JP4067484B2 - Co-Cr-Mo type fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing the fine wire - Google Patents
Co-Cr-Mo type fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing the fine wire Download PDFInfo
- Publication number
- JP4067484B2 JP4067484B2 JP2003401900A JP2003401900A JP4067484B2 JP 4067484 B2 JP4067484 B2 JP 4067484B2 JP 2003401900 A JP2003401900 A JP 2003401900A JP 2003401900 A JP2003401900 A JP 2003401900A JP 4067484 B2 JP4067484 B2 JP 4067484B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- fine wire
- mass
- phase
- solid solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
Description
本発明は、人工骨材の補綴材料や多孔質人工骨材、医療外科用多孔質埋め込み部品、骨接合用又は固定用のワイヤ及びケーブル、細線を織り加工又は編み加工した骨接合及び固定用のバンド、血管内ステント用ワイヤメッシュ及びガイドワイヤ、並びに血管塞栓用ワイヤ等の、医療用インプラントデバイスに適用されるCo−Cr−Mo系細線及びその製造方法、ならびにこの細線を加工した面状体等に係り、特に、生体適合性、耐食性、耐摩耗性、加工性及び柔軟性に優れたCo−Cr−Mo系細線の製造技術に関する。 The present invention relates to a prosthetic material for artificial bone, a porous artificial bone, a porous implant part for medical surgery, a wire and cable for bone bonding or fixation, and a bone bonding and fixation for woven or knitted fine wires. Co-Cr-Mo fine wires applied to medical implant devices, such as bands, wire meshes and guide wires for intravascular stents, and vascular embolization wires, and manufacturing methods thereof, and planar bodies processed from these fine wires, etc. In particular, the present invention relates to a technique for producing a Co—Cr—Mo fine wire excellent in biocompatibility, corrosion resistance, wear resistance, workability and flexibility.
従来、Co−Cr−Mo系合金は生体適合性に優れる合金として知られていたが、塑性加工が容易でないことから、その鋳造材や鍛造材は比較的大きな寸法に形成された剛体製品に限られ、生体構成部品に好適な細線を製造することは困難であった。また、本合金は生体適合性に優れることから、その適用分野が広く、特に医療分野におけるニーズが高かった。このため、生体構成部材の力学特性に適合する強度、耐摩耗性及び耐ねじり特性を有し、かつ生体構成部材の形状にフィットする柔軟性を有する本合金からなる細線の開発が要請されていた。 Conventionally, a Co—Cr—Mo alloy has been known as an alloy having excellent biocompatibility. However, since plastic working is not easy, the cast material and the forged material are limited to rigid products formed in relatively large dimensions. Therefore, it has been difficult to produce a fine wire suitable for a biological component. Moreover, since this alloy is excellent in biocompatibility, its application field is wide, and the need in the medical field was especially high. For this reason, there has been a demand for the development of a thin wire made of this alloy having strength, wear resistance and torsional resistance characteristics that match the mechanical characteristics of the bioconstituent member, and flexibility that fits the shape of the bioconstituent member. .
このような要請に対し、本合金にNiを添加することにより塑性加工を可能とした技術が開示されている(例えば、特許文献1参照)。具体的には、5質量%未満のNiを含有するCo−Cr−Moからなる長尺部材を製造することで、移植可能な医療用装置を提供することができるとされている。しかしながら、Niは生体アレルギー性の問題があるため、医療分野に使用される細線についてはNiを含有しないことが望ましい。なお、特許文献1に記載された技術によれば、Niを含有しない細線も包含されるが、発明の詳細な説明中の実施態様にはNiを含むもののみが開示されており、Niを含有しない細線が加工可能であるか否かは定かでない。 In response to such a request, a technique that enables plastic working by adding Ni to the alloy has been disclosed (for example, see Patent Document 1). Specifically, it is said that an implantable medical device can be provided by manufacturing a long member made of Co—Cr—Mo containing Ni of less than 5 mass%. However, since Ni has a problem of bioallergenicity, it is desirable not to contain Ni for fine wires used in the medical field. In addition, according to the technique described in Patent Document 1, thin wires that do not contain Ni are also included, but only those containing Ni are disclosed in the embodiments in the detailed description of the invention, and contain Ni. It is uncertain whether or not fine lines that can be processed can be processed.
また本合金において、Mo濃度の増大及び組織の均一化を図った場合には、耐食性はもとより耐摩耗性が飛躍的に向上するが、通常の鋳造材ではMo含有量の増大とともに塑性加工が困難となる問題があった。これは比較的塑性変形し易いγ相やε相以外に、硬くしかも脆い不明相が析出するためと考えられており、塑性加工時にこの不明相において加工応力が急増し、場合によっては不明相にて、又は不明相と母相との界面にて割れが発生するためと考えられている。 In addition, in this alloy, when the Mo concentration is increased and the structure is made uniform, the wear resistance as well as the corrosion resistance is drastically improved. There was a problem. This is thought to be due to the precipitation of a hard and brittle unknown phase in addition to the γ phase and ε phase, which are relatively easy to deform plastically. During plastic processing, the processing stress suddenly increases in this unknown phase, and in some cases it becomes an unknown phase. It is thought that cracking occurs at the interface between the unknown phase and the parent phase.
この不明相による不具合に対する解決策として、Co−(26〜30)質量%Cr−(6〜12)質量%Mo−(0〜0.3)質量%Cの合金溶湯を水冷銅鋳型で急冷鋳造した材料を、熱間鍛造法により平均結晶粒径50μm以下の粒内にMo濃度の高い析出物や金属間化合物等の第二相を微細に分散した組織に調整することにより、塑性加工性を改善した技術が開示されている(例えば、特許文献2参照)。しかしながら、特許文献2に記載された合金から塑性加工法により直径300μm下の細線を得ようとすると、高濃度Moの第二相が粒状に微細に分散したといえども変形し難く、第二相が母相(第一相)内で移動するのみで母相内を傷つけ、母相内部に孔や亀裂を生ずるおそれがあった。よって、この問題が生じないように合金を細線形状に仕上げるには、特許文献2に記載された組織制御条件の下に、塑性加工を徐々に繰り返すことが必要であった。このため、工程数が大幅に増大し、製造コストが割高になるという問題が生じていた。 As a solution to the problem due to this unknown phase, a rapid casting of a molten alloy of Co- (26-30) mass% Cr- (6-12) mass% Mo- (0-0.3) mass% C with a water-cooled copper mold By adjusting the obtained material to a structure in which the second phase such as precipitates with high Mo concentration and intermetallic compounds are finely dispersed in grains having an average crystal grain size of 50 μm or less by a hot forging method, plastic workability is improved. An improved technique is disclosed (for example, see Patent Document 2). However, when trying to obtain a thin wire having a diameter of 300 μm from the alloy described in Patent Document 2 by the plastic working method, even if the second phase of high-concentration Mo is finely dispersed in a granular form, it is difficult to be deformed. May move inside the mother phase (first phase) and damage the inside of the mother phase, possibly causing holes and cracks inside the mother phase. Therefore, in order to finish the alloy into a thin wire shape so as not to cause this problem, it is necessary to gradually repeat the plastic working under the structure control conditions described in Patent Document 2. For this reason, the number of processes increased significantly and the problem that manufacturing cost became expensive had arisen.
さらに、従来技術においては、特許文献1の請求項13及びその実施態様の記載から明らかなように、8質量%以上のMoを含有した細線の作成例は開示されておらず、このため、Niを含有せず、しかも8質量%以上のMoを含有した耐食性、耐摩耗性及び柔軟性に優れた細線の開発が要請されていた。 Furthermore, in the prior art, as is clear from the description of claim 13 of Patent Document 1 and the embodiment thereof, an example of creating a thin wire containing 8% by mass or more of Mo is not disclosed. There has been a demand for the development of a thin wire excellent in corrosion resistance, wear resistance and flexibility, which contains no Mo and 8% by mass or more of Mo.
一方、特許文献2に記載された製造方法のような鍛造を繰り返す方法では、円形断面の細線を製造するのは容易ではなく、むしろ箔帯を製造する場合ならば未だ可能性がある。また溶湯を冷却用ロール側面に当てて急冷凝固手段を用いるロール法によって箔帯を作製することも可能である。しかしながら、箔帯は生体内の複雑な形状にフィットする程度の柔軟性に乏しいため、柔軟性を向上させるべく横断面の円形度(=短径/長径)の高い細線を織り加工又は編み加工してなる帯の開発も要請されていた。 On the other hand, in the method of repeating forging as in the manufacturing method described in Patent Document 2, it is not easy to manufacture a thin wire having a circular cross section, but there is still a possibility if a foil strip is manufactured. It is also possible to produce a foil strip by a roll method using a rapid solidification means by applying the molten metal to the cooling roll side surface. However, since the foil strip is not flexible enough to fit a complex shape in a living body, a thin wire with a high degree of circularity (= minor axis / major axis) of the cross section is woven or knitted to improve flexibility. There was also a demand for the development of the belt.
本発明は上記種々の要請に鑑みてなされたものであり、Co−Cr−Mo系細線の本来的な特徴である優れた生体適合性を確保することを前提に、特に、優れた耐食性、耐摩耗性及び加工性を発揮するとともに、生体構成部材の形状にフィットすべく優れた柔軟性を発揮するCo−Cr−Mo系細線及びその製造方法、ならびにこの細線を加工した面状体等を提供することを目的としている。 The present invention has been made in view of the various demands described above, and in particular, on the premise of ensuring excellent biocompatibility, which is an essential feature of Co-Cr-Mo type fine wires, particularly excellent corrosion resistance and resistance. Providing Co-Cr-Mo fine wires that exhibit wearability and workability, as well as excellent flexibility to fit the shape of living body components, a method for manufacturing the same, and planar bodies processed from these fine wires The purpose is to do.
本発明者らは、従来難加工材とされてきたCo−Cr−Mo系合金から直接細線を形成する公知の方法である各種の溶融紡糸法を検討した。その結果、本合金系においては横断面の円形度(=短径/長径)の高い細線を得る方法として、例えば特許文献3に記載された回転液中紡糸法や特許文献4に記載されたガス中溶融紡糸法を利用することが好適であるとの結論に達した。具体的には、横断面の円形度が0.6以上の円形断面を有する細線の製造には、回転液中紡糸法を採用し、細線直径をノズル径により制御して直径300μm以下の細線を得る方法が好適であるとの知見を得た。また、横断面の円形度が0.7以上の円形断面を有する細線の製造には、ガス中溶融紡糸法を採用し、細線直径をノズル径により制御して直径300μm以下の細線を得る方法が好適であるとの知見を得た。 The present inventors examined various melt spinning methods, which are known methods for directly forming a fine wire from a Co—Cr—Mo based alloy that has been regarded as a difficult-to-work material. As a result, in the present alloy system, as a method for obtaining a thin wire having a high degree of circularity (= minor axis / major axis) in the cross section, for example, the spinning method described in Patent Document 3 and the gas described in Patent Document 4 are used. It was concluded that it would be preferable to use a medium melt spinning method. Specifically, in the production of a thin wire having a circular cross section with a circularity of 0.6 or more in the cross section, a spinning method in a rotating liquid is adopted, and the fine wire diameter is controlled by the nozzle diameter to produce a thin wire having a diameter of 300 μm or less. The knowledge that the method to obtain was suitable was acquired. In addition, a method of obtaining a fine wire having a diameter of 300 μm or less by using a melt spinning method in gas and controlling the diameter of the fine wire by a nozzle diameter is used for manufacturing a fine wire having a circular cross section having a circularity of 0.7 or more in cross section. The knowledge that it was suitable was obtained.
ここで、上記二つの製造方法を特に細線の直径に関する条件を限定せず用いた場合にも細線形状は得られる。しかしながら、細線の太さがある一定値を超える場合には、90度以上の曲げ変形等で細線が折れ易く、細線の中には延性に乏しいものが存在することが判明した。この原因を検討した結果、細線の太さがある一定値を超えると内部組織においてγ相及びε相以外の不明相が存在し、これが延性の低下の原因となることが判明した。また、この不明相の存在は細線が太くなるほど顕著化することも併せて判明した。以上のような見地から、この不明相を消失させることで、延性、ひいては加工性に富んだ細線が得られるとの知見を得た。 Here, even when the above two manufacturing methods are used without particularly limiting the conditions relating to the diameter of the fine wire, the fine wire shape can be obtained. However, when the thickness of the fine line exceeds a certain value, it was found that the fine line is easily broken by bending deformation of 90 degrees or more, and some of the fine lines have poor ductility. As a result of examining this cause, it was found that when the thickness of the fine wire exceeds a certain value, an unknown phase other than the γ phase and the ε phase exists in the internal structure, and this causes a decrease in ductility. It was also found that the presence of this unknown phase becomes more prominent as the thin line becomes thicker. From the above point of view, it was found that by eliminating this unknown phase, a thin wire having excellent ductility and, in turn, workability was obtained.
また、上述したように、直径300μmを超える細線が折れ易い理由は以下のとおりである。すなわち、300μmを超えるノズル径を用いた紡糸手段では、合金溶湯ジェットの表面と内部との冷却速度差が大きいことから、円形度の低下に起因する柔軟性の劣化が生じ易く、同時にMo濃度の不均一化によって、不明相の析出が助長されたことに起因する柔軟性の劣化が生じ易い。このため、特に90度以上の曲げが困難となったと考えられる。また、凝固前の合金溶湯ジェットの直径が300μm以下の場合には、合金溶湯ジェットの円形度が高いほど合金溶湯ジェット側面からの冷却が円周方向において均一になされるとともに、Mo濃度の均一化ひいては不明相の析出防止に寄与しているものと考えられる。 Further, as described above, the reason why a thin wire having a diameter of more than 300 μm is likely to break is as follows. That is, in the spinning means using a nozzle diameter exceeding 300 μm, since the cooling rate difference between the surface and the inside of the molten alloy jet is large, the flexibility is easily deteriorated due to the decrease in circularity, and at the same time, the Mo concentration Due to the non-uniformity, the deterioration of flexibility due to the promotion of the precipitation of the unknown phase is likely to occur. For this reason, it is considered that bending of 90 degrees or more is particularly difficult. Also, when the diameter of the molten alloy jet before solidification is 300 μm or less, the higher the circularity of the molten alloy jet, the more uniform the cooling from the side of the molten alloy jet is in the circumferential direction and the uniform Mo concentration As a result, it is thought that it contributes to prevention of precipitation of an unknown phase.
さらに、Moの配合濃度は耐食性及び耐摩耗性を確保する上で8質量%以上が好適である。しかしながら、Moの配合濃度が16質量%を超えると直径300μm以下の細線であっても、90度以上の曲げ変形が困難で延性に乏しいことが判明した。また、Crの配合濃度は耐食性を確保する上で26質量%以上が好適である。しかしながら、Crの配合濃度が31質量%を超えると、8質量%以上のMo配合濃度の場合に細線の90度以上の曲げ変形が困難で延性に乏しい細線となることが判明した。なお、耐磨耗性や細線の後加工性に鑑みれば、Cは0.3質量%前後添加しても良いことも判明した。 Furthermore, 8 mass% or more is suitable for ensuring the compounding density | concentration of Mo, when ensuring corrosion resistance and abrasion resistance. However, it has been found that when the Mo concentration exceeds 16% by mass, bending deformation of 90 ° or more is difficult and ductility is poor even for a thin wire having a diameter of 300 μm or less. Moreover, the blending concentration of Cr is preferably 26% by mass or more in order to ensure corrosion resistance. However, it has been found that when the Cr compounding concentration exceeds 31% by mass, the fine wire is difficult to bend at 90 ° or more when the Mo compounding concentration is 8% by mass or more, resulting in a thin wire having poor ductility. In view of wear resistance and post-workability of thin wires, it has been found that C may be added at around 0.3% by mass.
本発明のCo−Cr−Mo系細線は、以上に示した種々の知見に基づいてなされたものであり、Cr:26〜31質量%、Mo:8〜16質量%を含み、残部がCo及び不可避的不純物からなる直径300μm以下の細線であり、横断面の円形度(=短径/長径)が0.6以上であって、内部組織がγ相(面心立方晶のCo基固溶体)とε相(六方稠密晶のCo基固溶体)との一方のみ、又はそれらの両方のみからなることを特徴としている。なお、このようなCo−Cr−Mo系細線においては、上記横断面の円形度が0.7以上であることが望ましい。 The Co—Cr—Mo thin wire of the present invention is made based on the various findings shown above, including Cr: 26 to 31 mass%, Mo: 8 to 16 mass%, with the balance being Co and a diameter 300μm or less thin lines unavoidable impurities, circularity of the cross section a is (= minor axis / major axis) is 0.6 or more, phase internal organization gamma (Co group solid solution of face-centered cubic) And ε phase (co-solid solid solution of hexagonal close-packed crystal), or only both of them. Note that in such a Co—Cr—Mo thin wire, the circularity of the cross section is preferably 0.7 or more.
次に、本発明のCo−Cr−Mo系細線の第1の製造方法は、回転液中紡糸法に分類されるものであり、回転する円筒状ドラムの内周面に沿って形成された冷却液体層中に、直径300μm以下のノズルを介して、Cr:26〜31質量%、Mo:8〜16質量%を含み、残部がCo及び不可避的不純物からなる合金溶湯を噴出することにより、直径が300μm以下であって、横断面の円形度(=短径/長径)が0.6以上であり、内部組織がγ相(面心立方晶のCo基固溶体)とε相(六方稠密晶のCo基固溶体)との一方のみ、又はそれらの両方のみからなる細線を得ることを特徴としている。 Next, the first method for producing a Co—Cr—Mo fine wire according to the present invention is classified as a spinning method in a rotating liquid, and a cooling formed along the inner peripheral surface of a rotating cylindrical drum. In the liquid layer, through a nozzle having a diameter of 300 μm or less, a molten alloy containing Cr: 26 to 31% by mass and Mo: 8 to 16% by mass with the balance being Co and inevitable impurities is ejected. there there is 300μm or less, roundness of cross section Ri (= minor axis / major axis) is 0.6 or more der, phase internal organization gamma (Co group solid solution of face-centered cubic) and ε-phase (hexagonal close-packed It is characterized in that a thin wire consisting of only one of them or both of them is obtained.
また、本発明のCo−Cr−Mo系細線の第2の製造方法は、ガス中溶融紡糸法に分類されるものであり、Cr:26〜31質量%、Mo:8〜16質量%を含み、残部がCo及び不可避的不純物からなる合金溶湯を直径300μm以下の紡糸ノズルから噴射し、噴射ジェットを冷却ガス中で冷却して凝固させることにより、直径が300μm以下であって、横断面の円形度(=短径/長径)が0.7以上であり、内部組織がγ相(面心立方晶のCo基固溶体)とε相(六方稠密晶のCo基固溶体)との一方のみ、又はそれらの両方のみからなる細線を得ることを特徴としている。 Moreover, the 2nd manufacturing method of the Co-Cr-Mo type | system | group fine wire of this invention is classified into the melt spinning method in gas, and includes Cr: 26-31 mass%, Mo: 8-16 mass%. The molten alloy consisting of Co and inevitable impurities is injected from a spinning nozzle having a diameter of 300 μm or less, and the injection jet is cooled and solidified in a cooling gas, so that the diameter is 300 μm or less and the cross section is circular. degrees Ri der (= minor axis / major axis) is 0.7 or more, one of the phase internal organization gamma (face-centered cubic Co-based solid solution) and ε-phase (Co base solid solution of hexagonal close-packed crystal) alone, Alternatively, it is characterized in that a thin line consisting only of both is obtained.
さらに、本発明のCo−Cr−Mo系細線の第3の製造方法は、上記第2の製造方法と同様にガス中溶融紡糸法に分類されるものであり、Cr:26〜31質量%、Mo:8〜16質量%を含み、残部がCo及び不可避的不純物からなる合金溶湯を落下させる形態で下方に噴出することにより溶湯ジェットを形成する直径300μm以下の紡糸ノズルと、前記溶湯ジェットの落下経路を包囲する形態で配置されるガス整流筒と、前記溶湯ジェットを凝固させる冷却ガスを前記ガス整流筒の内部に導入する冷却ガス導入手段と、前記溶湯ジェットが凝固することによって得られる細線を前記ガス整流筒から外部に排出する排出手段とを用いることにより、直径が300μm以下であって、横断面の円形度(=短径/長径)が0.7以上であり、内部組織がγ相(面心立方晶のCo基固溶体)とε相(六方稠密晶のCo基固溶体)との一方のみ、又はそれらの両方のみからなる細線を得ることを特徴としている。 Furthermore, the 3rd manufacturing method of the Co-Cr-Mo type | system | group thin wire | line of this invention is classified into the melt spinning method in a gas similarly to the said 2nd manufacturing method, Cr: 26-31 mass%, Mo: A spinning nozzle having a diameter of 300 μm or less that forms a molten jet by spraying downward in a form in which the molten alloy containing 8 to 16% by mass and the balance consisting of Co and inevitable impurities is dropped, and dropping of the molten jet A gas rectifying cylinder arranged in a form surrounding the path, cooling gas introducing means for introducing a cooling gas for solidifying the molten jet into the gas rectifying cylinder, and a thin line obtained by solidifying the molten jet wherein by using a discharge means for discharging from the gas flow-guide cylinder to the outside, there is the 300μm or less in diameter state, and are circularity (= minor axis / major axis) is 0.7 or more of the cross section, the internal Weave is characterized by obtaining only one, or thin line consisting of only both of them with the γ-phase (face-centered cubic Co-based solid solution of crystal) and ε-phase (Co base solid solution of hexagonal close-packed crystal).
以上に示したガス中溶融紡糸法による製造方法(第2及び第3の製造方法)においては、上記冷却ガスを酸素含有ガスとすることが望ましい。また、上記第3の製造方法においては、冷却ガスは、上記溶湯ジェットの落下方向において、紡糸ノズル寄りの第1の位置にてガス整流筒内に導入される不活性ガスからなる第1のガス成分と、上記第1の位置より下側の第2の位置にてガス整流筒内に導入される酸化性ガスからなる第2のガス成分と、上記第2の位置より下側の第3の位置にてガス整流筒内に導入される上記第1及び第2のガス成分よりも冷却能の高い第3のガス成分とを含むことが望ましい。この場合、上記第1のガス成分がアルゴン又はヘリウムであり、第2のガス成分が酸素又は炭酸ガスであることがさらに望ましい。さらに、合金溶湯ジェットの冷却促進のために、上記第3の位置の下側に第4、第5の冷却ガスの導入部を配備することが極めて望ましい。 In the production methods (second and third production methods) by the gas melt spinning method described above, it is desirable that the cooling gas is an oxygen-containing gas. In the third manufacturing method, the cooling gas is a first gas composed of an inert gas introduced into the gas rectifying cylinder at a first position near the spinning nozzle in the falling direction of the molten jet. A second gas component composed of an oxidizing gas introduced into the gas rectifying cylinder at a second position below the first position and a third position below the second position. It is desirable to include a third gas component having a higher cooling capacity than the first and second gas components introduced into the gas rectifying cylinder at the position. In this case, it is more desirable that the first gas component is argon or helium and the second gas component is oxygen or carbon dioxide gas. Furthermore, in order to promote cooling of the molten alloy jet, it is highly desirable to provide fourth and fifth cooling gas introduction portions below the third position.
以上は、本発明のCo−Cr−Mo系細線の製造方法であるが、このように製造された細線を織り加工、編み加工又は不織加工してなる面状体、上記細線を織り加工、編み加工又は不織加工してなる筒状体及び上記細線を加工してなる縒り線又はケーブルは、生体適合性、耐食性、耐摩耗性、加工性及び柔軟性に優れているため、各種医療用インプラントデバイスに適用することができる。 The above is the method for producing the Co-Cr-Mo type fine wire of the present invention, but the fine wire thus produced is woven, knitted or non-woven processed, the fine wire is woven, A tubular body formed by knitting or non-woven processing and a twisted wire or cable formed by processing the above-described thin wire are excellent in biocompatibility, corrosion resistance, wear resistance, workability and flexibility. It can be applied to implant devices.
このように、本発明のCo−Cr−Mo系細線では、その本来的な特徴である優れた生体適合性を確保した上で、Mo量の適正化を図ることにより優れた耐食性、耐摩耗性及び加工性を確保することができる。また、Cr量の適正化を図ることにより優れた耐食性及び加工性を確保することもできる。そして、横断面の円形度の適正化を図ることで、優れた柔軟性を確保することができる。さらに、実質的に内部組織をγ相(面心立方晶のCo基固溶体)とε相(六方稠密晶のCo基固溶体)との一方のみ、又はそれらの両方のみからなる組織とすることで優れた延性すなわち加工性を確保することができる。なお、細線の直径を300μm以下としたことにより、合金溶湯ジェットの表面と内部の冷却速度差を小さくすることができ、円形度の低下やMo濃度の不均一化、ひいては不明相の析出を防止することができる。
As described above, the Co—Cr—Mo thin wire of the present invention has excellent corrosion resistance and wear resistance by ensuring the excellent biocompatibility, which is its original characteristic, and by optimizing the amount of Mo. And processability can be ensured. In addition, excellent corrosion resistance and workability can be ensured by optimizing the Cr content. And the outstanding softness | flexibility can be ensured by optimizing the circularity of a cross section. Furthermore, it is excellent in that the internal structure is substantially composed of only one or both of the γ phase (face-centered cubic Co-based solid solution) and the ε-phase (hexagonal dense Co-based solid solution). It is possible to ensure ductility, that is, workability. By making the diameter of the
また、このようなCo−Cr−Mo系細線においては、各元素の濃度が均一であることが望ましい。これにより実質的にγ相とε相との一方のみ、又はそれらの両方のみからなる組織を得易くなり、優れた延性、ひいては加工性に富むCo−Cr−Mo系細線を得ることができる。また、円形度を0.7以上とすることにより、さらに柔軟性に富むCo−Cr−Mo系細線とすることができる。 Further, in such a Co—Cr—Mo fine wire, it is desirable that the concentration of each element is uniform. This makes it easy to obtain a structure consisting essentially of only one or both of the γ-phase and ε-phase, and a Co—Cr—Mo-based fine wire having excellent ductility and thus excellent workability can be obtained. Further, by setting the circularity to 0.7 or more, it is possible to obtain a Co—Cr—Mo type fine wire that is more flexible.
次に、本発明のCo−Cr−Mo系細線の第1の製造方法は、回転液中紡糸法によるものであることから、上述した本発明者らの知見によって横断面の円形度を0.6以上とすることができ、細線の十分な柔軟性を確保することができる。なお、この製造方法によれば、上述したとおり本合金の本来的な特徴である優れた生体適合性を確保した上で、内部組織及び細線径の適正化により、耐食性、耐摩耗性及び加工性に富むCo−Cr−Mo系細線を得ることができる。 Next, since the first method for producing the Co—Cr—Mo fine wire of the present invention is based on the spinning in a rotating liquid, the circularity of the cross section is reduced to 0. 0 based on the knowledge of the inventors described above. It can be set to 6 or more, and sufficient flexibility of the thin wire can be ensured. According to this manufacturing method, as described above, the excellent biocompatibility that is the original characteristic of the alloy is ensured, and the corrosion resistance, wear resistance, and workability are improved by optimizing the internal structure and fine wire diameter. Co-Cr-Mo-based fine wires rich in carbon can be obtained.
また、本発明のCo−Cr−Mo系細線の第2の製造方法は、ガス中溶融紡糸法によるものであることから、上述した本発明者らの知見によって横断面の円形度を0.7以上とすることができ、上記第1の製造方法に比してさらに高い柔軟性を確保することができる。なお、生体適合性、耐食性、耐摩耗性及び加工性に関しては上記第1の製造方法と同様に優れた効果を得ることができる。 In addition, since the second method for producing the Co—Cr—Mo fine wire of the present invention is based on the melt spinning method in gas, the circularity of the cross section is set to 0.7 by the knowledge of the inventors described above. As described above, higher flexibility can be ensured as compared with the first manufacturing method. In addition, regarding the biocompatibility, the corrosion resistance, the wear resistance, and the workability, excellent effects can be obtained as in the first manufacturing method.
さらに、本発明のCo−Cr−Mo系細線の第3の製造方法も、ガス中溶融紡糸法によるものであることから、横断面の円形度を0.7以上とすることができ、上記第2の製造方法と同様に高い柔軟性を確保することができる。また、生体適合性、耐食性、耐摩耗性及び加工性に関しては上記第1及び第2の製造方法と同様に優れた効果を得ることができる。 Furthermore, since the third method for producing the Co—Cr—Mo fine wire of the present invention is also based on the melt spinning method in gas, the circularity of the cross section can be set to 0.7 or more. High flexibility can be ensured similarly to the manufacturing method 2. Further, as to biocompatibility, corrosion resistance, wear resistance, and workability, excellent effects can be obtained as in the first and second manufacturing methods.
ここで、回転液中紡糸法による製造方法と、ガス中溶融紡糸法による製造方法とを比較した場合に、ガス中溶融紡糸法による製造方法の方が、より円形度の高い細線が得られ易い理由を説明する。すなわち、前者の場合は合金溶湯ジェットが固化する前に回転する冷却液体層に突入して、冷却液体の進行方向に合金溶湯ジェットが曲げられる際に偏平化し易い。これに対し後者の場合には、直線状に落下する合金溶湯ジェットが固化するまでの空中飛行中、合金溶湯ジェットの表面張力で円形度を自己補正しながら凝固が進行する。このため、両紡糸法により製造した細線においては、円形度に差が生じると考えられる。 Here, when the production method by the spinning in a rotating liquid is compared with the production method by a gas melt spinning method, the production method by the gas melt spinning method is more likely to obtain a finer wire with higher circularity. Explain why. That is, in the former case, the molten alloy jet enters the rotating cooling liquid layer before solidifying and is easily flattened when the molten alloy jet is bent in the traveling direction of the cooling liquid. On the other hand, in the latter case, solidification proceeds while self-correcting the circularity with the surface tension of the molten alloy jet during the air flight until the molten alloy jet that falls linearly solidifies. For this reason, it is considered that there is a difference in circularity between thin wires produced by both spinning methods.
以下、実施例により本発明を具体的に説明する。なお、Co−Cr−Mo系細線の製造に際し、ガス中溶融紡糸法を利用する場合には、図1に示す装置を用いた。具体的には、同図に示すように、先端にノズルを有するつぼ内で合金原料を加熱溶融し、ノズルから噴出された合金溶湯ジェットをヘリウムガス及び酸素ガスにより冷却することにより凝固して細線を得、巻き取り用ドラムにて巻き取った。一方、回転液中紡糸法を利用する場合には特許文献3に記載されているような通常の装置を用いた。なお、円形度は任意に選択した短径及び長径から算出した値である。 Hereinafter, the present invention will be described specifically by way of examples. In addition, when manufacturing the Co—Cr—Mo type fine wire, the apparatus shown in FIG. 1 was used when the melt spinning method in gas was used. Specifically, as shown in the figure, the alloy raw material is heated and melted in a crucible having a nozzle at the tip, and the molten alloy jet ejected from the nozzle is solidified by cooling with helium gas and oxygen gas. And wound up with a winding drum. On the other hand, when utilizing the spinning in-rotating method, an ordinary apparatus as described in Patent Document 3 was used. The circularity is a value calculated from an arbitrarily selected minor axis and major axis.
<製造例1>
配合組成がCo−29質量%Cr−(8,12,16)質量%Moの各合金から、ガス中溶融紡糸法により各々代表直径70μm、100μm、150μm、280μmの細線を得た。得られた細線は円形度が0.8〜0.9であって、90度以上の曲げ変形が可能であり、その内部組織は本願請求項1の範囲、すなわち、実質的にγ相(面心立方晶のCo基固溶体)とε相(六方稠密晶のCo基固溶体)との一方のみ、又はそれらの両方のみからなることを満足していた。
<Production Example 1>
Fine wires having representative diameters of 70 μm, 100 μm, 150 μm, and 280 μm were obtained from each alloy having a blend composition of Co-29 mass% Cr- (8, 12, 16) mass% Mo by melt spinning in gas. The obtained thin wire has a circularity of 0.8 to 0.9 and can be bent and deformed by 90 ° or more, and its internal structure is within the scope of claim 1 of the present application, that is, substantially γ phase (surface It was satisfied that it consisted of only one or both of a cubic cubic Co-based solid solution) and an ε-phase (hexagonal dense Co-based solid solution).
ここで、特にCo−29質量%Cr−8質量%Moの代表直径100μmの細線に関し、その横断面の電子顕微鏡における反射電子線像(以下、「組成像」と称する)を撮影した。その結果を図2に示す。得られた細線の組織は比較的均一で組成ムラが殆ど無く、短径98μm、長径103μmであることから、その円形度は0.95であり、本発明の好適範囲内にあることが判る。また、この細線に関し、X線(Co−Kα)回折測定を行った結果を図3に示す。これより、実質的に内部組織はγ相(面心立方晶のCo基固溶体)とε相(六方稠密晶のCo基固溶体)との両方のみからなることが判る。さらに、この細線に関し、90度以上の曲げ変形が可能であることも併せて確認された。以上により、製造例1の上記細線中には、γ相(面心立方晶のCo基固溶体)及びε相(六方稠密晶のCo基固溶体)以外の相が、X線(Co−Kα)回折によっては判断することができないことが判る。 Here, a reflection electron beam image (hereinafter, referred to as “composition image”) of an electron microscope of a transverse section of a fine wire having a representative diameter of 100 μm of Co-29 mass% Cr-8 mass% Mo was taken. The result is shown in FIG. The resulting fine wire structure is relatively uniform and has almost no compositional irregularity, and has a minor axis of 98 μm and a major axis of 103 μm. Therefore, the circularity is 0.95, which is within the preferred range of the present invention. FIG. 3 shows the results of X-ray (Co—Kα) diffraction measurement of this fine wire. From this, it can be seen that the internal structure consists essentially of both the γ phase (face-centered cubic Co-based solid solution) and the ε phase (hexagonal close-packed Co-based solid solution). Further, it was confirmed that the thin wire can be bent and deformed by 90 degrees or more. As described above, in the fine wire of Production Example 1, the phases other than the γ phase (face-centered cubic Co-based solid solution) and the ε phase (hexagonal dense crystal Co-based solid solution) are X-ray (Co-Kα) diffraction. It is understood that it cannot be judged depending on.
<製造例2>
配合組成がCo−27質量%Cr−(10,14)質量%Moの各合金から、溶湯ジェットの速度と回転ドラムの速度を同等とした回転液中紡糸法により代表直径120μm、150μm、180μm、280μmの細線を得た。得られた細線は円形度が0.6〜0.8であって、90度以上の曲げ変形が可能であり、その内部組織はX線回折測定の結果、実質的にγ相(面心立方晶のCo基固溶体)とε相(六方稠密晶のCo基固溶体)との両方のみからなっていた。以上により、製造例2の上記細線中には、γ相(面心立方晶のCo基固溶体)及びε相(六方稠密晶のCo基固溶体)以外の相が、X線(Co−Kα)回折によっては判断することができないことが判る。
<Production Example 2>
Representative diameters of 120 μm, 150 μm, and 180 μm from each alloy having a blending composition of Co-27 mass% Cr- (10,14) mass% Mo by a spinning in-rotating method in which the speed of the molten metal jet and the speed of the rotating drum are made equal. A thin wire of 280 μm was obtained. The obtained thin wire has a circularity of 0.6 to 0.8 and can be bent and deformed by 90 ° or more. The internal structure of the thin wire is substantially γ phase (face-centered cubic) as a result of X-ray diffraction measurement. Crystal-based Co-based solid solution) and ε phase (hexagonal close-packed Co-based solid solution). As described above, in the fine wire in Production Example 2, the phases other than the γ phase (face-centered cubic Co-based solid solution) and the ε phase (hexagonal dense Co-based solid solution) are X-ray (Co-Kα) diffraction. It is understood that it cannot be judged depending on.
<製造例3>
配合組成がCo−29質量%Cr−8質量%Moの合金から、鋳造により合金塊を得た。得られた合金塊は、その内部組織が図4に示す組成像のように、Mo高濃度相(色の薄い部分)と低濃度相(色の濃い部分)とに明瞭に分離していた。また、この合金塊に関し、X線(Co−Kα)回折測定を行った結果を図5に示す。これより、内部組織にはγ相(面心立方晶のCo基固溶体)及びε相(六方稠密晶のCo基固溶体)以外の不明相が含まれていることが判る。また本鋳造材から伸線加工で直径300μmの細線を作成することは困難であった。
<Production Example 3>
An alloy lump was obtained by casting from an alloy having a composition of Co-29 mass% Cr-8 mass% Mo. The obtained alloy lump clearly separated into an Mo high-concentration phase (light-colored portion) and a low-concentration phase (dark-colored portion) as in the composition image shown in FIG. Further, FIG. 5 shows the results of X-ray (Co—Kα) diffraction measurement of this alloy lump. From this, it can be seen that the internal structure contains an unknown phase other than the γ phase (face-centered cubic Co-based solid solution) and the ε phase (hexagonal dense Co-based solid solution). Moreover, it was difficult to produce a thin wire having a diameter of 300 μm from the cast material by wire drawing.
<製造例4>
配合組成がCo−29質量%Cr−8質量%Moの合金から、回転液中紡糸法により直径550μmの細線を得た。得られた細線は円形度が0.3〜0.6であって、90度以上の曲げ変形が不可能であった。内部組織にはγ相(面心立方晶のCo基固溶体)及びε相(六方稠密晶のCo基固溶体)以外の相が含まれていた。
<Production Example 4>
A thin wire having a diameter of 550 μm was obtained from an alloy having a composition of Co-29 mass% Cr-8 mass% Mo by spinning in a rotating liquid. The thin wire thus obtained had a circularity of 0.3 to 0.6 and could not be bent more than 90 degrees. The internal structure contained phases other than the γ phase (face-centered cubic Co-based solid solution) and the ε phase (hexagonal dense Co-based solid solution).
以上説明したように本発明によれば、Co−Cr−Mo合金本来の特徴である優れた生態適合性を確保した上で、内部組織及び細線径の適正化により、耐食性、耐摩耗性、加工性及び柔軟性に富むCo−Cr−Mo系細線を得ることができる。よって本発明は、各種医療用インプラントデバイスに適用することができる。 As described above, according to the present invention, the corrosion resistance, wear resistance, and processing are ensured by optimizing the internal structure and the fine wire diameter while ensuring the excellent biocompatibility that is the original characteristic of the Co-Cr-Mo alloy. Co-Cr-Mo type fine wires rich in properties and flexibility can be obtained. Therefore, the present invention can be applied to various medical implant devices.
Claims (12)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003401900A JP4067484B2 (en) | 2003-12-01 | 2003-12-01 | Co-Cr-Mo type fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing the fine wire |
US10/821,170 US7857916B2 (en) | 2003-04-11 | 2004-04-09 | Co-Cr-Mo alloy fine wire, manufacturing method therefor, and planar body, tubular body, stranded wire and cable formed of wire |
DE602004014057T DE602004014057D1 (en) | 2003-04-11 | 2004-04-13 | Wire made of a Co-Cr-Mo alloy, process for its production and use as a flat body, pipe, stranded wire and cable |
EP04008755A EP1466991B1 (en) | 2003-04-11 | 2004-04-13 | Co-Cr-Mo alloy fine wire, its method of manufacture, and use as a planar body, tubular body, stranded wire and cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003401900A JP4067484B2 (en) | 2003-12-01 | 2003-12-01 | Co-Cr-Mo type fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing the fine wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005163083A JP2005163083A (en) | 2005-06-23 |
JP4067484B2 true JP4067484B2 (en) | 2008-03-26 |
Family
ID=34725681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003401900A Expired - Fee Related JP4067484B2 (en) | 2003-04-11 | 2003-12-01 | Co-Cr-Mo type fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing the fine wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4067484B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4675253B2 (en) * | 2006-02-09 | 2011-04-20 | 日本発條株式会社 | Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire |
CN104372194B (en) * | 2014-09-28 | 2017-01-18 | 湖南英捷高科技有限责任公司 | Co-Cr-Mo alloy/zirconia ceramic composite material and its preparation method |
-
2003
- 2003-12-01 JP JP2003401900A patent/JP4067484B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005163083A (en) | 2005-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5784005B2 (en) | Biodegradable implant and method for producing the same | |
JP6493561B2 (en) | High entropy alloy member, method for producing the alloy member, and product using the alloy member | |
US9034456B2 (en) | Medical devices and methods of making the same | |
KR101883514B1 (en) | Method of producing a nano-twinned titanium material by casting | |
JP5885169B2 (en) | Ti-Mo alloy and manufacturing method thereof | |
JP6812461B2 (en) | High-strength low thermal expansion alloy wire | |
KR20080058357A (en) | Functional member from co-based alloy and process for producing the same | |
WO2013058339A1 (en) | IMPLANT Co-Cr-Mo ALLOY | |
JP7041778B1 (en) | Titanium alloy manufacturing method | |
JP4067484B2 (en) | Co-Cr-Mo type fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing the fine wire | |
JP2009046758A (en) | Co-BASED ALLOY FOR LIVING BODY, AND METHOD FOR PRODUCING THE SAME | |
JP3939674B2 (en) | Co-Cr-Mo type fine wire and medical implant device obtained by processing this fine wire | |
US7857916B2 (en) | Co-Cr-Mo alloy fine wire, manufacturing method therefor, and planar body, tubular body, stranded wire and cable formed of wire | |
WO2016152908A1 (en) | Medical implant comprising zinc-based alloy, and method for producing same | |
JP4675253B2 (en) | Co—Cr—Mo type alloy fine wire and method for producing the same, and planar body, cylindrical body, twisted wire and cable formed by processing this thin wire | |
JP5297715B2 (en) | Titanium alloy fine wire, titanium alloy fine wire sintered body, and biomedical implant device, filter and fuel cell component using titanium alloy fine wire sintered body | |
JP2009114477A (en) | Cobalt-chromium-molybdenum casting alloy for living body | |
EP4015105A1 (en) | Powder material, layered shaped article, and production method for powder material | |
CN113039298A (en) | Pt-Co alloy for medical use | |
JP2005082855A (en) | Al ALLOY MATERIAL | |
WO2016152909A1 (en) | Medical implant comprising zinc-based alloy | |
JPS5893856A (en) | Iron-chromium-aluminum alloy | |
WO2023032265A1 (en) | Titanium alloy and method for producing titanium alloy | |
JP2021134363A (en) | Stainless steel member for casting, manufacturing method thereof, and metal wire manufacturing apparatus | |
WO2019168081A1 (en) | Shape-memory alloy and shape-memory alloy wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060515 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070629 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070807 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071030 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080108 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4067484 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120118 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130118 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140118 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |