御装置によりこの水位信号と、設定された水位の設定値とを比較し、給水系統の機器、たとえば給水弁を開閉して水槽内の水位を制御するものがある。このような水位検出器は、現在まで多く使用されている電極棒形の水位検出器と比較して、設定値を簡単に変更でき、また小形でかつ施工しやすい等の特徴があるが、その反面で誤差を生じやすいという欠点がある。従って、上記のような連続した水位信号を出力する水位検出器を使用した場合には、A槽とB槽の水位検出器の間に誤差が生じる。
【0009】
上述のように、一般的にはA槽、B槽の両方にそれぞれ水位検出器が設けられており、通常はいずれか一方の水槽の水位検出器を主検出器として常時使用している。よって、清掃の際に、たとえば常時使用していたA槽の水位検出器から、B槽の水位検出器に切り替えた場合に、大きな誤差が生じる場合があり、水槽(B槽)内の制御水位が不所望に変化し、この変化が大きい場合には、水槽の水位が異常に低下して給水に支障を生じたり、また水位が異常に上昇して水槽のオーバーフロー管から溢水したりすることがある。
【0010】
【発明が解決しようとする課題】
本発明は以上の事情に基いてなされたもので、複数の水槽を備えた水槽装置において、各水槽から流出する水量に差が生じた場合にそれに基づく水位の差が所定値になった場合に警報信号を出力し、また各水槽の水位検出器として連続した水位信号を出力するものを使用した場合に、これらの検出器間の誤差が大きくなった場合にも警報を出力することができる制御装置を備えた水槽装置を提供するものである。
【0011】
【課題を解決するための手段】
請求項1に記載の本発明は、複数の水槽と、これらの水槽内にそれぞれ給水する給水系統と、これらの水槽からそれぞれ排水する排水系統と、これらの水槽の底部を互いに連通する連通路とを備えた水槽装置において、上記の各水槽の内部の水位を連続的に検出する水位検出器を設け、これらの水位検出器からの信号に対応して上記の各水槽の給水系統を制御し給水量を制御してこれらの各水槽内の水位を所定の水位に制御する制御装置を備えており、この制御装置には、上記の複数の水位検出器からの複数の水位信号の差分が所定の警報設定値以上の場合に警報信号を出力する警報回路が設けられていることを特徴とするものである。
【0012】
したがって、各水槽からの排水流量に差が生じると、連通管を介して排水流量の少ない水槽から排水流量の多い水槽に水流が生じるが、連通管の抵抗により排水流量の多い水槽内の水位が高くなる。よって、これらの水槽の水位の差分が所定の警報設定値を超えると警報信号が出力され、この警報に基いてこれら排水流量の差を解消する調整等を行うことができる。よって、この水槽装置を上水用の受水槽、高置水槽等に適用した場合には、水槽内の水の交換率が低下して水質が低下するのを防止することができる。
【0013】
また、この装置では、常時複数の水位検出器からの水位信号の差を監視しているので、ある水位検出器の水位信号の誤差が大きくなると警報が出力される。よって、この警報に基いて、これら水位検出器からの水位信号に誤差が生じないように調整作業を行っておけば、水槽の清掃作業の際に使用する水位検出器を切り替えた場合に水位の大きな変動がなく、水槽内水位の異常な低下や、水槽からの溢水等を防止することができる。
【0014】
また、請求項2に記載の本発明は、前記の警報回路には、前記の警報設定値を変更可能な設定器が設けられていることを特徴とするものである。従って、水槽装置の種類や規模、運用の条件等に対応して警報設定値を容易に変更でき、最適の運用をおこなうことができる。
【0015】
また、請求項3に記載された本発明は、前記の各水位検出器には、出力される水位信号の較正回路がそれぞれ設けられていることを特徴とするものである。したがって、この水槽装置を設置した際に、これらの較正回路を用いて各水位検出器からの水位信号が互いに等しくなるように正確に較正しておくことができ、作動がより正確かつ確実となる。
【0016】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を示す。この実施の形態のものは、本発明を2個の水槽を備えた上水用の受水槽装置に適用したものである。図1はこの水槽装置の概略構成図、図2は作動のフローチャートである。
【0017】
図中の1a,1bは、それぞれA槽、B槽の2個の受水槽である。これらのA槽1aおよびB槽1bは、たとえば建物の地下機械室等に設置されている。そして、これらの各A槽、B槽には、それぞれ給水系統2a,2bが接続されている。この実施の形態の場合には、これらの給水系統は、給水管を介して供給される上水を水源とするもので、各給水系統2a,2bには、それぞれ電磁弁内蔵型の定水位弁3a,3bが設けられ、後述する制御装置20からの制御信号25よりこれらの定水位弁3a,3bが開閉されてこれらA槽1aおよびB槽1b内への給水を制御し、これら水槽内の水位を所定の範囲に維持する。
【0018】
なお、これらの定水位弁3a,3bには、それぞれ副弁として作用するボールタップ4a,4bが接続されており、万一上記の内蔵されている電磁弁や制御装置20等に不具合が生じた場合でも、このボールタップ4a,4bが水面の上昇、下降に対応して開閉し、上記の定水位弁3a,3bを開閉し、これらのA槽1aやB槽1b内の水位を制御できるように構成されている。
【0019】
また、これらA槽1aおよびB槽1bの底部には、この水槽から水を排出する排水系統、たとえば揚水ポンプ9のヘッダ管7が接続され、このヘッダ管7の中央部は、揚水ポンプ9の吸込口に接続されている。そして、各A槽1aおよびB槽1b内の水は、このヘッダ管7を介して揚水ポンプ9に吸い込まれ、高置水槽(図示せず)に送られる。なお、上記のヘッダ管7と各A槽1a、B槽1bとの間にはそれぞれ仕切弁8a,8bが設けられている。また、これら各A槽1aとB槽1bの底部は、連通管10により互いに連通され、この連通管10の途中には仕切弁11が設けられおり、通常の運転時はこの仕切弁11は常時開弁されている。
【0020】
また、これら各A槽1aおよびB槽1bには、それぞれ水位検出器15a,15bが設けられている。この実施の形態の場合には、これらの水位検出器15a,15bは水圧によりこれら水槽内の水位を連続的に検出するもので、水位に対応した連続した水位A信号16および水位B信号16bを出力する。なお、通常運転時には、これら水位検出器15a,15bのうちの一方、たとえばA槽1aの水位検出器15aが主検出器として使用されており、このA槽1aの水位検出器15aによりA槽1aおよびB槽1bの両水槽の水位が制御されている。
【0021】
次に、上記の制御装置20の構成を説明する。上記の水位検出器15a,15bからの水位A信号16aおよび水位B信号16bは、たとえば4−20mAのアナログ信号で、これら信号はそれぞれ較正回路21a,21bに送られるように構成されている。これらの較正回路21a,21bは、たとえばゼロ調整用およびスパン調整用の2個のボリュームを内蔵しており、各水位検出器15a,15bからの水位信号のゼロ調整すなわちゼロ点の位置の調整、およびスパン調整すなわち水圧と出力される水位信号との比例関係の調整が可能となっている。したがって、上記の水位検出器15a,15bの特性に差がある場合でも、これら較正回路21a,21bを最初に調整しておくことにより、両方の水位検出器15a,15bからの水位信号を全測定範囲にわたって等しく設定することが可能である。
【0022】
そして、これらの較正回路21a,21bで較正された水位信号は、それぞれA/D変換器22に送られる。このA/D変換器22は、上記の水位検出器15a,15bからの水位信号を、それぞれ別々にデジタル信号に変換するように構成されている。
【0023】
そして、このA/D変換器22でデジタル信号に変換された水位信号は、それぞれ別々にCPU23に送られる。このCPU23では、予め設定された複数の水位設定値と、水位検出器15a,15bから送られてくる水位信号とを比較し、これら水位設定値と一致した場合に各種の制御信号、たとえば給水信号25を前述した電磁弁内蔵型の定水位弁3a,3bに送ってこれらを開閉制御し、A槽1aおよびB槽1bの水位を所定の水位に維持する。
【0024】
なお、このCPU23では、上記の弁の開閉信号の他に、各種の設定値と水位信号とを比較し、満水警報(水槽の水位が異常に上昇した警報)、減水警報(水位が異常に低下した警報)、空転警報(ポンプが空転する可能性まで水位が低下した警報)、復帰信号(ポンプの運転が再開できるまで水位が復帰した信号)等を出力するように構成されている。また、このCPU23は、水位表示器24に水位信号を送り、この水位表示器24上に現在水位を数字で表示するように構成されている。
【0025】
次に、このような制御回路20に設けられている水位信号の差分を検出して警報を出力する警報回路の部分を説明する。上記の水位検出器15a,15bからの水位信号は、上記のA/D変換器22でデジタル変換され、それぞれ差分検出回路26に送られる。この差分検出回路26は、水位の差分すなわち水位A信号16aと水位B信号16bとの差の絶対値を検出し、この差分と、設定器27で設定された警報設定値とを比較し、この差分が警報設定値以上となった場合に、上記のCPU23に警報信号を送るように構成されている。なお、上記の設定器27は設定される警報設定値を任意に変更できるように構成されている。
【0026】
そして、このCPU23では、上記の差分検出回路26から警報信号が送られてきた場合に、水位信号に所定値以上の差分が発生したことを示す警報、たとえば警報ランプ28を点滅するとともに、警報ブザー29を作動させる。また、遠隔監視用その他の用途に使用できるように、警報リレー30を作動させ、その接点を閉成するように構成されている。
【0027】
次に、このような実施の形態の作動を説明する。まず、この水槽装置を設置した場合、または定期的に、較正回路21a,21bを用いて上記のA槽1aおよびB槽1bの水位検出器15a,15bを較正し、これらからの水位信号が等しくなるように調整しておく。
【0028】
そして、通常の運転の場合には、前述したように、連通管10の仕切弁11を開弁して両方の水槽の底部を連通させるとともに、水位検出器15a,15bのいずれか一方、たとえばA槽1aの水位検出器15aを主検出器として使用し、この水位検出器15aからの水位信号に基いてA槽1aおよびB槽1bの両方の水槽の水位を制御する。
【0029】
この場合、水位の制御に使用する信号は水位検出器15aからの水位A信号16aであるが、上記の差分検出回路26には、両方の水位検出器15a,15bからの水位A信号16aおよび水位B信号16bが常に入力されている。
【0030】
次に、この差分検出回路の部分の作動を図2に示すフローチャートを参照して説明する。すなわち、この差分検出回路26には、ステップST1,ST2で常に水位A信号および水位B信号が入力されている。そして、ステップST3でこれら水位A信号と水位B信号との差の絶対値を演算し、ステップST4でこれらの水位の差分が警報設定値以上か否かが判別される。
【0031】
そして、この差分が警報設定値以上である場合には、ステップST5で前述の警報ランプ点滅、警報ブザー鳴動、警報リレー作動等の警報を出力する。そして、この後に水位Aと水位Bとの差分が、上記の警報設定値以下となった場合には、ステップST6のように、前記の警報ランプ点滅停止、警報ブザー鳴動停止、警報リレー作動停止、等の警報の停止作動がなされる。
【0032】
そして、たとえば揚水ポンプ9の作動中にA槽1aまたはB槽1bのいずれか、たとえばA槽1aから多くの水量が吸引され、他方のすなわちB槽1bからは少量の水量しか吸引されない場合には、A槽1aの水位の方が低くなる。この場合に、連通管10を介してB槽1bからA槽1Bに水が流れるが、この連通管10には抵抗があるため、A槽1aとB槽1bとの間には必ず水位の差が生じ、この水位差は両方の水槽から吸引される水量の差が大きくなる程大きくなる。
【0033】
そして、このA層1aとB槽1bとの水位差が所定の警報設定値以上となると、前述のように各種の警報が出力される。したがって、この警報によりA槽1aとB槽1bとの水位に所定以上の水位差が発生したことが判明するので、たとえば各水槽とヘッダ管7との間にある仕切弁8a,8bの開度を調整し、A槽1aおよびB槽1bから均等に水が吸引されるように調整する。これによって、吸引される水量の少ないB槽1bの水の交換率が低下して水質が悪化することを未然に防止できる。
【0034】
また、A槽1aとB槽1bの水位検出器15a,15bからの水位信号に誤差が生じた場合にも、同様にして警報が出力されるので、前記の較正回路21a,21bをそれぞれ調整して両方の水位検出器15a,15bからの出力を等しく維持しておくことができる。したがって、A槽1aを清掃する際に、仕切弁11を閉じるとともにB槽1bの水位検出器15bに切り替え、B槽1bを単独で運転する場合にも水位が大きくずれることがない。
【0035】
なお、上記の警報設定値は、この水槽装置の種類や規模、運用条件等によりそれぞれ異なる値に設定する必要があるが、この警報設定値は可変形の設定器27を操作することにより簡単に設定または変更することができる。
【0036】
また、水位検出器15a,15bにそれぞれ別々に較正回路21a,21bを接続したので、これらを調整して両方の水位検出器15a,15bから出力される水位信号を互いに等しく設定しておくことができ、より正確かつ確実な水位制御が可能となる。
【0037】
なお、本発明は上記の実施の形態には限定されず、その他の水槽装置、たとえば受水槽に限らず高置水槽、その他の水槽にも適用できる。また、水槽の数も2個にも限らず、3個以上の水槽を備えた水槽装置にも適用可能であることはもちろんである。また、本発明は上水用に限らず、中水(雑用水)、工業用水、排水、下水処理装置等の水槽装置にも適用可能である。また、水位検出器としては、水圧により水位を検出するものには限定されず、超音波、レーザ光、静電容量、フロート等により水位を連続的に検出できるものであれば良い。
【0038】
さらに上記の実施例では、2つの水槽を連通管によって連通したものについて説明したが、連通管によらずに1水槽を複数の水槽に区分する仕切り壁の下部に連通部分を形成するようにしてもよく、要は各水槽が連通路によって連通されていればよい。
【0039】
また、上記の実施例では、各水位検出器からの水位信号の差分を差分検出回路によって算出して、警報信号を出力するようにしたが、これに限らず、各水位検出器からの水位信号の差分に基づいて警報信号を出力できるものであればよい。
【0040】
【発明の効果】
請求項1に記載の本発明は、各水槽からの排水流量に差が生じ、水槽間の水位に差が生じ、これらの水槽の水位の差分がある警報設定値を超えると警報信号が出力されるので、この警報に基いてこれら排水流量の差を解消する調整等をなすことができる。よって、この水槽装置を上水用の受水槽、高置水槽等に適用した場合には、水槽内の水の交換率が低下して水質が低下するのを防止することができる。またその他の水槽装置においても、各水槽からの排水流量を均一にし、また各水槽内での水の不所望な滞留を防止できる。
【0041】
また、この装置では、常時複数の水位検出器からの水位信号の差を監視しているので、ある水位検出器の水位信号の誤差が大きくなると警報が出力される。よって、この警報に基いて、これら水位検出器からの水位信号に誤差が生じないように調整作業を行っておけば、水槽の清掃作業の際に使用している水位検出器を切り替えた場合に水位の大きな変動がなく、水槽内水位の異常な低下や、水槽からの溢水等を防止することができる。
【0042】
また、請求項2に記載の本発明は、前記の警報回路には、前記の警報設定値を変更可能な設定器が設けられているので、水槽装置の種類や規模、運用の条件等に対応して警報設定値を容易に変更でき、最適の運用をおこなうことができる。
【0043】
また、請求項3に記載された本発明は、前記の各水位検出器には、出力される水位信号の較正回路がそれぞれ設けられているので、この水槽装置を設置した際に、これらの較正回路を用いて各水位検出器からの水位信号が互いに等しくなるように正確に較正しておくことができ、作動がより正確かつ確実となる。
【図面の簡単な説明】
【図1】本発明の一実施形態の概略構成図。
【図2】本発明の一実施形態の作動を説明するフローチャート。
【符号の説明】
1a A槽
1b B槽
2a,2b 給水系統
7 ヘッダ管
9 揚水ポンプ
15a,15b 水位検出器
20 制御装置
21a,21b 較正回路
22 A/D変換器
23 CPU
26 差分検出回路
27 設定器
28 警報ランプ
29 警報ブザー
30 警報リレー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to water tank apparatuses such as water tanks for receiving water and elevated water tanks, water tanks for middle water, drain tanks, and water tanks for sewage treatment facilities.
[0002]
More specifically, the present invention has a plurality of water tanks and a water level detector provided in each of these water tanks, and outputs a warning when a predetermined difference occurs in the water level signal from the water level detector of each water tank. The present invention relates to a water tank apparatus including a control device.
[0003]
[Prior art]
Conventionally, in a water tank apparatus such as a water receiving tank for water supply, for example, two water receiving tanks A tank and B tank are installed for the convenience of cleaning inside the water receiving tank. In many cases, the tank is cleaned so that water is not cut off during cleaning.
[0004]
In this case, the bottoms of tank A and tank B communicate with one header pipe, and are connected to the suction port of the pumping pump via this header pipe. In addition, the bottoms of these A and B tanks are connected to each other by a communication pipe, and each of the A and B tanks is provided with a water level detector for detecting the water level inside, and can be operated independently. It has become.
[0005]
In the case of normal operation, such a water tank apparatus is used in a state where the gate valve in the middle of the communication pipe is opened and the bottoms of the A tank and the B tank are communicated. Moreover, the water level detector provided in each water tank always uses only one as a main detector, and controls the water level in these water tanks.
[0006]
By the way, when the water in the water receiving tank is pumped to the elevated water tank by the above-mentioned pump, or when it is sent to the demand side at the end by a water pump or the like, the pump sucks water from the tank A and the tank B evenly. However, the amount of water from one of the water tanks is large, and the amount of water from the other water tank is often small. In particular, if the header pipe is not symmetrical with respect to the pump due to the space of the machine room where these water tanks are installed, The difference in water volume increases.
[0007]
Of course, since a gate valve is provided between the header pipe and each water tank, the opening degree of these gate valves is adjusted so that the amount of water from the tank A and the tank B is equalized. However, such adjustment work is not accurate, and the amount of water from both tanks may become non-uniform again after adjustment. Thus, when the difference in the amount of water from both tanks becomes large, the exchange rate of the water in the other tank with a small amount of water becomes low, water retention occurs, and the water quality may deteriorate due to a decrease in chlorine concentration.
[0008]
In addition, as the above water level detector, one that outputs a continuous water level signal corresponding to the water level by water head pressure, ultrasonic waves, etc. is used, and this water level signal is compared with the set value of the set water level by the control device. However, there are devices in the water supply system, such as those that control the water level in the water tank by opening and closing the water supply valve. Such a water level detector has features that the set value can be easily changed compared to the electrode rod type water level detector that has been widely used until now, and it is small and easy to install. On the other hand, there is a drawback that an error is likely to occur. Therefore, when a water level detector that outputs a continuous water level signal as described above is used, an error occurs between the water level detectors in tank A and tank B.
[0009]
As described above, the water level detectors are generally provided in both the A tank and the B tank, and the water level detector of one of the water tanks is normally used as the main detector. Thus, when cleaning, for example, when the water level detector in tank A, which has been used at all times, is switched to the water level detector in tank B, a large error may occur, and the control water level in the water tank (B tank). If this change is undesirably large and this change is large, the water level in the aquarium may be abnormally lowered, impeding water supply, or the water level may rise abnormally and overflow from the overflow pipe of the aquarium. is there.
[0010]
[Problems to be solved by the invention]
The present invention has been made based on the above circumstances, and in a water tank apparatus provided with a plurality of water tanks, when there is a difference in the amount of water flowing out from each water tank, the difference in water level based on the difference becomes a predetermined value. Control that outputs an alarm signal and can output an alarm even if the error between these detectors becomes large when a water level detector that outputs a continuous water level signal is used. The water tank apparatus provided with the apparatus is provided.
[0011]
[Means for Solving the Problems]
The present invention described in claim 1 includes a plurality of water tanks, a water supply system that supplies water into each of these water tanks, a drainage system that discharges water from each of these water tanks, and a communication passage that communicates the bottoms of these water tanks with each other. Provided with a water level detector that continuously detects the water level inside each water tank, and controls the water supply system of each water tank in response to a signal from these water level detectors. A control device that controls the amount of water in each of the water tanks to a predetermined water level, and the control device has a difference between a plurality of water level signals from the plurality of water level detectors. An alarm circuit for outputting an alarm signal when the alarm set value is exceeded is provided.
[0012]
Therefore, if there is a difference in the drainage flow rate from each tank, water flows from a tank with a low drainage flow rate to a tank with a high drainage flow rate via a communication pipe, but the water level in the tank with a large drainage flow rate is reduced due to the resistance of the communication pipe. Get higher. Therefore, when the difference between the water levels in these water tanks exceeds a predetermined alarm set value, an alarm signal is output, and adjustment or the like for eliminating the difference between the drainage flow rates can be performed based on this alarm. Therefore, when this water tank apparatus is applied to a water receiving tank, an elevated water tank, or the like, it is possible to prevent the water exchange rate in the water tank from being lowered and the water quality from being lowered.
[0013]
In addition, since this apparatus constantly monitors the difference between the water level signals from a plurality of water level detectors, an alarm is output when the error of the water level signal of a certain water level detector increases. Therefore, based on this warning, if adjustment work is performed so that no error occurs in the water level signals from these water level detectors, the water level will be changed when the water level detector used for cleaning the aquarium is switched. There is no large fluctuation, and it is possible to prevent an abnormal drop in the water level in the aquarium or overflow from the aquarium.
[0014]
The present invention according to claim 2 is characterized in that the alarm circuit is provided with a setting device capable of changing the alarm set value. Therefore, it is possible to easily change the alarm set value in accordance with the type and scale of the water tank apparatus, the operation conditions, etc., and to perform the optimum operation.
[0015]
The present invention described in claim 3 is characterized in that each of the water level detectors is provided with a calibration circuit for an output water level signal. Therefore, when this water tank apparatus is installed, it is possible to accurately calibrate so that the water level signals from the water level detectors are equal to each other using these calibration circuits, and the operation becomes more accurate and reliable. .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, the present invention is applied to a water receiving tank apparatus having two water tanks. FIG. 1 is a schematic configuration diagram of the water tank apparatus, and FIG.
[0017]
1a and 1b in the figure are two water receiving tanks, A tank and B tank, respectively. These A tank 1a and B tank 1b are installed, for example, in an underground machine room of a building. And these water supply tanks 2a and 2b are connected to each A tank and B tank, respectively. In the case of this embodiment, these water supply systems use clean water supplied through a water supply pipe as a water source, and each of the water supply systems 2a and 2b has a built-in solenoid valve type constant water level valve. 3a and 3b are provided, and these constant water level valves 3a and 3b are opened and closed by a control signal 25 from the control device 20 to be described later to control water supply into the A tank 1a and B tank 1b. The water level is maintained within a predetermined range.
[0018]
These constant water level valves 3a and 3b are connected to ball taps 4a and 4b that act as sub-valves, respectively, and in the event that a malfunction occurs in the built-in electromagnetic valve or control device 20 or the like. However, the ball taps 4a and 4b open and close in response to the rise and fall of the water surface, open and close the constant water level valves 3a and 3b, and can control the water levels in the A tank 1a and the B tank 1b. Has been.
[0019]
Further, a drainage system for discharging water from the water tank, for example, a header pipe 7 of a pumping pump 9 is connected to the bottoms of the A tank 1a and the B tank 1b. Connected to the inlet. And the water in each A tank 1a and B tank 1b is suck | inhaled by the pumping pump 9 via this header pipe | tube 7, and is sent to an elevated water tank (not shown). Gate valves 8a and 8b are provided between the header pipe 7 and the A tank 1a and B tank 1b, respectively. The bottoms of the tanks A 1a and B 1b are communicated with each other by a communication pipe 10, and a gate valve 11 is provided in the middle of the communication pipe 10, and the gate valve 11 is always in operation during normal operation. The valve has been opened.
[0020]
Further, each of the A tank 1a and the B tank 1b is provided with water level detectors 15a and 15b, respectively. In the case of this embodiment, these water level detectors 15a and 15b continuously detect the water level in these water tanks by water pressure, and the continuous water level A signal 16 and water level B signal 16b corresponding to the water level are obtained. Output. During normal operation, one of the water level detectors 15a and 15b, for example, the water level detector 15a of the A tank 1a is used as the main detector, and the A level 1a is detected by the water level detector 15a of the A tank 1a. And the water level of both water tanks of B tank 1b is controlled.
[0021]
Next, the configuration of the control device 20 will be described. The water level A signal 16a and the water level B signal 16b from the water level detectors 15a and 15b are analog signals of 4 to 20 mA, for example, and these signals are sent to the calibration circuits 21a and 21b, respectively. These calibration circuits 21a and 21b incorporate, for example, two volumes for zero adjustment and span adjustment, and zero adjustment of the water level signals from the water level detectors 15a and 15b, that is, adjustment of the position of the zero point, In addition, the span adjustment, that is, the proportional relationship between the water pressure and the output water level signal can be adjusted. Therefore, even when there is a difference in the characteristics of the water level detectors 15a and 15b, the water level signals from both the water level detectors 15a and 15b are all measured by adjusting these calibration circuits 21a and 21b first. It can be set equal over the range.
[0022]
The water level signals calibrated by these calibration circuits 21a and 21b are sent to the A / D converter 22, respectively. The A / D converter 22 is configured to individually convert the water level signals from the water level detectors 15a and 15b into digital signals.
[0023]
Then, the water level signals converted into digital signals by the A / D converter 22 are sent to the CPU 23 separately. The CPU 23 compares a plurality of preset water level set values with the water level signals sent from the water level detectors 15a and 15b, and when they match these water level set values, various control signals such as a water supply signal, for example. 25 is sent to the above-described constant water level valves 3a and 3b with built-in solenoid valves to control the opening and closing thereof, and the water levels of the A tank 1a and the B tank 1b are maintained at a predetermined water level.
[0024]
In addition to the above-mentioned valve opening / closing signal, the CPU 23 compares various set values with the water level signal, a full water warning (alarm when the water level of the aquarium has risen abnormally), and a low water alarm (water level is abnormally low). Alarm), idling alarm (alarm that the water level has dropped to the possibility that the pump is idling), return signal (signal that the water level has been restored until the pump can be restarted), and the like. The CPU 23 is configured to send a water level signal to the water level indicator 24 and to display the current water level numerically on the water level indicator 24.
[0025]
Next, a part of the alarm circuit that detects the difference between the water level signals provided in the control circuit 20 and outputs an alarm will be described. The water level signals from the water level detectors 15a and 15b are digitally converted by the A / D converter 22 and sent to the difference detection circuit 26, respectively. This difference detection circuit 26 detects the difference between the water levels, that is, the absolute value of the difference between the water level A signal 16a and the water level B signal 16b, and compares this difference with the alarm set value set by the setting device 27. When the difference is equal to or greater than the alarm set value, an alarm signal is sent to the CPU 23 described above. The setter 27 is configured to arbitrarily change the set alarm set value.
[0026]
In the CPU 23, when an alarm signal is sent from the difference detection circuit 26, an alarm indicating that a difference of a predetermined value or more has occurred in the water level signal, for example, an alarm lamp 28 blinks, and an alarm buzzer. 29 is activated. Further, the alarm relay 30 is activated and the contact thereof is closed so that it can be used for other purposes for remote monitoring.
[0027]
Next, the operation of such an embodiment will be described. First, when this water tank apparatus is installed or periodically, the water level detectors 15a and 15b of the A tank 1a and B tank 1b are calibrated using the calibration circuits 21a and 21b, and the water level signals from these are equal. Adjust so that
[0028]
In the case of normal operation, as described above, the gate valve 11 of the communication pipe 10 is opened to connect the bottoms of both water tanks, and one of the water level detectors 15a and 15b, for example, A The water level detector 15a of the tank 1a is used as a main detector, and the water levels of both the A tank 1a and the B tank 1b are controlled based on the water level signal from the water level detector 15a.
[0029]
In this case, the signal used for controlling the water level is the water level A signal 16a from the water level detector 15a. However, the difference detection circuit 26 includes the water level A signal 16a and the water level from both the water level detectors 15a and 15b. The B signal 16b is always input.
[0030]
Next, the operation of the difference detection circuit will be described with reference to the flowchart shown in FIG. That is, the water level A signal and the water level B signal are always input to the difference detection circuit 26 in steps ST1 and ST2. In step ST3, the absolute value of the difference between the water level A signal and the water level B signal is calculated. In step ST4, it is determined whether or not the difference between these water levels is equal to or greater than the alarm set value.
[0031]
If this difference is greater than or equal to the alarm set value, an alarm such as the above-mentioned alarm lamp blinking, alarm buzzer sounding, alarm relay operation, etc. is output in step ST5. Then, when the difference between the water level A and the water level B becomes equal to or less than the above alarm set value, the alarm lamp blinking stop, alarm buzzer sound stop, alarm relay operation stop, The alarm is stopped.
[0032]
And, for example, when a large amount of water is sucked from either tank A 1a or tank B 1b, for example, tank A 1a during operation of the pumping pump 9, and only a small amount of water is sucked from the other tank B tank 1b. The water level in tank A is lower. In this case, water flows from the B tank 1b to the A tank 1B through the communication pipe 10, but since this communication pipe 10 has resistance, there is always a difference in water level between the A tank 1a and the B tank 1b. This water level difference increases as the difference in the amount of water sucked from both tanks increases.
[0033]
When the water level difference between the A layer 1a and the B tank 1b is equal to or greater than a predetermined alarm set value, various alarms are output as described above. Therefore, since this warning reveals that a water level difference of a predetermined level or more has occurred in the water level between the tank A 1a and the tank B 1b, the opening of the gate valves 8a, 8b between the tanks and the header pipe 7, for example. Is adjusted so that water is evenly sucked from the A tank 1a and the B tank 1b. As a result, it is possible to prevent the water quality from deteriorating due to a decrease in the water exchange rate of the B tank 1b with a small amount of sucked water.
[0034]
Further, when an error occurs in the water level signals from the water level detectors 15a and 15b of the tank A 1a and the tank B 1b, an alarm is similarly output, so that the calibration circuits 21a and 21b are respectively adjusted. Thus, the outputs from both water level detectors 15a and 15b can be kept equal. Therefore, when the A tank 1a is cleaned, the water level does not greatly shift even when the gate valve 11 is closed and the water level detector 15b of the B tank 1b is switched to operate the B tank 1b alone.
[0035]
It is necessary to set the above alarm set values to different values depending on the type, scale, operation conditions, etc. of the water tank apparatus, but this alarm set value can be easily set by operating the variable setting device 27. Can be set or changed.
[0036]
Further, since the calibration circuits 21a and 21b are separately connected to the water level detectors 15a and 15b, respectively, the water level signals output from both the water level detectors 15a and 15b may be set equal to each other by adjusting them. This enables more accurate and reliable water level control.
[0037]
In addition, this invention is not limited to said embodiment, It can apply also to other water tank apparatuses, for example not only a water receiving tank but an elevated water tank, and other water tanks. Further, the number of water tanks is not limited to two, and it is needless to say that the present invention can be applied to a water tank apparatus including three or more water tanks. In addition, the present invention is not limited to water supply, but can also be applied to water tank apparatuses such as middle water (miscellaneous water), industrial water, waste water, and sewage treatment equipment. Further, the water level detector is not limited to the one that detects the water level by water pressure, and may be any device that can detect the water level continuously by ultrasonic waves, laser light, capacitance, float, or the like.
[0038]
Furthermore, in the above embodiment, the description has been given of the case where the two water tanks are communicated by the communication pipe. However, the communication portion is formed at the lower part of the partition wall that divides one water tank into a plurality of water tanks without using the communication pipe. In short, it is only necessary that the water tanks are communicated with each other through the communication path.
[0039]
In the above embodiment, the difference between the water level signals from each water level detector is calculated by the difference detection circuit and the warning signal is output. However, the present invention is not limited to this, and the water level signal from each water level detector. Any alarm signal can be output based on the difference between the two.
[0040]
【The invention's effect】
According to the first aspect of the present invention, a difference occurs in the drainage flow rate from each water tank, a difference occurs in the water level between the water tanks, and an alarm signal is output when the difference in water level between these water tanks exceeds a certain alarm set value. Therefore, it is possible to make an adjustment or the like to eliminate the difference between the drainage flow rates based on this alarm. Therefore, when this water tank apparatus is applied to a water receiving tank, an elevated water tank, or the like, it is possible to prevent the water exchange rate in the water tank from being lowered and the water quality from being lowered. Moreover, also in other water tank apparatus, the waste_water | drain flow volume from each water tank can be made uniform, and the undesired residence of water in each water tank can be prevented.
[0041]
In addition, since this apparatus constantly monitors the difference between the water level signals from a plurality of water level detectors, an alarm is output when the error of the water level signal of a certain water level detector increases. Therefore, based on this warning, if adjustment work is performed so that no error occurs in the water level signals from these water level detectors, when the water level detector used in the water tank cleaning work is switched There is no significant fluctuation in the water level, and it is possible to prevent an abnormal drop in the water level in the aquarium or overflow from the aquarium.
[0042]
Further, in the present invention according to claim 2, since the alarm circuit is provided with a setting device capable of changing the alarm setting value, it corresponds to the type and scale of the aquarium apparatus, operating conditions, etc. Thus, the alarm set value can be easily changed, and the optimum operation can be performed.
[0043]
Further, according to the third aspect of the present invention, each of the water level detectors is provided with a calibration circuit for an output water level signal. Therefore, when the water tank apparatus is installed, these calibrations are performed. The circuit can be used to accurately calibrate the water level signals from each water level detector to be equal to each other, making operation more accurate and reliable.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.
FIG. 2 is a flowchart for explaining the operation of an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a A tank 1b B tank 2a, 2b Water supply system 7 Header pipe 9 Pumping pump 15a, 15b Water level detector 20 Controller 21a, 21b Calibration circuit 22 A / D converter 23 CPU
26 Difference detection circuit 27 Setting device 28 Alarm lamp 29 Alarm buzzer 30 Alarm relay

Claims (3)

複数の水槽と、これらの水槽内にそれぞれ給水する給水系統と、これらの水槽からそれぞれ排水する排水系統と、これらの水槽の底部を互いに連通する連通路とを備えたものにおいて、上記の各水槽の内部の水位を連続的に検出する水位検出器を設け、これらの水位検出器からの信号に対応して上記の各水槽の給水系統を制御し給水量を制御してこれらの各水槽内の水位を所定の水位に制御する制御装置を備えており、この制御装置には、上記の複数の水位検出器からの複数の水位信号の差分が所定の警報設定値以上の場合に警報信号を出力する警報回路が設けられていることを特徴とする水槽装置。Each of the above-mentioned water tanks, comprising a plurality of water tanks, a water supply system for supplying water into each of these water tanks, a drainage system for discharging water from each of these water tanks, and a communication passage that connects the bottoms of these water tanks to each other A water level detector that continuously detects the water level inside the water tank is provided, and the water supply system of each water tank is controlled in response to the signal from these water level detectors, and the water supply amount is controlled to control the water supply amount in each water tank. A control device that controls the water level to a predetermined water level is provided. This control device outputs an alarm signal when the difference between the plurality of water level signals from the plurality of water level detectors is equal to or greater than a predetermined alarm set value. An aquarium device characterized in that an alarm circuit is provided. 前記の警報回路には、前記の警報設定値を変更可能な設定器が設けられていることを特徴とする請求項1の水槽装置。The water tank apparatus according to claim 1, wherein the alarm circuit is provided with a setting device capable of changing the alarm set value. 前記の各水位検出器には、出力される水位信号の較正回路がそれぞれ接続されていることを特徴とする請求項1の水槽装置。The water tank apparatus according to claim 1, wherein a calibration circuit for an output water level signal is connected to each of the water level detectors .
JP2002153717A 2002-05-28 2002-05-28 Aquarium equipment Expired - Fee Related JP4068894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002153717A JP4068894B2 (en) 2002-05-28 2002-05-28 Aquarium equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002153717A JP4068894B2 (en) 2002-05-28 2002-05-28 Aquarium equipment

Publications (2)

Publication Number Publication Date
JP2003342980A JP2003342980A (en) 2003-12-03
JP4068894B2 true JP4068894B2 (en) 2008-03-26

Family

ID=29770690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153717A Expired - Fee Related JP4068894B2 (en) 2002-05-28 2002-05-28 Aquarium equipment

Country Status (1)

Country Link
JP (1) JP4068894B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056449B2 (en) * 2008-02-12 2012-10-24 パナソニック株式会社 Storage device
JP4586095B2 (en) * 2008-02-27 2010-11-24 株式会社アイエス工業所 Liquid level control system
JP2013124484A (en) * 2011-12-14 2013-06-24 Kurita Water Ind Ltd Storage device
KR102105468B1 (en) * 2018-03-15 2020-04-29 한국원자력연구원 Simulator of feed water system and simulation system of feed water system

Also Published As

Publication number Publication date
JP2003342980A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
US6973375B2 (en) System and method for flow monitoring and control
US10031530B2 (en) Automatic pool and spa water leveler on a non-static line
JP4554933B2 (en) Water supply system
KR102028372B1 (en) Pressure Flow Control System and More Detection Methods
US8307845B2 (en) Flow rate controller
US8668830B2 (en) Interruption of measured variable analyses in an automatic water softening system when defined operating situations are present
US11493401B2 (en) Arrangement and method for detecting leaks in a water pipe system
JP4068894B2 (en) Aquarium equipment
US20090112364A1 (en) Chemical treatment system and method
JP2009041333A (en) Water supply system and water supplying method
US11609145B2 (en) Smart pressure relief valve
JP2013169537A (en) Membrane separation device
CN108002461B (en) Water filtration system and control method thereof
JP2009543247A (en) Flow control device
JP3172884B2 (en) Chemical control device
JPH0618401A (en) Detector of filter clogging
JPH08178782A (en) Differential pressure measuring apparatus
JPH01227012A (en) Method and apparatus for controlling flow rate
US20230106582A1 (en) System, method and apparatus for filter and overhang plugging detection
US20230124213A1 (en) Whole home water management system
JP4423653B2 (en) Aquarium water level control device and aquarium water level control method
JPH10185813A (en) Turbidity/chromaticity meter
JPH11241972A (en) Leakage confirming method of secondary piping of gas meter and leakage confirming device thereof
JP2001187164A (en) Pressure control system
JPH08136527A (en) Deaerator in water quality monitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4068894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees