JP4067477B2 - Method for decomposing resin components - Google Patents

Method for decomposing resin components Download PDF

Info

Publication number
JP4067477B2
JP4067477B2 JP2003324523A JP2003324523A JP4067477B2 JP 4067477 B2 JP4067477 B2 JP 4067477B2 JP 2003324523 A JP2003324523 A JP 2003324523A JP 2003324523 A JP2003324523 A JP 2003324523A JP 4067477 B2 JP4067477 B2 JP 4067477B2
Authority
JP
Japan
Prior art keywords
waste
mixed solution
resin component
plastic
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003324523A
Other languages
Japanese (ja)
Other versions
JP2005089600A (en
Inventor
光雄 桑原
光男 渡辺
宣夫 田島
俊夫 風見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003324523A priority Critical patent/JP4067477B2/en
Publication of JP2005089600A publication Critical patent/JP2005089600A/en
Application granted granted Critical
Publication of JP4067477B2 publication Critical patent/JP4067477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Description

本発明は、樹脂成分の分解方法に関し、特に、産業廃棄物中に混入する廃プラスチック類を廃棄物から溶解することにより、プラスチック含有廃棄物を分解する方法に関する。   The present invention relates to a method for decomposing a resin component, and more particularly to a method for decomposing plastic-containing waste by dissolving waste plastics mixed in industrial waste from the waste.

産業廃棄物は、樹脂、金属、ガラス、土砂、木片及び油分などの多種類のものが混入した状態であり、費用と手間の観点から、分別処理を行うことなく埋立処分に依存する簡易な処理方法が主流であった。しかしながら、近年の埋立規制の強化に伴い、産業廃棄物を処理する際に無条件に埋立処分法に頼ることが難しくなってきている。さらに、最近はリサイクル意識の高まりも加わり、難分解性の有機物を主原料とする樹脂成分を未分解のまま地中に埋蔵する埋立処分が問題視されており、これに替る新しい処理方法が要望されている。このため、現在の主流は、複数の処理段階を経た後に焼却処分する方法に移行しつつある。   Industrial waste is a state in which many types of materials such as resin, metal, glass, earth and sand, wood chips, and oil are mixed, and from the viewpoint of cost and labor, it is a simple process that relies on landfill without separation. The method was mainstream. However, with the recent strengthening of landfill regulations, it has become difficult to rely on the landfill disposal method unconditionally when processing industrial waste. Recently, with the increasing awareness of recycling, landfill disposal in which undegraded resin components that are mainly raw materials that are difficult to decompose are buried in the ground is regarded as a problem, and a new treatment method is desired. Has been. For this reason, the current mainstream is shifting to a method of incineration after passing through a plurality of processing stages.

この状況は、廃車体中の樹脂成分の処理に関しても全く同様である。このため、樹脂成分の処理に際しては、廃車中の樹脂集中部分を粉砕した後に、廃車起源の廃棄物を水蒸気分解して得られる廃油成分や、固形物を触媒作用により分解した際の分解残渣などを焼却することで処理の完結とするのが一般的な処理方法となっている。   This situation is exactly the same for the treatment of the resin component in the waste vehicle body. For this reason, when processing resin components, waste oil components obtained by steam-decomposing wastes from scrap cars after pulverizing the resin-concentrated parts in scrap cars, decomposition residues when solids are decomposed by catalytic action, etc. It is a common treatment method to complete the treatment by incineration.

ところが、上記のような過程で焼却を行うと、残渣物中の塩ビ樹脂を起源とする有害な塩素ガスを生じるおそれがあり、対策を取らぬまま放置しておくとダイオキシン問題などに発展する可能性もある。そこで、残渣物生成の過程で、樹脂成分を選別分離することができれば理想的であるが、樹脂集中部分を多く含む粉砕ダストは、通常、断熱材や木屑、ガラス片やハーネス、塩ビ被覆線、土砂等の多種類のものが複雑に混入した状態で得られ、混入物の種類ごとにそれぞれ適切に対応した除去作業を行わない限り、樹脂成分のみを分離することはできない。また、耐熱性や耐油性などの機能性付加のため、樹脂成分に添加剤を使用したり、表面処理を行ったりして成分組成が複雑であることが多い。このため、樹脂だけを分離するには、数多くの手順を経ねばならず、現実には樹脂成分の完全分離に至らぬまま上記のような焼却処分を行っている。この結果、発生する塩素ガスへの対策が不十分なままであることは否めない。   However, incineration in the above-mentioned process may generate harmful chlorine gas originating from the vinyl chloride resin in the residue. If left untreated, it can develop into a dioxin problem. There is also sex. Therefore, it is ideal if the resin component can be separated and separated in the process of producing the residue, but the pulverized dust containing many resin-concentrated parts is usually heat insulating material, wood chips, glass pieces and harnesses, polyvinyl chloride coated wire, Only a resin component cannot be separated unless a removal operation corresponding to each type of the contaminants is obtained in a state where many types of soil and sand are mixed in a complicated manner. In addition, in order to add functionality such as heat resistance and oil resistance, the component composition is often complicated by using an additive in the resin component or performing a surface treatment. For this reason, in order to isolate | separate only resin, many procedures must be passed, and the above incineration disposal is actually performed, without reaching the complete separation of a resin component. As a result, it cannot be denied that measures against generated chlorine gas remain insufficient.

従来、この種の塩素ガス対策を講じたものとして特許文献1に示すものが知られている。このものは、前段の溶解分別工程において炭化水素系プラスチックを選択的に溶解した後に、塩ビなどの異炭化水素系プラスチックに対する熱分解工程を行って塩化水素系ガスの除去を行う。
特開平11-310659号公報(第4頁、図1及び図2)
Conventionally, what was shown in patent document 1 as what took this kind of chlorine gas countermeasure is known. In this method, after the hydrocarbon-based plastic is selectively dissolved in the previous dissolution fractionation step, the hydrogen chloride-based gas is removed by performing a thermal decomposition step on the different hydrocarbon-based plastic such as vinyl chloride.
Japanese Patent Laid-Open No. 11-310659 (page 4, FIGS. 1 and 2)

ところで、上記の熱分解工程は溶融脱塩素化処理によるもので、発生する塩化水素ガスや熱分解時の気相反応など気体物質を対象とする局面が多くなり、その局面ごとに圧力や気密への管理が必要となる。一般的に、気相反応を伴う工程があると管理や装置の負担が大きくなるのは避けられない。   By the way, the above thermal decomposition process is based on the melt dechlorination treatment, and there are many situations that target gaseous substances such as generated hydrogen chloride gas and gas phase reaction at the time of thermal decomposition. Management is required. In general, if there is a process involving a gas phase reaction, it is inevitable that the burden on management and equipment becomes large.

本発明は、上記問題点に鑑み、より簡易な工程で、産業廃棄物、特に、廃車起源の廃棄物中の樹脂成分を確実に分離し得る方法を提供することを課題としている。   In view of the above-described problems, an object of the present invention is to provide a method capable of reliably separating resin components in industrial waste, in particular, waste originating from scrap cars, with a simpler process.

上記課題を解決するため、本発明は、弱極性または非極性溶媒として廃ガソリン、廃軽油、廃灯油、シンナー、ベンゼン、ヘキサン及びアセトンから選択される少なくとも1種の溶媒と、強極性溶媒としてN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、γ−ブチロラクトン、ジアセトンアルコール、メチルイソブチルケトン、メチルエチルケトン、エチルベンゼン及び2−ピロリドンから選択される1種の溶媒とから成る混合溶液にプラスチック含有廃棄物を浸漬させた後に、この混合溶液を加熱するか、あるいは、上記弱極性または非極性溶媒と、上記強極性溶媒とから成る混合溶液を加熱した後に、この混合溶液中にプラスチック含有廃棄物を投入し、さらに、加熱したプラスチック含有廃棄物の浸漬混合溶液に対して、水蒸気と接触分解反応させることを特徴としている。

In order to solve the above problems, the present invention provides at least one solvent selected from waste gasoline, waste light oil, waste kerosene, thinner, benzene, hexane, and acetone as a weakly polar or nonpolar solvent , and N as a strongly polar solvent. -Plastic- containing waste in a mixed solution consisting of one solvent selected from methylpyrrolidone, dimethylformamide, dimethylacetamide, tetrahydrofuran, γ-butyrolactone, diacetone alcohol, methyl isobutyl ketone, methyl ethyl ketone, ethylbenzene and 2-pyrrolidone. After the immersion, the mixed solution is heated, or the mixed solution composed of the weak polar or nonpolar solvent and the strong polar solvent is heated, and then the plastic-containing waste is put into the mixed solution. In addition, containing heated plastic Against immersion mixed solution of wastes, it is characterized by contacting the decomposition reaction with water vapor.

これらによれば、プラスチック含有廃棄物中の炭化水素系プラスチックと、塩ビに代表される異炭化水素系プラスチックとは、それぞれ弱極性/非極性溶媒及び強極性溶媒に溶解する。この際、強極性溶媒に溶解する塩ビ起源の塩素分により溶媒全体が酸性度を増大させ、未溶解の他樹脂成分の溶解を促進することになる。また、加熱処理を行うことにより溶媒の蒸発が進行し、溶媒の酸性度の増大がさらに進むので、未溶解樹脂成分のさらなる溶解促進が得られる。そして、この結果、最大の捕捉対象である塩ビ樹脂も溶媒に溶解した状態、即ち、比較的操作が簡易な液相工程で分解した状態で回収でき、その後の処理への移行が容易となる。   According to these, the hydrocarbon-based plastic in the plastic-containing waste and the different hydrocarbon-based plastic represented by vinyl chloride are dissolved in the weakly polar / nonpolar solvent and the strongly polar solvent, respectively. At this time, the chlorine content of the vinyl chloride dissolved in the strong polar solvent increases the acidity of the whole solvent and promotes the dissolution of other undissolved resin components. Further, by performing the heat treatment, the evaporation of the solvent proceeds and the acidity of the solvent further increases, so that further dissolution of the undissolved resin component can be obtained. As a result, the largest vinyl chloride resin to be captured can be recovered in a state dissolved in a solvent, that is, in a state decomposed in a liquid phase process that is relatively easy to operate, and the transition to subsequent processing is facilitated.

この際の加熱温度範囲は80〜250℃であることが望ましい。この温度範囲は、使用樹脂の成形温度付近であり、樹脂成分が溶融状態に変化し易いため、溶解促進に有利である。これに対し、80℃未満では、樹脂成分の構成分子に対する分子裁断エネルギーを得るのに長時間要して効率が悪いこと、また、250℃以上の場合に、混合溶液全体の沸騰を招き、反応が激しくなることが懸念される。さらに、250℃以下とすることで、ダイオキシン発生温度(400〜650℃)への接近を十分な余裕を以って回避できるという効果もある。   In this case, the heating temperature range is desirably 80 to 250 ° C. This temperature range is near the molding temperature of the resin used, and the resin component is easily changed to a molten state, which is advantageous for promoting dissolution. On the other hand, if it is less than 80 ° C., it takes a long time to obtain molecular cutting energy for the constituent molecules of the resin component, and the efficiency is poor. There is concern that it will become intense. Furthermore, by setting it as 250 degrees C or less, there also exists an effect that the approach to dioxin generation temperature (400-650 degreeC) can be avoided with sufficient margin.

さらに、非極性溶媒として、廃ガソリン、廃軽油、廃灯油、シンナー、ベンゼン、へキサンなど、弱極性溶媒としてアセトンなど、そして、強極性溶媒として、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、γ-ブチロラクトン、ジアセトンアルコール、メチルイソブチルケトン、メチルエチルケトン、エチルベンゼン及び2-ピロリドンなどを用いることができる。なお、弱極性または非極性溶媒としては、上記した溶媒物質を複数用いた混合物を用いても良い。   Furthermore, non-polar solvents include waste gasoline, waste light oil, waste kerosene, thinner, benzene, hexane, etc., weak polar solvents such as acetone, and strong polar solvents such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, tetrahydrofuran Γ-butyrolactone, diacetone alcohol, methyl isobutyl ketone, methyl ethyl ketone, ethylbenzene, 2-pyrrolidone, and the like can be used. In addition, as a weakly polar or nonpolar solvent, you may use the mixture which used multiple above-mentioned solvent substances.

このように溶解した樹脂成分は、これが溶出した溶液ごと回収して分別処理に進むものとしても良いが、上記の加熱したプラスチック含有廃棄物の浸漬混合溶液の状態で、水蒸気と接触分解反応させる後工程を行うものとしても良い。加熱した浸漬溶液の状態では、既に、樹脂成分の相当部分が溶液中に溶出しており、水蒸気による接触分解反応が効率的に進むと考えられるからである。この際、水蒸気と接触した樹脂成分は、これを構成する炭化水素化合物中の炭素原子間の結合が切断され、分解されてしまう。  The resin component dissolved in this way may be recovered together with the solution from which it has been eluted, and then proceeded to a separation process, but after the catalytic decomposition reaction with water vapor in the state of the above-mentioned immersion mixed solution of plastic-containing waste. It is good also as what performs a process. This is because in the state of the heated immersion solution, a substantial part of the resin component has already eluted in the solution, and it is considered that the catalytic decomposition reaction with water vapor proceeds efficiently. Under the present circumstances, the resin component which contacted water vapor | steam will be decomposed | disassembled, the coupling | bonding between the carbon atoms in the hydrocarbon compound which comprises this will be cut | disconnected.

なお、この水蒸気との接触分解反応は、水蒸気分圧として、全圧1.01〜1.3気圧に対して0.01〜0.3気圧、及び、水蒸気温度として300℃以下の反応条件下で行うことができる。   The catalytic cracking reaction with water vapor is carried out under reaction conditions of a water vapor partial pressure of 0.01 to 0.3 atm with respect to a total pressure of 1.01 to 1.3 atm, and a water vapor temperature of 300 ° C. or lower. Can be done.

これにより、ほぼ常圧条件下で、しかも、水蒸気温度を300℃以下としても、樹脂成分を構成する炭化水素化合物に対する水蒸気の水和反応が生じ、これにより必要な接触分解反応を行うことができる。このため、耐圧度などの点で装置構成の軽減化が可能になる。そして、この温度範囲は、ダイオキシン発生温度(約400〜650℃)を確実に下回っているため、安全な条件下で樹脂成分分解を進めることができる。   As a result, a hydration reaction of water vapor with respect to the hydrocarbon compound constituting the resin component occurs under almost normal pressure conditions and even at a water vapor temperature of 300 ° C. or lower, and thus the necessary catalytic cracking reaction can be performed. . For this reason, it is possible to reduce the apparatus configuration in terms of the degree of pressure resistance. And since this temperature range is certainly less than the dioxin generation temperature (about 400-650 degreeC), resin component decomposition | disassembly can be advanced on safe conditions.

本発明方法によれば、プラスチック含有廃棄物中の炭化水素系プラスチック及び塩ビなどの異炭化水素系プラスチックが、混合溶媒中に溶解し、固形残渣としてでなく、混合溶媒中の溶解物として得られるので溶液状態で扱うことができる。即ち、溶解操作により簡易かつ確実に樹脂成分を分離分解することが可能となる。これにより、操作時の装置構成や管理を簡素化できるとともに、塩素ガス回収などその後の工程への移行が容易になる。   According to the method of the present invention, hydrocarbon-based plastics in plastic-containing waste and different hydrocarbon-based plastics such as vinyl chloride are dissolved in a mixed solvent, and are obtained not as a solid residue but as a dissolved product in the mixed solvent. So it can be handled in solution. That is, the resin component can be separated and decomposed easily and reliably by the dissolving operation. Thereby, while being able to simplify the apparatus structure and management at the time of operation, transfer to subsequent processes, such as chlorine gas recovery, becomes easy.

また、浸漬溶液に対して水蒸気を吹き込むことにより、接触分解反応を生じさせて、樹脂成分のさらなる分解を行うことも可能である。この際の反応条件下は温和なもので足り、装置構成の特段の複雑化は必要ない。   Further, by blowing water vapor into the immersion solution, it is possible to cause a catalytic decomposition reaction to further decompose the resin component. The reaction conditions at this time may be mild, and no special complication of the apparatus configuration is necessary.

図1は、本発明の溶解方法を用いる際の樹脂成分の溶解及び分解装置の概略図である。本装置の容器1は、中央底部に溶液2を貯留できる形状であり、その最深部に設けたドレンバルブ3により溶液2を抜き出すことができる。また、容器1の上部には開口4、5、6、7が設けられ、それぞれ投入口4、中央蒸留口5、送出口6、反応物取出口7として機能する。さらに、容器1の底部1aを、外部から回転軸芯8が貫通しており、溶液2の貯留部分に浸る位置に、この回転軸8に軸支された複数の裁断刃9を設けている。なお、回転軸8は、容器1の外部でベルト10により駆動モータ11と連結され、この駆動により回転軸8が回転すると、裁断刃9が溶液2内で回転する構造となっている。   FIG. 1 is a schematic view of an apparatus for dissolving and decomposing a resin component when using the dissolving method of the present invention. The container 1 of this apparatus is a shape which can store the solution 2 in the center bottom part, and can extract the solution 2 with the drain valve 3 provided in the deepest part. In addition, openings 4, 5, 6, and 7 are provided in the upper portion of the container 1, and function as an inlet 4, a central distillation port 5, a delivery port 6, and a reactant outlet 7, respectively. Further, the rotating shaft core 8 penetrates the bottom 1 a of the container 1 from the outside, and a plurality of cutting blades 9 supported by the rotating shaft 8 are provided at positions where the rotating shaft 8 is immersed in the storage portion of the solution 2. The rotating shaft 8 is connected to a driving motor 11 by a belt 10 outside the container 1, and the cutting blade 9 rotates in the solution 2 when the rotating shaft 8 rotates by this driving.

そして、この裁断刃9が設けられた容器1の最深低部1aを挟んだ底壁面に沿って、投入口4側に搬入用コンベア12を、送出口6側に搬出用コンベア13を設けた。なお、図1中の4a、5a、6aは、投入口4、中央蒸留口5、送出口6に搭載した蒸留器を示し、さらに、反応物取出口7にはシャッタ7aが設けられている。   And along the bottom wall surface which pinched | interposed the deepest lowest part 1a of the container 1 in which this cutting blade 9 was provided, the carrying-in conveyor 12 was provided in the inlet 4 side, and the carrying-out conveyor 13 was provided in the sending exit 6 side. In addition, 4a, 5a, 6a in FIG. 1 shows the distiller mounted in the insertion port 4, the central distillation port 5, and the delivery port 6, and the reaction material outlet 7 is provided with the shutter 7a.

図1の装置を用いてプラスチック含有廃棄物たるASR中の樹脂成分を溶解するに際しては、あらかじめ、容器1中に弱極性または非極性溶媒と、強極性溶媒とから成る混合溶液2を注入する。そして、投入口4から処理に適した適当な大きさに粉砕したASR(プラスチック含有廃棄物)を溶液2に連続的に投入して浸漬させる。その後、容器1に付属の加熱手段(図示せず)により加熱を行う。   When the resin component in the ASR which is a plastic-containing waste is dissolved using the apparatus of FIG. 1, a mixed solution 2 composed of a weakly polar or nonpolar solvent and a strongly polar solvent is injected into the container 1 in advance. Then, ASR (plastic-containing waste) pulverized to an appropriate size suitable for treatment from the charging port 4 is continuously charged into the solution 2 and immersed therein. Thereafter, heating is performed by a heating means (not shown) attached to the container 1.

そして、廃棄物を投入口4から投入する際、蒸留器4aを作動させ、混合溶液21からの蒸気をプラスチック廃棄物に曝すことにより、プラスチック成分が軟化し、その後の溶解や回転裁断刃9による裁断・細小化が容易になる。また、この投入時に搬入用コンベア12を用いることにより、溶液2への浸漬がスムーズに行われる。   When the waste is introduced from the inlet 4, the distiller 4 a is operated, and the vapor from the mixed solution 21 is exposed to the plastic waste, so that the plastic component is softened, and the subsequent melting and the rotary cutting blade 9 are used. Cutting and miniaturization are easy. Further, by using the carry-in conveyor 12 at the time of charging, the immersion in the solution 2 is performed smoothly.

なお、混合溶液2に用いることができるのは、非極性溶媒として、廃ガソリン、廃軽油、廃灯油、シンナー、ベンゼン、へキサンなど、弱極性溶媒としてアセトンなど、そして、強極性溶媒として、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、γ-ブチロラクトン、ジアセトンアルコール、メチルイソブチルケトン、メチルエチルケトン、エチルベンゼン及び2-ピロリドンなどである。弱極性または非極性溶媒としては、上記した溶媒物質を複数用いた混合物を用いても良い。   Note that the mixed solution 2 can be used as non-polar solvents such as waste gasoline, waste light oil, waste kerosene, thinner, benzene, hexane, etc., weak polar solvents such as acetone, and strong polar solvents such as N -Methylpyrrolidone, dimethylformamide, dimethylacetamide, tetrahydrofuran, γ-butyrolactone, diacetone alcohol, methyl isobutyl ketone, methyl ethyl ketone, ethylbenzene, and 2-pyrrolidone. As the weakly polar or nonpolar solvent, a mixture using a plurality of the above solvent substances may be used.

上記のようにして小片化されたプラスチック廃棄物を浸漬した混合溶液2に対して加熱を行う際の加熱条件は、80〜250℃であることが望ましい。この加熱により、プラスチック含有廃棄物中の炭化水素系プラスチックと、塩ビに代表される異炭化水素系プラスチックとは、それぞれ弱極性/非極性溶媒及び強極性溶媒に溶解する。このようなプラスチック材質としては、BR、SBR、天然ゴム、PVC、アクリル樹脂を例示することができる。   As for the heating conditions at the time of heating with respect to the mixed solution 2 which immersed the plastic waste fragmented as mentioned above, it is desirable that it is 80-250 degreeC. By this heating, the hydrocarbon-based plastic in the plastic-containing waste and the different hydrocarbon-based plastic typified by vinyl chloride are dissolved in the weakly polar / nonpolar solvent and the strongly polar solvent, respectively. Examples of such plastic materials include BR, SBR, natural rubber, PVC, and acrylic resin.

そして、この温度範囲での加熱を行いながら、図外の水蒸気導入管により溶液2に対して水蒸気を吹き込む。このときの水蒸気の温度及び分圧は、それぞれ110℃及び0.15気圧(全圧1.15気圧)である。すると、溶液2内に溶出した樹脂成分が水蒸気と接触し、これとの水和反応により分解される。さらに、蒸留器5a、6aによる蒸留で、分解された樹脂成分起源の炭化水素成分を除去し、新たに廃棄物片として供給される樹脂成分の溶解量を確保できる。また、この際、樹脂中の塩ビ起源の塩素分は、強極性溶媒中に塩素イオンとして溶出し、蒸留されることなく溶液2中に留まる。したがって、蒸留された溶媒が体積減少するに伴い、溶液中の塩素イオン濃度が増大し、酸性度が増加する。そして、このことが廃棄物片に対する溶解力増大の一因ともなるのである。   And water vapor | steam is blown with respect to the solution 2 with the water vapor | steam introduction pipe | tube outside a figure, performing the heating in this temperature range. The temperature and partial pressure of the water vapor at this time are 110 ° C. and 0.15 atm (total pressure 1.15 atm), respectively. Then, the resin component eluted in the solution 2 comes into contact with water vapor and is decomposed by a hydration reaction therewith. Further, the hydrocarbon components originating from the decomposed resin components can be removed by distillation using the distillers 5a and 6a, and the dissolved amount of the resin components newly supplied as waste pieces can be secured. At this time, the chloride-derived chlorine content in the resin elutes as chloride ions in the strong polar solvent and remains in the solution 2 without being distilled. Therefore, as the volume of the distilled solvent decreases, the chloride ion concentration in the solution increases and the acidity increases. This also contributes to an increase in the dissolving power for waste pieces.

さらに、この加熱時に、駆動モータ11の駆動により、ベルト10を介して回転軸8を回転させ、裁断刃9を回転させる。これにより、廃棄物片の粉砕がさらに進むとともに、混合溶液2が撹拌されて、廃棄物片の溶解、分解、蒸留が促進されるのである。   Further, at the time of this heating, the rotating shaft 8 is rotated via the belt 10 by the drive motor 11 and the cutting blade 9 is rotated. As a result, the pulverization of the waste pieces further proceeds, and the mixed solution 2 is agitated to promote the dissolution, decomposition and distillation of the waste pieces.

このような工程を経ることにより、溶液2に投入されたプラスチック含有廃棄物は、炭化水素系プラスチック樹脂成分が弱極性/非極性溶媒に溶解し、塩ビに代表される異炭化水素系プラスチック樹脂成分が強極性溶媒に溶解し、この状態で水蒸気による接触分解反応が行われる。そして、この結果、分解及び蒸留されて外部に除去されるものと、溶液2中に溶存したままのものと、スラッジ状残渣物となるものとに分かれる。塩素イオンは溶液2への溶存物であり、溶存状態のままドレンバルブ3の開閉により回収分離して次の処理工程に移送すれば良い。また、スラッジ状残渣物を搬出用コンベア13により溶液2から抜き出すことにより、次の処理工程に移送する。この残渣物は、塩素成分が除去されているので、燃焼しても有害な塩素ガスやこれに起因するダイオキシンガス発生のおそれが最小化されている。   Through such a process, the plastic-containing waste thrown into the solution 2 has a hydrocarbon-based plastic resin component dissolved in a weakly polar / non-polar solvent, and a different hydrocarbon-based plastic resin component represented by vinyl chloride. Is dissolved in a strong polar solvent, and in this state, catalytic cracking reaction with water vapor is carried out. As a result, it is divided into those that are decomposed and distilled and removed to the outside, those that remain dissolved in the solution 2, and those that become sludge residue. Chlorine ions are dissolved in the solution 2, and may be recovered and separated by opening and closing the drain valve 3 in the dissolved state and transferred to the next processing step. Further, the sludge-like residue is extracted from the solution 2 by the carry-out conveyor 13 to be transferred to the next processing step. Since the chlorine component is removed from the residue, the risk of generation of harmful chlorine gas and dioxin gas resulting from the combustion is minimized.

なお、本形態においては、強極性溶媒とから成る混合溶液にプラスチック含有廃棄物を浸漬させた後に、この混合溶液を加熱したが、弱極性または非極性溶媒と、強極性溶媒とから成る混合溶液を加熱した後に、この混合溶液中にプラスチック含有廃棄物を投入する方法としても良い。   In this embodiment, the plastic-containing waste is immersed in a mixed solution composed of a strong solvent, and then the mixed solution is heated. However, the mixed solution composed of a weakly polar or nonpolar solvent and a strong solvent. It is good also as a method of throwing a plastic containing waste in this mixed solution after heating.

非極性溶媒として廃ガソリンを用い、この廃ガソリンと、これに対して1/3重量比の極性溶媒とにより混合溶媒を構成し、さらに、この混合溶液に対して1/4重量比のシュレッダーダスト(樹脂成分65%含有)を図1の装置に投入した。このときの加熱温度を変化させたところ、処理温度と樹脂成分の溶解量とが図2中の実線のような相関を示すことが分かった。   Waste gasoline is used as a nonpolar solvent, and a mixed solvent is composed of this waste gasoline and a polar solvent at a ratio of 1/3 by weight, and further, a shredder dust at a ratio of 1/4 by weight with respect to this mixed solution. (Containing 65% resin component) was charged into the apparatus shown in FIG. When the heating temperature at this time was changed, it was found that the treatment temperature and the dissolved amount of the resin component showed a correlation as shown by the solid line in FIG.

[比較例1]
混合溶液の替りに、非極性溶媒の灯油を用いた以外は、[実施例1]と同様にしてシュレッダーダスト中の樹脂成分の溶解を行ったところ、図2の点線に示すように溶解量が低位のまま推移した。
[Comparative Example 1]
When the resin component in the shredder dust was dissolved in the same manner as in [Example 1] except that kerosene as a non-polar solvent was used instead of the mixed solution, the amount of dissolution was as shown by the dotted line in FIG. It remained low.

これらの結果の比較により、樹脂成分の溶解量向上に、極性溶媒の混入が有効であることが分かる。   From comparison of these results, it can be seen that mixing of a polar solvent is effective in improving the amount of resin component dissolved.

また、混合溶媒とシュレッダーダストとの比も、シュレッダーダスト中の溶解量に影響を与える。図3は、加熱温度を160℃の一定に保ち1時間加熱を行ったときの溶解量につき、混合溶媒とシュレッダーダストとの重量比(図3中では溶媒比に相当)を種々変更したときの溶解量との相関を示すものである。   The ratio of the mixed solvent and the shredder dust also affects the amount of dissolution in the shredder dust. FIG. 3 shows various amounts of mixed solvent / shredder dust weight ratio (corresponding to the solvent ratio in FIG. 3) with respect to the amount dissolved when heating temperature is kept constant at 160 ° C. for 1 hour. The correlation with the amount of dissolution is shown.

弱極性溶媒としてアセトンを用い、このアセトンと、これに所定重量比の極性溶媒とにより混合溶媒を構成し、さらに、この混合溶液に対してPVC樹脂を図1の装置に投入し90℃にて加熱した。   Acetone is used as a weak polar solvent, and a mixed solvent is composed of this acetone and a polar solvent in a predetermined weight ratio. Further, a PVC resin is added to the mixed solution in the apparatus shown in FIG. Heated.

このとき、アセトン/極性溶媒比を以下のように変更したときの溶解量相関を以下のように示す。
アセトン/極性溶媒比=70:30・・・・図4
アセトン/極性溶媒比=80:20・・・・図5
アセトン/極性溶媒比=90:10・・・・図6
図4乃至図6より、PVC樹脂の溶解量は、極性溶媒の比率への依存は顕著でなく、むしろ極性溶媒が存在するだけで確実に溶解されることが分る。
At this time, the dissolution amount correlation when the acetone / polar solvent ratio is changed as follows is shown as follows.
Acetone / polar solvent ratio = 70: 30... FIG.
Acetone / polar solvent ratio = 80: 20... FIG.
Acetone / polar solvent ratio = 90: 10... FIG.
4 to 6, it can be seen that the amount of the PVC resin dissolved does not significantly depend on the ratio of the polar solvent, but rather is dissolved reliably only by the presence of the polar solvent.

また、種々の極性溶媒(N-メチル-2-ピロリドン、ジメチルホルムアミド、γ-ブチロラクトン、安息香酸ブチル、エチルベンゼン、2-ピロリドン)のなかでは、N-メチル-2-ピロリドンがPVC樹脂の溶解に効果的であることが分かる。   Among various polar solvents (N-methyl-2-pyrrolidone, dimethylformamide, γ-butyrolactone, butyl benzoate, ethylbenzene, 2-pyrrolidone), N-methyl-2-pyrrolidone is effective in dissolving PVC resin. You can see that

非極性溶媒としてシンナーを、極性溶媒としてN-メチル-2-ピロリドンを用い、シンナーとN-メチル-2-ピロリドンとの重量比を80:20とした混合溶液を作成する。この混合溶液30kgを貯留した図1の装置に樹脂成分12kgを投入し、150℃で2時間加熱したところ、スラッジ状残渣物14kg及び溶液28kgが得られ、樹脂成分の溶解が行われたことが分かる。   Using thinner as the nonpolar solvent and N-methyl-2-pyrrolidone as the polar solvent, a mixed solution with a weight ratio of thinner and N-methyl-2-pyrrolidone of 80:20 is prepared. When 12 kg of the resin component was put into the apparatus of FIG. 1 storing 30 kg of this mixed solution and heated at 150 ° C. for 2 hours, 14 kg of sludge residue and 28 kg of solution were obtained, and the resin component was dissolved. I understand.

非極性溶媒として灯油を、極性溶媒としてジメチルホルムアミドを用い、灯油とジメチルホルムアミドとの重量比を80:20とした混合溶液を作成する。この混合溶液40kgを貯留した図1の装置に樹脂成分20kgを投入し、170℃で90分間加熱したところ、スラッジ状残渣物22kg及び溶液38kgが得られ、樹脂成分の溶解が行われたことが分かる。   Using kerosene as the nonpolar solvent and dimethylformamide as the polar solvent, a mixed solution having a weight ratio of kerosene and dimethylformamide of 80:20 is prepared. When 20 kg of the resin component was put into the apparatus of FIG. 1 storing 40 kg of this mixed solution and heated at 170 ° C. for 90 minutes, 22 kg of sludge residue and 38 kg of solution were obtained, and the resin component was dissolved. I understand.

加熱時間を当初の90分より長くすることにより、残渣物重量の減少と溶液量の増加が見られ、樹脂成分の溶解量が増大することが分かる。   It can be seen that by making the heating time longer than the initial 90 minutes, a decrease in the weight of the residue and an increase in the amount of the solution are observed, and the amount of the resin component dissolved increases.

なお、スラッジ状残渣物に対して、160℃、0.15L/min.条件で水蒸気を導入したところ、約6kgの残分が得られた。この残分に対し、加温した後、揮発分除去を行うと、5.5kgの弾性物質が得られた。この弾性体の弾性強度は、図7及び図8に示すように、蒸留に用いる水蒸気の吹き込み速度や温度に依存することが分かる。これらの条件を設定し、弾性強度を制御することにより、得られる残渣物を、吸音材や衝撃吸収材に再利用することも可能である。   When steam was introduced into the sludge residue under the conditions of 160 ° C. and 0.15 L / min., A residue of about 6 kg was obtained. When this residue was heated and then volatile components were removed, 5.5 kg of an elastic material was obtained. As shown in FIGS. 7 and 8, the elastic strength of this elastic body is found to depend on the steam blowing speed and temperature used for distillation. By setting these conditions and controlling the elastic strength, it is possible to reuse the obtained residue as a sound absorbing material or an impact absorbing material.

本発明は、シュレッダーダスト中の樹脂成分に起因する有害な塩素ガスやダイオキシンの発生防止に活用できる。特に、廃プラスチックなどの樹脂成分を含む廃棄物処理法中で、樹脂成分を分離する前処理方法と位置付けることにより、処理効率を向上させる重要工程として活用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for preventing generation of harmful chlorine gas and dioxin caused by resin components in shredder dust. In particular, it can be used as an important process for improving the processing efficiency by positioning it as a pretreatment method for separating the resin component in the waste treatment method including a resin component such as waste plastic.

樹脂成分の溶解分解装置Resin component dissolution and decomposition equipment 加熱温度と溶解量との相関を示すグラフ図Graph showing the correlation between heating temperature and amount of dissolution 弱極性または非極性溶媒と強極性溶媒との比率と溶解量との相関を示すグラフ図A graph showing the correlation between the ratio of the weakly polar or nonpolar solvent to the strongly polar solvent and the amount dissolved. 溶解時間と溶解量との相関を示すグラフ図(弱極性溶媒:強極性溶媒=70:30)A graph showing the correlation between dissolution time and dissolution amount (weakly polar solvent: strongly polar solvent = 70: 30) 溶解時間と溶解量との相関を示すグラフ図(弱極性溶媒:強極性溶媒=80:20)A graph showing the correlation between dissolution time and dissolution amount (weakly polar solvent: strongly polar solvent = 80: 20) 溶解時間と溶解量との相関を示すグラフ図(弱極性溶媒:強極性溶媒=90:10)Graph showing the correlation between dissolution time and dissolution amount (weak polar solvent: strong polar solvent = 90: 10) 残渣物を水蒸気蒸留して得られる弾性物質の弾性強度と吹き込み速度との相関を示すグラフ図Graph showing the correlation between the elastic strength of the elastic material obtained by steam distillation of the residue and the blowing speed 残渣物を水蒸気蒸留して得られる弾性物質の弾性強度と蒸留温度との相関を示すグラフ図Graph showing the correlation between the elastic strength of the elastic material obtained by steam distillation of the residue and the distillation temperature

符号の説明Explanation of symbols

1 反応容器
2 混合溶液


1 reaction vessel 2 mixed solution


Claims (4)

弱極性または非極性溶媒として、廃ガソリン、廃軽油、廃灯油、シンナー、ベンゼン、ヘキサン及びアセトンから選択される少なくとも1種の溶媒と、強極性溶媒として、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、γ−ブチロラクトン、ジアセトンアルコール、メチルイソブチルケトン、メチルエチルケトン、エチルベンゼン及び2−ピロリドンから選択される1種の溶媒とから成る混合溶液にプラスチック含有廃棄物を浸漬させた後に、該混合溶液を加熱し、上記加熱したプラスチック含有廃棄物の浸漬混合溶液に対して、水蒸気と接触分解反応させることを特徴とする樹脂成分の分解方法。 At least one solvent selected from waste gasoline, waste light oil, waste kerosene, thinner, benzene, hexane and acetone as weakly polar or nonpolar solvent, and N-methylpyrrolidone, dimethylformamide, dimethylacetamide as strong polar solvents After immersing the plastic-containing waste in a mixed solution consisting of one solvent selected from tetrahydrofuran, γ-butyrolactone, diacetone alcohol, methyl isobutyl ketone, methyl ethyl ketone, ethylbenzene and 2-pyrrolidone , A method for decomposing a resin component, comprising heating and subjecting the heated mixed solution of plastic-containing waste to a catalytic decomposition reaction with water vapor . 弱極性または非極性溶媒として、廃ガソリン、廃軽油、廃灯油、シンナー、ベンゼン、ヘキサン及びアセトンから選択される少なくとも1種の溶媒と、強極性溶媒として、N−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、γ−ブチロラクトン、ジアセトンアルコール、メチルイソブチルケトン、メチルエチルケトン、エチルベンゼン及び2−ピロリドンから選択される1種の溶媒とから成る混合溶液を加熱した後に、該混合溶液中にプラスチック含有廃棄物を浸漬し、上記加熱したプラスチック含有廃棄物の浸漬混合溶液に対して、水蒸気と接触分解反応させることを特徴とする樹脂成分の分解方法。 At least one solvent selected from waste gasoline, waste light oil, waste kerosene, thinner, benzene, hexane and acetone as weakly polar or nonpolar solvent, and N-methylpyrrolidone, dimethylformamide, dimethylacetamide as strong polar solvents , Tetrahydrofuran, γ-butyrolactone, diacetone alcohol, methyl isobutyl ketone, methyl ethyl ketone, ethylbenzene and 2-pyrrolidone, a mixed solution is heated, and then the plastic-containing waste is placed in the mixed solution. A method for decomposing a resin component, which comprises dipping and subjecting the heated mixed solution of plastic-containing waste to a catalytic decomposition reaction with water vapor . 前記混合溶液の加熱温度範囲を、80〜250℃とすることを特徴とする請求項1または2に記載の樹脂成分の分解方法。   The method for decomposing a resin component according to claim 1 or 2, wherein a heating temperature range of the mixed solution is 80 to 250 ° C. 前記水蒸気との接触分解反応は、全圧1.01〜1.3気圧に対する水蒸気分圧0.01〜0.3気圧及び水蒸気温度300℃以下の反応条件下で行われることを特徴とする請求項1〜3のいずれかに記載の樹脂成分の分解方法。 The catalytic cracking reaction with water vapor is performed under reaction conditions of a water vapor partial pressure of 0.01 to 0.3 atm with respect to a total pressure of 1.01 to 1.3 atm and a water vapor temperature of 300 ° C or less. Item 4. A method for decomposing a resin component according to any one of Items 1 to 3 .
JP2003324523A 2003-09-17 2003-09-17 Method for decomposing resin components Expired - Fee Related JP4067477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324523A JP4067477B2 (en) 2003-09-17 2003-09-17 Method for decomposing resin components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324523A JP4067477B2 (en) 2003-09-17 2003-09-17 Method for decomposing resin components

Publications (2)

Publication Number Publication Date
JP2005089600A JP2005089600A (en) 2005-04-07
JP4067477B2 true JP4067477B2 (en) 2008-03-26

Family

ID=34455256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324523A Expired - Fee Related JP4067477B2 (en) 2003-09-17 2003-09-17 Method for decomposing resin components

Country Status (1)

Country Link
JP (1) JP4067477B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ307054B6 (en) * 2015-12-22 2017-12-20 Ústav Chemických Procesů Av Čr, V. V. I. A method of separating a composite packaging material
CN113861504A (en) * 2020-06-30 2021-12-31 中国石油化工股份有限公司 Method for separating chlorine-containing plastics from mixed waste plastics

Also Published As

Publication number Publication date
JP2005089600A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
EP1577367B1 (en) System and process for the treatment of multiphase residues
EP1737903B1 (en) Process for the solvent treatment of a plastic
JP3544834B2 (en) Mixed waste treatment equipment
WO2014098229A1 (en) Method for separation and recovery of plastic-based composite waste
JP5883585B2 (en) Separation and recovery method for composite plastic waste and universal type separation and recovery device used therefor
JP2012500110A (en) Disposal of electrical and electronic equipment
US5756871A (en) Treating method for converting wastes into resources and its equipment
Huang et al. Microwave-assisted chemical recovery of glass fiber and epoxy resin from non-metallic components in waste printed circuit boards
US20080179257A1 (en) Process for the Thermal Treatment of Pharmaceutical Waste Material
CA2425645A1 (en) Polystyrene reclamation process
JP4848506B2 (en) Plastic disassembly method
JP4067477B2 (en) Method for decomposing resin components
JP2005154525A (en) Method and apparatus for treating polystyrene-based resin composition
US7235219B2 (en) Method and apparatus for removing additives from thermoplastic resin composition
JPH0881685A (en) Method for treating waste plastics
JPH11188335A (en) Method for treating waste copper wire
JP3682115B2 (en) Waste plastic processing method
CA2576355C (en) Treatment of waste using three temperature stages within one chamber
JP4754246B2 (en) Plastic disassembly method
JP3183617B2 (en) Method for separating polyethylene, polypropylene and polystyrene from waste plastic and oiling method
JP2001072793A (en) Process for treatment of waste plastic containing flame retardant component
JPH11323002A (en) Treatment of plastic waste material
JPH1072587A (en) Method for treating waste plastics
JP4247789B2 (en) Method for decomposing resin components
JP2005087866A (en) Waste disposal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees